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Abstract: This paper aims to optimize the two-stage helical pairs (TSHPs) in a helical hydraulic
rotary actuator (HHRA) in terms of volume, transmission efficiency, and maximum contact stress.
Volume and transmission efficiency can be determined through analytical mathematical models.
However, calculating the contact stress of helical pairs necessitates complex and time-consuming
finite element simulation. To address this issue, a method for predicting the maximum contact stress
using an ensemble of metamodels (EMs) is proposed, with an automated finite element simulation
process developed for data provision. The superiority of the EMs is validated through comparative
analysis with three stand-alone metamodels. The optimization is carried out using the NSGA-II
algorithm, including four combinations of the three objectives, and global sensitivity is analyzed
over the objectives. The results indicate a trade-off relationship between maximum contact stress and
volume in the optimal space. Moreover, considering multiple combinations enhances the robustness
of the optimization results. The method is effectively applied to the design of the TSHPs and provides
a new idea for the related actuator design.

Keywords: helical hydraulic rotary actuator; helical pair; multi-objective optimization; ensemble of
metamodels; NSGA-II

1. Introduction

The helical hydraulic rotary actuator (HHRA) is a specialized hydraulic cylinder that
employs two-stage helical pairs (TSHPs) with substantial lead angles to generate rotational
motion, effectively converting hydraulic energy into mechanical energy [1]. As illustrated
in Figure 1, the internal structure of a typical HHRA primarily comprises an output shaft,
piston, fixed nut, and cylinder. The first-stage helical pair is composed of the internal teeth
(nut) of the piston and the external teeth (screw) of the output shaft, while the second-stage
helical pair consists of a fixed nut and the screw of the piston. Under the influence of
differential pressure between the inlet and outlet, the piston is compelled to perform a
reciprocating helical motion due to the TSHPs, which concurrently drive the output shaft
to reciprocate rotation, generating both angle and torque. Owing to its distinctive two-
stage helical pairs, the HHRA offers several advantages over alternative hydraulic rotary
actuators, including a compact structure, small size, large output torque, extensive rotation
angle, and high transmission efficiency [2].

The advancement of hydraulic actuators towards high pressure and high power
density represents an inevitable progression. This development demands that the HHRA
optimally outputs torque and rotation angle within restricted spatial constraints while
minimizing energy consumption and ensuring enhanced durability. These requirements
present a significant challenge for the design of TSHPs. Although the TSHPs designed
following conservative standards, such as ISO or AGMA, can satisfy fundamental required
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strength, they often lack advantages in dimensions, efficiency, and durability, and may
even fail to meet design specifications. Furthermore, while the geometric characteristics of
the TSHPs share similarities with those of gear pairs, notable distinctions exist. In the case
of the TSHPs, the helix angle is reduced, and all teeth engage during operation, serving
to actualize the screw drive rather than the gear drive. As a result, in addition to the
customary considerations of volume, transmission efficiency, and contact stress in gear
drive, the output torque and rotation angle must also be factored into the design of the
TSHPs. The incorporation of additional dynamic features exacerbates the complexity of
the TSHP design, necessitating more comprehensive research to determine an optimal
approach for achieving superior performance. However, within the scope of the literature
reviewed by the present authors, no studies have been found that address the optimization
of the TSHPs. Consequently, the rational design of high-performance TSHPs requires
further in-depth investigation.

Figure 1. General configuration of HHRA.

The optimal design of gear structures can be categorized into macro-geometry design
and micro-geometry modifications [3]. These designs necessitate the optimization of numer-
ous variables, rendering traditional manual trial-and-error approaches cumbersome and
inefficient for identifying optimal solutions. With the development of computer technology,
metaheuristic algorithms have emerged as a widely adopted solution to address these
challenges. Miler et al. [4] employed a genetic algorithm to optimize the macro-geometry
of gear pairs with the objective of minimizing weight. Subsequently, they incorporated
power losses into the objectives and utilized the non-dominated sorting genetic algorithm-II
(NSGA-II) for multi-objective optimization of macro-geometry parameters in steel and
polymer gears [5,6]. Atila et al. [7] compared the strengths and weaknesses of various com-
monly used metaheuristic optimization methods in the context of gear design optimization.
Additionally, beyond their application in the optimization of gear structures, metaheuristic
algorithms have also been successfully utilized for fault diagnosis of electro-mechanical
actuators [8], global optimization in power point tracking of partially shaded solar photo-
voltaic systems [9], and optimizing deep learning models for secure IoT environments [10].
Collectively, metaheuristic algorithms demonstrate superior performance and are broadly
applicable to various types of engineering optimization designs. However, the direct
application of metaheuristic algorithms in the TSHPs optimization presents significant
challenges when it comes to contact stress. This is primarily due to the strong nonlinear-
ity of calculating contact stress, for which a finite element method (FEM) is required to
obtain accurate results, despite its time-consuming and cumbersome nature [11]. Further-
more, metaheuristic algorithms require hundreds of iterations to identify optimal solutions,
resulting in excessive computational resources and unacceptably long simulation times
when combined with the FEM [5]. One approach to addressing these issues is to replace
the original FE model with a more cost-effective surrogate model. Metamodeling tech-
niques, such as polynomial response surface (PRS) [12], radial basis function [13], Kriging
(KRG) [14,15], and support vector regression (SVR) [16], provide simpler, easier-to-calculate
surrogate models in place of complex actual models. Numerous engineering cases have
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successfully applied metamodeling techniques for mathematical modeling and optimiza-
tion. For instance, Tang et al. [17] built a hydrodynamic metamodel of the orifice plate
using an adaptive sampling method and a BP neural network to improve design efficiency.
Jaiswal et al. [18] employed an ensemble of metamodels (EMs) to establish a mapping
relationship between the input power of a centrifugal pump and the blade parameters.
Zhang et al. [19] utilized the NURBS method to parameterize glider shape and constructed
a Kriging-based optimization framework for the optimal lift–drag ratio. Huang et al. [20]
established a Kriging model of the mechanical extraction process of crude camellia oil and
optimized the process parameters using NSGA-II.

Despite the widespread success of metamodeling techniques, their application in
related gear design remains relatively limited. Among the scarce literature available, the
research findings of Zhang et al. [21] and Korta et al. [22] are particularly noteworthy.
Zhang et al. [21] employed the Kriging method to construct a metamodel for large gear
strength responses and used genetic algorithms (GA) to perform reliability optimization,
identifying an optimal set of macro-geometric parameter values. In a separate study,
Korta et al. [22] investigated the applicability of three distinct stand-alone metamodels in
gear profile modification optimization. The results indicated that the Gaussian process (GP)
model could better predict gear stress and static transmission errors, and the performance
of gear profile modification using metamodeling techniques combined with optimization
algorithms was significantly enhanced compared to unmodified gears. The research of
Korta et al. [22] reveals that different metamodels are suitable for various types of problems,
and the accuracy of a metamodel largely depends on its selection. As it is challenging
to predict which metamodel will be most effective beforehand, the process of choosing
the optimal metamodel can be cumbersome and time-consuming. In contrast to stand-
alone metamodels, the ensemble of metamodels [23] represents a promising metamodeling
technology that capitalizes on the advantages of various metamodels while circumventing
the tedious selection process. Further research is needed to explore the applicability of the
EMs for predicting contact stress or optimizing related gear design.

The primary aim of this study is to conduct multi-objective optimization of the TSHPs,
with the goal of achieving minimized volume, enhanced efficiency, and prolonged surface
fatigue life. Additionally, the study explores the applicability of the EMs for predicting
maximum contact stress in helical pairs. The rest of this paper is structured as follows:
Section 2 establishes analytical mathematical models for the rotation angle, output torque,
and transmission efficiency of the HHRA, as well as a FEM automation simulation model
for the maximum contact stress. Section 3 develops an EM for the maximum contact stress.
Section 4 presents the comprehensive design optimization process. Section 5 analyzes the
superiority of EMs, the results of multi-objective optimization, and the global sensitivity of
design variables. Section 6 outlines the conclusions of the paper.

2. Mathematical Model

This subsection primarily focuses on the modeling process for key output charac-
teristics of the TSHPs, including rotation angle, output torque, transmission efficiency,
overall volume, and contact stress. These indicators play a crucial role in the design of the
TSHPs. To distinguish more intuitively between the first- and second-stage helical pairs, the
subscript “_i” is utilized to denote the ith stage helical pair in the subsequent formulas and
symbols presented in this paper. When i = 1, it represents the corresponding parameters of
the first-stage helical pair. When i = 2, it represents the corresponding parameters of the
second-stage helical pair.

2.1. Analytical Modeling
2.1.1. Rotation Angle

A schematic diagram of the motion model of the TSHPs is shown in Figure 2. As-
suming that the piston moves a distance of xp along the axis due to a pressure difference,
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the piston rotates by ϕ degrees, and the output shaft rotates simultaneously by θ degrees
relative to the piston. The following equations can be obtained:

θ = 2π · xp/S_1; ϕ = 2π · xp/S_2 (1)

where S_i denotes the screw lead. As per the ISO standard [24], S_i = m_iz_i/sin β_i,
where m_i represents the modulus, z_i signifies the number of teeth, and β_i refers to the
helix angle of the graduated circle.

Figure 2. Motion model of TSHPs.

Based on the principle of relative motion, the absolute rotation angle of the output
shaft, denoted as A, can be expressed as follows:

A=θ + ϕ = 2xp · (
sin β_1
m_1z_1

+
sin β_2
m_2z_2

) (2)

2.1.2. Transmission Efficiency and Output Torque

To provide an intuitive visualization of the force state of the TSHPs, a schematic
diagram of the screw is presented in Figure 3.

Figure 3. Force analysis of screw.
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Based on the force decomposition analysis, the following relationship can be derived:
Fa_i = Ft_i · tan β_i; Fn_i = Ft_i/(cos αn_i · cos β_i);
Ffa_i = Ff_i · cos β_i; Fft_i = Ff_i · sin β_i; Ff_i = µ · Fn_i;
Fb = Fa_1 + Ffa_1; Fp = Fa_2 + Ffa_2 + Fb; FT_i = Ft_i − Fft_i

(3)

where Fn_i is the normal force at the meshing point, Fa_i, Ft_i, and Fc_i are the force com-
ponents of Fn_i along the axial, radial, and circumferential direction, respectively. Ff is the
friction force, FT_i is the total circumferential force auto-simulation, Fp is the hydraulic
actuator force, Fb is the bearing reaction force, αn_i is normal pressure angle, and µ is
friction coefficient.

The theoretical output torque Tfriction, considering the surface friction of the TSHPs,
can be deduced from Equation (3):

Tfriction=
1
2 ·

Fpd_1d_2
d_1 tan(β_2+ρν_2)+d_2 tan(β_1+ρν_1)

(4)

where d_i is the diameter of graduated circle. ρν_i is the equivalent friction angle,
ρν_i = arctan(µν_i), µν_i is the equivalent friction coefficient, and µν_i = µ_i/cosαn_i .

Assuming that the contact surface of the friction pair is smooth, denoted as ρν_i = 0,
then the output torque of the HHRA under ideal conditions can be derived as follows:

Tfrictionless=
1
2 ·

Fpd_1d_2
d_1 tan β_2+d_2 tan β_1

(5)

Thus, the transmission efficiency of the HHRA can be expressed as:

η= Tfriction
Tfrictionless

=
d_1 tan β_2+d_2 tan β_1

d_1 tan(β_2+ρν_2)+d_2 tan(β_1+ρν_1)
(6)

Taking ηother as the mechanical efficiency excluding the friction loss of the TSHPs,
with a value of 0.9 [25], the theoretical output torque T of the HHRA can be expressed as:

T=Tfriction · ηother (7)

2.1.3. Volume of TSHPs

The schematic diagram of the TSHPs is simplified and shown in Figure 4. It can be
seen that the volume of the TSHPs not only refers to its actual volume but also to the space
of the piston movement inside the HHRA, which can be expressed as:

V = πD2(l + xp)/4 (8)

where D signifies the cylinder’s diameter. As per the ISO standard [24], D = m_2z_2/ cos β_2
+ 2ha∗ ·m_2, where ha∗ represents the top height factor, set as 0.8 for this study. l denotes the
original length of the TSHPs, manually adjusted by technicians in accordance with working
conditions. Combining the above equation with Equation (2), V can also be expressed
as follows:

V = π(
m_2z_2
cos β_2

+ 1.6 ·m_2)
2(l +

1
2

A/(
sin β_1
m_1z_1

+
sin β_2
m_2z_2

))/4 (9)

2.1.4. Model Validation

A prototype of the HHRA has been developed, and a test stand for the HHRA has
been established. The purpose of the experiment is to record both the maximum output
angle and maximum output torque of the HHRA under different pressures. The validity of
the analytical mathematical model is then confirmed through a comparison of its computed
results with the experimental data collected.

The hydraulic test stand is depicted in Figure 5. The HHRA is connected to the end
load via shaft couplings. The end load can be either a mechanical clutch, which tests the
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maximum output torque of the HHRA, or a disc loading, which evaluates the maximum
rotation angle and assesses the overall functionality. The rotation angle of the HHRA is
measured using an angle sensor, while the output torque is obtained from the torque sensor,
as shown in Figure 5.

Figure 4. Volume of TSHPs.

Figure 5. Test stand of HHRA.

The mechanical clutch is locked, and the inlet pressure of the HHRA is adjusted to
obtain the maximum output torque under various differential pressures. The HHRA is
operated unloaded to measure its maximum rotation angle. Figure 6 presents a compar-
ison between the test results and the simulation data, with annotations indicating the
simulation errors at different experimental test points. The comparison results reveal
a congruence between the simulated and experimental rotation angles. Both the simu-
lated and experimental curves for maximum output torque display analogous trends and
exhibit an approximate linear distribution with the simulation error for the angle consis-
tently measuring 0.18%, and the maximum simulation error for the torque not exceeding
2%. The results demonstrate that the established analytical mathematical model is highly
accurate and effectively characterizes the rotation angle, maximum output torque, and
transmission efficiency.
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Figure 6. Comparison of simulation and experimental results.

2.2. Finite Element Model
2.2.1. Model Building

The commercial FEM analysis software ABAQUS is employed to simulate the contact
stress of the helical pair, and the following assumptions are made: the machining error and
gear tooth backlash of the helical pair are disregarded, implying that all teeth uniformly
mesh and share an equal load. The 3D model is generated using the commercial software
CATIA, with simplifications made for features that minimally impact simulation outcomes.
The material properties of the helical pair are presented in Table 1. An eight-node linear
element with reduced integration (C3D8R) is utilized to mesh the 3D model, incorporating
local refinement in the contact area and rounded corners, as depicted in Figure 7. The teeth
of the screw and nut are designated as the target and contact surface with finite sliding, and
the contact property is defined as “hard”. Fixed constraints are applied to the outer surface
of the nut, while all degrees of freedom of the screw are constrained, except for rotary
motion and linear movement along the axial direction. Torque is applied to the screw, and
a displacement of S is applied to the piston along the axial direction, causing it to traverse
from one end of the fixed nut to the other. The stress nephogram of the piston at each
position during movement can be obtained. The analysis is divided into 11 steps, with each
step corresponding to a specific displacement, denoted as ∆S. The ABAQUS/Standard
solver is employed to solve the model. The maximum contact stress for each step and
the average maximum contact stress for all steps can be extracted from the contact stress
nephogram, as illustrated in Figure 8.

Table 1. Material properties.

Category ZCuSn10Pb1 QT-500

Density/kg ·m−3 8500 8500
Young’s modulus/Pa 1.03× 1011 1.68× 1011

Poisson’s ratio 0.3 0.24

2.2.2. Automatic FEM Analysis Process

To simplify the FE modeling process, eliminate time-consuming manual operations
and enable the FEM simulation results to be directly invoked by the optimization algo-
rithm, an automated FEM simulation workflow has been developed. Initially, Python
was employed for the secondary development of CATIA Automation, enabling automatic
parameterization of the geometric model. Subsequently, an ABAQUS-based FE model for
the maximum contact stress is implemented using a Python script, facilitating automatic
simulation. This process is illustrated in Figure 7.
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Figure 7. Automatic FEM simulation process.

Figure 8. Convergence analysis of the FE model mesh.

2.2.3. Contact Stress

As the HHRA operates, the TSHPs engage in helical transmission, leading to meshing
interactions between the helical pairs, which generate localized, concentrated internal
material pressure at contact points. The magnitude of contact stress is crucial for the design
of related gear structures, as excessive contact stress directly contributes to tooth surface
wear and pitting [26]. Helical pairs with varying sizes and dimensional parameters exhibit
distinct contact stresses under identical loads. Among these, the first-stage helical pair has
a smaller diameter compared to the second-stage one. When subjected to the same torque,
the tooth surface pressure acting on the first-stage helical pair is greater, making them more
susceptible to tooth surface wear and pitting. Consequently, it is essential to monitor and
minimize the contact stress of the first-stage helical pair to prevent its premature fatigue
failure. Since helical transmission is a dynamic process, contact stress varies with the
relative positions of the screw and nut. Figure 8 illustrates an example of the maximum
contact stress history at various relative positions as the screw moves along the nut. It can
be observed that as the screw moves from the beginning to the end of the nut, the maximum
contact stress gradually decreases and slightly increases at the end. The goal is to reduce
each maximum contact stress throughout the entire motion. Therefore, in the subsequent
metamodel construction process, the contact stress to be predicted is defined as the average
value of the maximum contact stress throughout the entire helical transmission process.

2.2.4. FE Model Convergence Analysis

The maximum contact stress during the helical transmission cycle of the helical pair
serves as the criterion for FE convergence analysis. Figure 8 displays the full-cycle max-
imum contact stress curves obtained from FE models with three different mesh sizes.
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According to the results, when the number of elements is 431,930, the FEM results essen-
tially converge. This value ensures a good balance between result accuracy and simulation
efficiency. Consequently, this element size has been selected for the simulation.

3. Ensemble of Metamodels
3.1. Basic Theory of Stand-Alone Metamodels

In order to establish an exact relationship between the contact stress and the macro-
geometry parameters of the helical pair, an EM based on the generalized mean square cross-
validation error (GMSE) [23] is employed in this paper. Three stand-alone metamodels,
specifically PRS [12], KRG [14,15], and SVR [16], are utilized to construct the metamodel
due to their applicability to varying degrees of non-linearity, dimensions, smoothness, and
noisy responses [27]. The fundamental theories of the three metamodels are described
as follows.

3.1.1. Polynomial Response Surface

The second-order polynomial model, a widely used PRS technique, is formulated as:

ŷ = βo +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k

∑
i=1

k

∑
j=1

βijxixj (10)

where f̂ is the predicted value of the actual response function, xi, xj is the ith and jth design
variables, k is the number of design variables, and βii and βij are the unknown parameters
that need to be determined using the least-squares method.

3.1.2. Kriging Model

The Kriging model is one of the most famous surrogate models based on the Gaussian
process. An ordinary Kriging model can be expressed as:

f̂ (x) = µ + ε(x) (11)

where µ represents the mean value of the Kriging prediction function, ε(x) corresponds
to the error term of a Gaussian process with a zero mean but a nonzero variance, and its
covariance can be expressed as follows:

Cov
(

ε
(

xi
)

, ε
(

xj
))

= σ2R
([

φ
(

xi, xj
)])

(12)

where φ
(

xi, xj) is a correlation function mainly affected by the distance between the sample
points xi and xj, and R() is the symmetric correlation matrix.

3.1.3. Support Vector Regression

SVR prediction can be achieved by linear or nonlinear regression. When linear regres-
sion is carried out, then the function is formulated as:

f̂ (x) = 〈w · x〉+ b (13)

where 〈w · x〉 is the dot product between w and x. The approximate function should be as
flat as feasible. In order to achieve that, the optimization problem can be expressed as:

Minimize 1
2 |w|2

subject to
{

yi − 〈w · xi〉 − b 6 ε

〈w · xi〉+ b− yi 6 ε

(14)

where yi is the predicted value of the actual response function at point xi, and b is
the intercept.
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The dot product in Equation (13) can be replaced by a kernel function when the
nonlinear regression is considered. Finally, the output response of the SVR model can be
obtained through:

f̂ (x) =
l

∑
i=1

(αi − α∗i )k(xi · x) + b (15)

where αi and α∗i are the Lagrangian multipliers and k(xi, x) is the kernel function. The
Gaussian function is employed in this paper since it is one of the most commonly used
kernel functions.

3.1.4. Calculation of Weight Factors

The weight factor for each metamodel is proportional to its modeling accuracy. Higher-
accuracy metamodels receive larger weight factors, whereas lower-accuracy ones are
assigned smaller weights. This paper utilizes the GMSE, a distinguished and extensively
applied criterion, as the hybrid error measure to amplify the reliability of the error metric.

The weight factor of the ith individual metamodel can be defined as:

w =
1

ci(x)

/
m
∑

i=1

1
ci(x)

, ci(x) = GMSEi (16)

where subscript i represents the ith metamodel and superscript j represents the jth sample
point. ci(x) is the hybrid error metric of the ith metamodel at prediction point.

The GMSEi can be calculated by:

GMSEi =

√√√√1
k

k

∑
j=1

e
(

xj
i

)2

e
(

xj
i

)
=
∣∣∣ f(xj

i

)
− f̂

(
x−j

i

)∣∣∣, 1 ≤ j ≤ k

(17)

where e
(

xj
i

)2
is the Leave One Out Cross-Validation value of the ith metamodel at the

jth sample point, f
(

xj
i

)
is the true value at the jth sample point, and f̂

(
x−j

i

)
is the corre-

sponding predicted value according to the ith metamodel built based on all sample points
except xj.

3.2. Evaluation Functions for Metamodel

To assess the accuracy of the metamodels, two commonly used error metrics, root
mean squared error (RMSE) and maximum absolute error (MAE), are introduced. The
RMSE represents the overall accuracy of the metamodel, while the MAE provides insight
into its local precision. To ensure the accuracy of the metamodel, MAE should be minimized.
Additionally, a lower RMSE value signifies a higher degree of prediction model accuracy.

RMSE =

√√√√ 1
N

N

∑
j=1

( f j − f̂ j)

MAE = max
{∣∣∣ f j − f̂ j

∣∣∣} , j = 1, ..., N

(18)

where N is the number of test points, f j is the actual value at the jth test point, and f̂ j is the
corresponding predict value.

3.3. Design of Experiment

The optimized Latin hypercube sampling (OLHS) method [28], a commonly used
experimental design method, is employed for generating sampling points as part of the
design of experiments (DOE). By substituting the sampling points into the automatic



Actuators 2023, 12, 385 11 of 24

simulation process described in Section 2.2.2, the corresponding output values can be
obtained. Before establishing the metamodel, it is essential to determine the number of
sample points needed to ensure accuracy. Therefore, 20 additional points are generated by
the OLHS method to estimate the error of the metamodels. The RMSE and MAE values
corresponding to the five different sample sizes (25, 50, 75, 100, 125) obtained from the EMs
based on the GMSE criterion are compiled in Figure 9.

Figure 9. Error metrics vs. sample sizes.

As seen in the figure, when the number of sample points is less than 75, both the
RMSE and MAE values decrease significantly with the increase in sample points. This
illustrates that when there are fewer sample points, increasing the number of sample points
can significantly enhance model accuracy. However, when the number of sample points
exceeds 75, the decrease in RMSE and MAE values with increasing sample points is slight,
and the improvement in model accuracy is also very limited. Given that FE simulation in
this study is time-consuming, a balance between simulation cost and model accuracy is
sought. Hence, 75 sample points are selected for constructing the EMs in this paper.

4. Optimization Process
4.1. Optimization Problem

The optimization aims to minimize the volume V, reduce the contact stress of the first-
stage helical pair σc1, and maximize the transmission efficiency η. The macro-geometric
characteristics of the TSHPs are determined by the modulus m, the number of teeth z,
and the helix angle λ. Consequently, these essential structural parameters serve as design
variables. Importantly, the modulus is discrete, based on the modulus criterion, and the
number of teeth is an integer, requiring adherence to specific rules. However, during
the TSHPs optimization, both the modulus and the number of teeth may deviate from
these rules. To address this problem, the closest standard modulus is assigned to update
the new modulus, while decimals are replaced with rounded numbers to resolve the
integer limitation for the teeth. The design space and initial values of these parameters are
presented in Table 2.

Table 2. Design space.

Parameter Design Space

z_1, teeth number of first-stage helical pair [17–25]
z_2, teeth number of second-stage helical pair [17–25]
m_1 (mm), modulus of first-stage helical pair 1.5, 1.75, 2,2. 25, 2.5

m_2 (mm), modulus of second-stage helical pair 2, 2.25, 2.5, 2.75, 3
λ_1 (°), helix angle of first-stage helical pair [35–55]
λ_2 (°) , helix angle of first-stage helical pair [35–55]
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Concurrently, the minimum output torque Tmin (540 N ·m in this study) and the
minimum rotation angle Amin (100◦ in this study) represent essential technical require-
ments that must be met, while the maximum bending stress σb must satisfy fundamental
strength requirements, thereby establishing them as constraints. Moreover, as illustrated in
Figure 2, the piston necessitates maintaining a specific thickness to withstand torque, thus
demanding adherence to strength requirements under pure shear stress. As a result, the
optimization problem can be formulated as follows:

Find:
x = {z_1, m_1, λ_1, z_2, m_2, λ_2}T (19)

To minimize:
y1(x)=V(x), y2(x)= −η(x), y3(x)=σc1(x) (20)

Subject to:

Tmin ≤ T(x), Amin = A(x), σb(x) ≤ [σb], τT =
Tj

WT
≤ [τT] (21)

where τT and [τT] represent the shear stress experienced by the piston and the allowable
shear stress, respectively. Tj denotes the calculated torque, with Tj = K · T, and K is the
correction factor, which is 1.2 here. WT signifies the section modulus in torsion of the piston,
given by WT = π(d4

r_2 − d4
r_1)/(16 · dr_2). Here, dr_i refers to the root circle diameter of

helical teeth.
In the domain of multi-objective optimization design, the selection of distinct criteria

as objectives yields markedly divergent outcomes [29]. Consequently, the choice of objec-
tives necessitates alignment with practical requirements. To better analyze the impact of
different combinations of objectives on the optimization results of the TSHPs, this paper
not only considers the combination of volume, transmission efficiency, and contact stress of
the TSHPs as objectives but also examines their pairwise combinations for comparative
evaluation. The specific combinations are as follows:

a. Volume + Contact Stress + Transmission Efficiency (Vl + CS + TE)
b. Volume + Contact Stress (Vl + CS)
c. Volume + Transmission Efficiency (Vl + TE)
d. Contact Stress + Transmission Efficiency (CS + TE)

4.2. Optimization Workflow

The proposed optimization procedure is depicted in Figure 10. The optimization
program is run in MATLAB R2022b, and the overall optimization steps of multi-objective
optimization of the TSHPs can be expressed as follows:

Step 1: Model building

This process entails the development of analytical mathematical models and the EMs
of the TSHPs, as previously described.

Step 2: Multi-objective optimization

The optimization procedure was performed using the constrained NSGA-II, notable
for its rapid non-dominated sorting technique, effective crowding distance assignment for
population front ranking and selection, and genetic operators. The principal procedure
is depicted in the NSGA-II module within Figure 10. Hyperparameters were configured
with a population size of 300, crossover probability and mutation probability of 0.8 and 0.5,
respectively, and a maximum generation count of 500 [30]. For an extensive understanding
of NSGA-II, please refer to the study by Deb et al. [31].

Step 3: Global sensitivity analysis

Understanding the degree of influence each design variable exerts on the optimization
objectives is crucial. As the sensitivity analysis method can provide an intuitive and
quantitative estimation of this influence, a commonly used global sensitivity analysis
method, Sobol’s method [32], is performed based on the established model. The degree
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of influence of a single variable or multiple variables and their interactions with the
optimization objectives is analyzed. For a more detailed exploration of Sobol’s global
sensitivity analysis method, please refer to the study by Sobol [32].

Figure 10. Flowchart of optimization procedure.

5. Results and Discussions
5.1. Test of the EMs

To verify the superiority of the EMs based on the GMSE error criterion in predicting the
maximum contact stress of helical pair, a comparative analysis was conducted with three
stand-alone metamodels—PRS, KRG, and SVR. The test object is the average maximum
contact stress obtained from the FEM result, and four sets of tests are conducted with
different initial sampling points: 25, 50, 75, 100, and 125. The test results are shown in
Table 3.

The results indicate that no stand-alone metamodel consistently maintains high pre-
diction accuracy across all sample sizes. For example, the PRS model exhibits the best
prediction accuracy when the sample points are 50, 75, and 100, but its accuracy is inferior
to KRG and SVR when the sample points are 25. In contrast, the EMs demonstrate better
prediction accuracy than the stand-alone metamodels in all sample point tests. This is
because the EMs can utilize the predictive capabilities of different stand-alone metamod-
els, enhancing the prediction accuracy. Moreover, it can be seen that for the stand-alone
metamodels and EMs, when the sample size is less than 75, both RMSE and MAE val-
ues decrease with increasing sample size, indicating an improvement in model precision.
However, when the sample size exceeds 75, the RMSE and MAE values of the EMs still
decrease with increasing samples, while some stand-alone metamodels exhibit a significant
increase in RMSE and MAE values, indicating overfitting during model fitting. For the
EMs, no saturation effect was discerned within 125 samples, indicating stronger robustness
compared to stand-alone metamodels. Consequently, the EMs exhibit higher prediction
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accuracy and robustness in the problem studied, achieving the highest fitting accuracy for
the original model.

Table 3. Error metrics of different metamodels with various sample sizes.

Sample Size Metric PRS KRG SVR GMSE

25 RMSE 27.19 16.38 25.24 15.88
MAE 62.44 53.30 68.29 40.49

50 RMSE 11.22 12.78 15.20 9.72
MAE 29.35 36.86 48.63 30.22

75 RMSE 11.64 12.34 12.53 8.03
MAE 27.72 26.26 32.04 20.18

100 RMSE 8.35 14.39 12.80 7.24
MAE 20.04 44.51 41.28 19.14

125 RMSE 14.26 19.43 11.34 6.97
MAE 38.70 74.27 29.09 17.96

5.2. Optimization Results

The NSGA-II algorithm was utilized to tackle the optimization problem discussed
above, resulting in Pareto solutions for four combinations, as illustrated in Figure 11a. Each
point in this figure represents a potential optimal solution, providing designers with a
range of options that can be chosen based on specific project requirements. The Pareto
solutions for the four combinations are differentiated by employing scatter plots with
unique colors and shapes. To further clarify the interplay among the different objectives,
the three-dimensional Pareto solutions derived from Figure 11a are projected onto the
three coordinate planes. This approach allows visualization of the Pareto solutions for the
bilateral relationships between two objectives. Specifically, Figure 11b displays the two-
dimensional Pareto solution combining contact stress and volume. Figure 11c elucidates
the two-dimensional Pareto solution integrating contact stress and transmission efficiency.
Lastly, Figure 11d illustrates the two-dimensional Pareto solution comprising volume and
transmission efficiency.

As discerned from Figure 11a, each point exhibits varying degrees of superiority and
inferiority, suggesting the nonexistence of a singular design point that simultaneously
optimizes all objectives. When a specific objective value of point 1 surpasses that of point 2,
there is an inevitable superiority of the other objective value of point 2 over that of point 1,
signifying the non-dominance characteristic in the Pareto solution. Furthermore, the Pareto
solutions of different combinations exhibit traits of both “concentration” and “scattering”.
“Concentration” is manifested when adjacent scatter points compile into a near-continuous
“curve”, whereas “scattering” is discernible in the relative segregation and discontinuity of
these curves. Examination of the design variables corresponding to the objective values
reveals that the scatter points on the same “curve” possess identical quantities of teeth and
modules, with continuous alterations in helix angle inducing shifts in the “curve” trend.
Conversely, the scatter points on different “curves” display varying quantities of teeth and
modules. Given that both the number of teeth and modules are discrete variables, the
discreteness of design variables also contributes to the discontinuity of the Pareto solutions,
resulting in the "scattering" characteristic of different “curves”. A meticulous inspection of
Figure 11a uncovers that for the Vl + CS + TE combination, the three-dimensional Pareto
solution forms multiple “curves” exhibiting pronounced spatial discontinuity along the
volume coordinate axis. As the major cause of spatial discontinuity between “curves” is the
fluctuation in the number of teeth and modules, it can be inferred that these factors exert a
significant influence on the volume of the TSHPs. Considering that both the number of teeth
and modules can markedly modify the diameter of the helical pair, thereby influencing
the overall volume, this inference is congruent with realistic scenarios. Lastly, the spatial
distribution of the Pareto solution for the Vl + CS + TE combination is the most dispersed,
a trait also mirrored in the presence of optimal solutions in all objective directions compared
to the other three combinations. The Vl + CS combination is ranked as the second most
dispersed, while the CS + TE combination presents a relatively compact spatial distribution,
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and the Vl + TE combination is the densest. Furthermore, the three-dimensional Pareto
solution in the Vl + CS + TE combination reveals clear spatial discontinuity between
the “curves”. However, these discrete “curves”, when projected along the transmission
efficiency coordinate axis (refer to Figure 11b), appear to form an almost continuous new
“curve”. This new “curve” distinctly signals a trade-off relationship—as contact stress
increases (decreases), the volume correspondingly shrinks (grows). To better discern
the patterns in Figure 11b, the x-axis coordinates were segmented into distinct regions,
as illustrated in Figure 12. The slope of the curve intuitively represents the trade-off
relationship between contact stress and volume. This relationship can be articulated as
Equation (22):

K = ∆V/∆C (22)

where ∆V denotes the increase in volume and ∆C represents the increase in contact stress.
Upon further examination of Figure 12, the volume and contact stress in the lower-left

region of the new “curve” mentioned above are both reduced compared to the upper-
right region, suggesting that the upper-right region dominates the lower-left region. This
“curve” represents the Pareto frontier considering only volume and maximum contact stress.
The scatter points of the Pareto solution located at the far left of the “curve” correspond
to the highest volume and the lowest contact stress. As these points shift from left to
right along the x-axis within region D, the volume drops sharply with the rise in contact
stress. This region witnesses the contact stress increasing from 87 MPa to 155 MPa, while
the volume shrinks from 1380 mm3 to 846 mm3, yielding a K value of −7.9 mm3/MPa.
Within this region, a minor decrease in contact stress results in a substantial volume surge.
As the scatter points keep shifting towards the positive x-axis direction within region C,
the rate of volume decrease gradually moderates. Here, the contact stress rises from
155 MPa to 255 MPa, while the volume shrinks from 846 mm3 to 532 mm3, with a K value
of −3.1 mm3/MPa. This region essentially acts as a transitional region for the rates of
volume change. The scatter points continue their movement in the positive x-axis direction
within region B, where the volume decrease rate decelerates even further. In this region,
the contact stress ascends from 255 MPa to 400 MPa, and the volume diminishes from
532 mm3 to 382 mm3, yielding a K value of −1 mm3. It can be inferred that a volume
reduction by 1 mm3 necessitates a sacrifice of 1 MPa of contact stress in this region. Notably,
compared to regions C and D, the volume decrease rate in this region is more gradual and
consistent. As the scatter points continue moving towards the far right of the “curve” in
region A, the contact stress surges from 400 MPa to 500 MPa, while the volume contracts
from 382 mm3 to 355 mm3, with a K value of −0.3 mm3/MPa. The volume change in this
region is minimal, and at the far right of the “curve”, the volume remains mostly stable.
In this context, a slight volume reduction triggers a significant increase in contact stress.
For the Vl + CS combination, the “curve” trajectory formed by the Pareto solution scatter
points mirrors that of the Vl + CS + TE combination. However, within the confines of
region B and a significant portion of region C, the “curve” of the Vl + CS combination
leans more towards the lower-left coordinate space in comparison to the Vl + CS + TE
combination, and its Pareto solution ultimately dominates the latter. Clearly, the Vl + CS
combination, which disregards transmission efficiency, can yield relatively superior results
in terms of volume and contact stress. For the CS + TE combination, the Pareto solution
set primarily resides in region D of the Vl + CS + TE combination. This arises from the
combination focus on optimizing maximum contact stress and transmission efficiency,
excluding volume consideration. Therefore, the solution set of this combination leans
towards lower contact stress and heightened transmission efficiency. Considering the trade-
off relationship between volume and contact stress, discussed in the paper, this optimization
combination also exhibits a larger volume. Thus, its associated solution set concentrates
on regions characterized by lower contact stress, enhanced transmission efficiency, and
larger volume. In contrast, for the Vl + TE combination, the Pareto solution set is mainly
located in region A of the Vl + CS + TE combination. Similarly, this combination centers on
optimizing volume and transmission efficiency without taking contact stress into account.
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Consequently, its solution set is more focused on smaller volumes and higher transmission
efficiency. Nevertheless, due to the trade-off relationship, it results in excessive maximum
contact stress. Therefore, its corresponding solution set is concentrated in local areas with a
small volume, high transmission efficiency, and high contact stress.

(a) (b)

(c) (d)

Figure 11. Pareto frontier. (a) The 3D Pareto frontier for contact stress, volume and transmission
efficiency. (b) The 2D Pareto frontier for contact stress and volume. (c) The 2D Pareto frontier for contact
stress and transmission efficiency. (d) The 2D Pareto frontier for volume and transmission efficiency.

Figure 12. The 2D Pareto frontier for contact stress and volume with distinct regions with candidates.

Upon analyzing Figure 11c,d, it is clear that contact stress and volume do not exhibit
an apparent conflicting relationship with transmission efficiency. In other words, increasing



Actuators 2023, 12, 385 17 of 24

(or decreasing) contact stress or increasing (or decreasing) volume does not necessarily lead
to an increase (or decrease) or decrease (or increase) in transmission efficiency. This can be
attributed to the fact that transmission efficiency is primarily influenced by helix angles, as
demonstrated by the results of the global sensitivity analysis discussed later.

5.3. Solution Selection

Optimization results from the four different combinations offer intriguing insights
into the Pareto solutions. Specifically, the Pareto solutions of the CS + TE combination are
characterized by exceedingly large volumes, whereas the Pareto solutions of the Vl + TE
combination are marked by extraordinarily high contact stresses. These results, falling short
of optimization expectations, are subsequently excluded from the optimization scheme
selection process. In contrast, the Pareto solutions for both the Vl + CS + TE and Vl + CS
combinations exhibit wide distribution. The Vl + CS combination, despite its lack of
consideration for transmission efficiency, does not display exceedingly low transmission
efficiency across all design points in the Pareto solutions. Consequently, the optimal
candidates are selected by giving consideration solely to the Vl + CS + TE and Vl + CS
combinations. Figure 12, demonstrating strong regularity and the trade-off between volume
and contact stress, provides a viable source for the candidate solution. Within Figure 12,
the boundary lines demarcating regions A–D symbolize transitional zones between regions
and offer high representativeness, as well as the midpoints of each region. The points
where the boundary lines and midpoints of each region intersect with the Pareto frontier
can be identified as candidates for selection. The designation P represents candidates,
with the absence of a superscript indicating the Vl + CS + TE combination and a prime
superscript “′” denoting the Vl + CS combination. The subscript, meanwhile, refers to the
position of a point. For instance, PAB refers to the intersection of the shared boundary line
between regions A and B with the Pareto frontier under the Vl + CS + TE combination,
whereas PC

′ signifies the midpoint of region C on the Pareto frontier under the Vl +
CS combination.

To verify the accuracy and reliability of the predicted contact stress for each candidate,
FE models were established for each candidate, and their prediction errors were obtained
using Equation (23). The results are presented in Table 4.

Error =
|σFE − σPRE|

σFE
(23)

where σFE represents the contact stress derived from the FE model, whereas σPRE denotes
the contact stress using the EMs.

The design variables and corresponding objective values for all candidates are system-
atically presented, and the results can be seen in Table 5. In order to analyze the advantages
of each candidate more intuitively, and considering the practical requirements, candidates
are categorized into two zones, specifically:

a. Volume optimal zone: volume ≤ 500 mm3. (PAB, PAB
′, PB, PB

′, PBC
′).

b. Contact stress optimal zone: contact stress ≤ 260 MPa. (PBC, PC, PC
′, PCD, PCD

′)

Within each zone, each candidate is evaluated and scored, with higher scores indicating
better optimization. The scoring method is as follows:

Step 1: Assume there are n candidates within the zone. For each objective, assign scores
to the candidates based on their level of optimization, with the most optimized objective
value receiving n points, the second most optimized receiving n− 1 points, and so forth,
with the least optimized result receiving 1 point.
Step 2: The final score for each candidate is the sum of the scores obtained for each objective
value in Step 1.

The scores for the candidates are indirectly illustrated in Figure 13, in which a larger
area corresponds to a higher score. As can be seen Figure 13a and Table 5, within the optimal
volume zone, PAB

′ ranked highest among the five candidates, followed by PAB and PB
′.
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These candidates not only maintain a smaller volume (not exceeding 405 mm³) but also
uphold a high transmission efficiency (all above 0.84). Further observation reveals that the
transmission efficiency of PAB

′ and PAB is virtually unchanged relative to PB
′, with a slight

increase of 0.17% and 0.13%, respectively. Conversely, volume reduction is more substantial,
at 4.7% and 8.9%, respectively, accompanied by contact stress augmentations of 25.9% and
25.5%. These two candidates, therefore, are better suited for scenarios where the material
of the friction pair has superior wear resistance and there are strict requirements for the
volume of the TSHPs. Comparatively, PAB

′ outperforms PAB with a significant volume
reduction and negligible changes in transmission efficiency and contact stress. Therefore,
PAB

′ should be prioritized under these conditions. However, PB
′, despite a slight volume

increase relative to PAB
′ and PAB, exhibits a notable decrease in contact stress, making it

optimal for scenarios requiring extended surface fatigue life and larger volume allowances.
Considering Figure 13b and Table 5, within the optimal contact stress zone, PBC scored
highest among the five candidates, followed by PCD. These two options substantially
reduce contact stress (no more than 260 MPa) while keeping the transmission efficiency
high (all above 0.84). Further examination shows that compared to PCD, PBC significantly
reduces volume but increases contact stress. Therefore, PBC is suitable in situations where
the high surface fatigue life is required, and certain volume requirements need to be met.
Conversely, PCD is advisable when the surface fatigue life of the helical pair is of paramount
importance, with minimal regard for volume considerations.

Table 4. Metamodel validation results.

Candidate FEM-Based (MPa) Predicted (MPa) Error (%)

PAB 419.33 401.54 4.24

PAB
′ 418.15 399.91 4.36

PB 339.73 328.69 3.25

PB
′ 333.16 328.45 1.41

PBC 254.33 254.30 0.01

PBC
′ 262.77 255.21 2.88

PC 197.22 206.15 4.53

PC
′ 201.05 206.01 2.47

PCD 161.93 155.94 3.70

PCD
′ 162.69 155.21 4.60

Table 5. Results for various candidates.

Candidate
Variables Objectives

z1 m1 (mm) λ1 (°) z2 m2 (mm) λ2 (°) V (mm3) σc1 (MPa) η

PAB 19 1.5 43.75 20 2.25 40.78 382.20 419.33 0.8434

PAB
′ 20 1.5 39.73 22 2 40.68 365.43 418.15 0.8431

PB 19 1.5 51.38 23 2 43.89 425.42 339.73 0.8390

PB
′ 20 1.5 47.89 22 2 44.46 401.13 333.16 0.8420

PBC 20 1.75 47.15 24 2 47.27 532.80 254.33 0.8417

PBC
′ 20 1.5 55.00 22 2 49.78 477.79 262.77 0.8328

PC 18 2.25 41.08 24 2 50.07 607.03 197.22 0.8410

PC
′ 25 1.5 46.99 17 2.5 54.50 573.55 201.05 0.8361

PCD 22 2 46.81 23 2.5 48.76 846.05 161.93 0.8412

PCD
′ 22 1.75 55.00 21 2.5 52.32 786.98 162.69 0.8314

It can be observed that the recommended candidates for the volume optimal zone
mainly originate from the Vl + CS combination, while those for the contact stress optimal
zone come from the Vl + CS + TE combination. In light of the above findings, while
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considering that some small prediction discrepancies still exist in the EMs, it is suggested
that both combinations be considered in the optimization design of the TSHPs, which can
enhance the robustness of the optimization results, and the optimal scheme can be selected
depending on different requirements.

(a) (b)

Figure 13. Radar chart for scores of candidates. (a) Volume optimal zone. (b) Contact stress
optimal zone.

5.4. Global Sensitivity Analysis

Figures 14–16 depict the results of the global sensitivity analysis of design variables on
objectives. The magnitudes represented by the bars correspond to the total order and first-
order sensitivity indices, thereby indicating the extent of their influence on the objectives.
The first-order sensitivity index characterizes the importance of each variable quantitatively,
while the total order sensitivity index describes not only the effect of each variable on the
target but also the interactions among all the design variables.

As illustrated in Figure 14, the first-order sensitivity index for the helix angle of the first-
stage helical pair on transmission efficiency is 0.595, while that of the second-stage helical
pair is 0.392. The first-order sensitivity index for the remaining design variables is 0.001,
indicating that the transmission efficiency is primarily influenced by the helix angles of the
TSHPs, while the impact of the modulus and number of teeth on the transmission efficiency
is negligible. Further observation of Figure 14 reveals that the total order sensitivity
index of all design variables is very close to the corresponding first-order sensitivity
index, suggesting that the transmission efficiency is primarily affected by the independent
influence of the helix angles of the TSHPs. Moreover, both the first-order sensitivity index
and the total sensitivity index for the helix angle of the first-stage helical pair on the
transmission efficiency are greater than the corresponding indices for the second-stage
helical pair. This phenomenon can be explained through the following mathematical
derivation. Based on Equation (6), let η=X

Y . By taking derivatives with respect to the first-
stage helix angle β_1 and the second-stage helix angle β_2, the rate of change in transmission
efficiency η with respect to β_1 and β_2 can be obtained as follows:

dη

d(β_1)
=d_2

sec2β_1 ·Y− sec2(β_1 + ρν_1) · X
Y2 = d_2 · Z(β_1) (24)

dη

d(β_2)
=d_1

sec2β_2 ·Y− sec2(β_2 + ρν_2) · X
Y2 = d_1 · Z(β_2) (25)

where Z(β_i)=[sec2β_i ·Y− sec2(β_i + ρν_i) · X]/Y2.
Comparing the aforementioned two equations, it is apparent that the influence of

the first-stage helix angle on transmission efficiency is directly proportional to the outer
diameter of the second-stage helical pair, whereas the impact of the second-stage helix
angle on transmission efficiency corresponds to the outer diameter of the first-stage helical
pair. Given that the outer diameter of the second-stage helical pair is inevitably larger than
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the first-stage helical pair, the first-order sensitivity index and total sensitivity index for
the helix angle of the first-stage helical pair on transmission efficiency exceed those of the
second-stage helical pair. This implies that the transmission efficiency is more sensitive to
the first-stage helical pair with a sensitivity level positively correlated with the ratio of the
outer diameters of the second-stage and first-stage helical pairs.

Figure 14. Effects of design variables on transmission efficiency.

Figure 15. Effects of design variables on volume.

Figure 16. Effects of design variables on maximum contact stress.

As depicted in Figure 15, the first and total order sensitivity indices for the design
variables of the first-stage helix pair do not exceed 0.003, implying their negligible impact
on volume. This can be attributed to the radial enclosure of the first-stage helix pair by
the second-stage pair, rendering adjustments to the macro-geometric parameters of the
first-stage helix pair largely ineffective on the TSHP volume. Conversely, the modulus,
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number of teeth, and helix angle of the second-stage helix pair substantially influence
the volume, with the modulus and number of teeth exerting a more pronounced effect.
This is due to the quadratic relationship between volume and overall diameter, where
alterations to the number of teeth and modulus affect the overall diameter of the TSHPs.
When the modulus and number of teeth remain constant, modulating the helix angle alters
the axial dimension, subsequently impacting the TSHP volume. Nonetheless, given the
linear relationship between volume and the axial dimension, the influence of the helix
angle proves less significant than that of the modulus and number of teeth. Moreover, the
total order sensitivity indices for tooth number and modulus considerably outstrip their
first ones, suggesting a more significant effect of tooth number and modulus interaction on
the TSHP volume.

To facilitate a more nuanced analysis of the influence exerted by each design variable
on the maximum contact stress of each stage, the overall maximum contact stress of the
TSHPs is defined as the sum of the average maximum contact stress of each stage. As
depicted in Figure 16, the design variables of the first-stage helical pair have a greater
influence on the overall maximum contact stress than those of the second-stage helical
pair. This suggests that the contact stress of the first-stage helical pair is more susceptible
to alterations in macro-geometric parameters since the design variables of each stage
exclusively affect their corresponding contact stress. The reason for this outcome is that
the first-stage helical pair exhibits a smaller diameter compared to the second-stage pair.
Consequently, under the same torque, the first-stage helical pair experiences a higher tooth
surface pressure, leading to increased contact stress. Moreover, the number of teeth exerts
a more significant influence on the overall maximum contact stress in both the first and
second-stage helical pair than the modulus and helix angle. This can primarily be attributed
to the fact that an increase in tooth count not only enlarges the overall size of the helical pair,
thereby reducing the maximum contact stress but also lessens the load on individual teeth
due to enhanced load sharing, further diminishing contact stress. Additionally, the total
order sensitivity indices of all design variables markedly surpass their first ones, indicating
a more substantial effect of variable interactions on maximum contact stress.

6. Conclusions

With the aim of designing an HHRA with a high power density and long fatigue life,
this paper proposes an optimization framework combination of the EMs and NSGA-II for
multi-objective optimization of the TSHPs. Initially, the analytical mathematical models for
the output angle, output torque, and transmission efficiency of the TSHPs were established,
which were also validated through experiments. Subsequently, to establish an accurate
prediction model for the contact stress of the helical pair, replacing time-consuming and
complex FEM simulations, the EM was employed and its superiority was verified by
comparison with the three stand-alone metamodels. With the volume, efficiency, and
contact stress as the optimization objectives and the rotation angle, output torque, and
strength requirements as constraints, NSGA-II was utilized for multi-objective optimization.
An analysis was conducted on the Pareto optimal solutions of four combinations of the three
objectives, and suggestions were made for the selection of the optimal scheme depending
on different requirements. Lastly, Sobol’s global sensitivity is performed based on the
established mathematical models. The conclusions of this paper are summarized as follows.

(1) Compared to the PRS, KRG, and SVR, the E based on the GMSE criterion demonstrates
higher prediction accuracy and robustness for predicting the contact stress of the
helical pair.

(2) Volume and contact stress exhibit a clear trade-off relationship in the optimal space,
whereas the transmission efficiency mainly relates to the helix angle and does not
demonstrate such a trade-off relationship.

(3) The Pareto solutions of the combination that only considers contact stress and trans-
mission efficiency have an overly large volume. Meanwhile, the Pareto solutions of the
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combination that only considers volume and transmission efficiency yield exceedingly
high contact stress, both of which do not result in satisfactory optimization outcomes.

(4) The combination of volume, contact stress, and transmission efficiency, as well
as the combination considering only volume and contact stress, has a widely dis-
tributed Pareto solution. In the optimization design of the TSHPs, it is recom-
mended to consider both combinations, which can enhance the robustness of the
optimization results.

(5) Global sensitivity analysis results indicate that the transmission efficiency of the TSHP
is mainly related to the helix angles; the volume of the TSHP is positively correlated
with the number of teeth, the modulus, and the helix angle of the second-stage helical
pair; the maximum contact stress of the first-stage helical pair is more sensitive to
the changes in macro-geometric parameters, and the number of teeth exerts a more
significant influence on the overall maximum contact stress in both the first and
second-stage helical pair than the modulus and helix angle.

The optimization framework proposed in this paper can effectively improve the overall
performance of the HHRA, which holds potential for application in related actuator design.
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NSGA-II Non-dominated sorting genetic algorithm-II
HHRA Helical hydraulic rotary actuator
TSHPs Two-stage helical pairs
EMs Ensemble of metamodels
FEM Finite element method
KRG Kriging
PRS Polynomial response surface
RBF Radial basis function
SVR Support vector regression
OLHS Optimized Latin hypercube sampling
DOE Design of experiments
GMSE Generalized mean square cross validation error
RMSE Root mean squared error
MAE Mean absolute error
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