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Abstract: Underwater manipulation is one of the most significant functions of the deep-sea crawling
and swimming robot (DCSR), which relies on the high-accuracy control of the body posture. As
the actuator of body posture control, the position control performance of the underwater mechan-
ical leg (UWML) thus determines the performance of the underwater manipulation. An adaptive
super-twisting sliding mode control method based on the extended state observer (ASTSMC-ESO)
is proposed to enhance the position control performance of the UWML by taking into account the
system’s inherent nonlinear dynamics, uncertainties, and the external disturbances from hydrodynam-
ics, dynamic seal resistance, and compensation oil viscous resistance. This newly designed controller
incorporates sliding mode (SMC) feedback control with feedforward compensation of the system
uncertainties estimated by the ESO, and the external disturbances of the hydrodynamics by fitting
the parameters, the dynamic seal resistance, and the compensation oil viscous resistance to the tested
results. Additionally, an adaptive super-twisting algorithm (AST) with integral action is introduced to
eliminate the SMC’s chattering phenomenon and reduce the system’s steady-state error. The stability
of the proposed controller is proved via the Lyapunov method, and the effectiveness is verified via
simulation and comparative experimental studies with SMC and the adaptive fuzzy sliding mode
control method (AFSMC).

Keywords: deep-sea crawling and swimming robot; underwater mechanical leg; extended state
observer; adaptive super twisting control; sliding mode control; hydrodynamics; dynamic seal
resistance; compensation oil viscous resistance

1. Introduction

With the increasingly continuous consumption of land resources, the pace of human
exploration and the development of ocean resources is accelerating and gradually moving
from shallow waters to the deep seas. Recently, with the development of robot technology,
numerous robots have been increasingly applied in marine engineering. Therefore, deep-
sea robots have attracted more and more attention to research. Compared with wheeled
robots and tracked robots, legged robots have excellent motion flexibility, strong obstacle
avoidance ability, and excellent terrain adaptation [1], making them a hot research topic
in recent years [2–4]. As a special type of legged robots, the DCSR combines swimming,
walking, and underwater manipulating functions, therefore being an important equipment
for marine engineering.

Since the robot body is the base of the manipulator equipped on the robot, high-
accuracy position control of the UWML is of great significance to improve the robot’s
posture control performance, thus enhancing the manipulating performance. Currently,
model-based control is the primary method of the high-performance control of dynamic
systems, but an accurate model of the control object is required. However, as an inher-
ent nonlinear and strongly coupled dynamic system, the UWML not only has complex
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nonlinear characteristics but is also influenced by system uncertainties (i.e., parametric un-
certainties and unmodeled uncertainties) and external disturbances caused by the deep-sea
environment (i.e., hydrodynamic, dynamic seal resistance, and compensation oil viscous
resistance). The combined effect of these factors makes it difficult to establish an accurate
dynamic model of the UWML, thus exacerbating the difficulty of control.

To overcome nonlinearity and the uncertainties of manipulators, many elegant control
techniques [5–11] were proposed. Among them, the SMC-based methods are the most
widely used due to their simple design and robustness against uncertainties and distur-
bances [12]. However, these methods require an infinite switching control action to handle
system uncertainties, which would aggravate the undesired chattering phenomenon. More-
over, the upper bounds of the external disturbances and the system uncertainties must
be well known to obtain a stable closed-loop control law. Another issue in SMC-based
methods is that of asymptotic convergence, which may not meet the high-performance
control of the robotic systems [13].

To restrain chattering, some momentous methods, such as the boundary layer method,
the modified switching signal with saturation, etc., have been introduced; however, the
presence of the finite steady-state error may cause degradation of the tracking ability [14].
Therefore, high-order sliding mode control (HOSMC) approaches, which provide effective
solutions to the chattering problem without sacrificing the control performance, were
developed to improve the performance of the classical SMC [15]. In particular, the super-
twisting control (STC) has been a widely applied HOSMC since its inception [16].

As a prototype of the HOSMC, STC can effectively suppress the chattering phe-
nomenon since the discontinuous signum function is concealed in the time derivative of
the sliding variable [15,17]. However, if the states are far from the sliding surface, the
bounded correction terms will result in a very slow convergence of the sliding variable [18].
Moreover, although STC yields a smooth control signal, chattering is still possible. For
example, in situations where the upper bound of system uncertainties is difficult to obtain
accurately, the largest possible parameters are often selected to ensure the finite-time sta-
bility condition, which may result in system oscillation [19]. Therefore, various new STC
algorithms have been proposed to enhance the performance of traditional STC. A modi-
fied STC was proposed to improve the convergence speed and robustness, in which two
linear correction terms were added to the traditional STC to form a double-closed-loop
feedback structure [18]. An adaptive STC (ASTC) was synthesized to avoid the problem of
difficulty in determining the upper bound of system uncertainties in practical applications,
where a double-layer gain-adaptation function was introduced into the traditional STC to
determine the two control parameters [20].

In addition, many researchers also conducted a series of observer-based control meth-
ods to deal with the uncertainties and disturbances of the dynamic systems, in which
observers were applied to estimate the total system uncertainties and disturbances to
synthesize a feedforward compensation. Such observers include the disturbance observer
(DOB) [21], the sliding mode disturbance observer (SMDO) [22,23], the extended state
observer (ESO) [24–27], etc. An adaptive fuzzy sliding mode control method based on
a disturbance observer was proposed to control a manipulator, in which a fuzzy system was
adopted to approximate the modeling uncertainties while the disturbances were estimated
via a DOB online, respectively, and both were then compensated in SMC [21]. Due to the
advantages of estimating the system’s states and uncertainties simultaneously with little
model information and a simple design process, ESO was widely applied in the control
of manipulators. An adaptive extended state observer (ESO) is developed to estimate the
unmeasured states and eliminate the impact of the unknown disturbances and parameter
uncertainties for the control of an aircraft skin inspection robot [26]. To deal with the time-
varying output constraints and external disturbances of a manipulator, an ESO was applied
to estimate the unmeasurable states and total disturbances, which were then incorporated
into the controller design [25].
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Based on the above analysis and the UWML’s system characteristics, by borrowing
ideas from ESO and AST and integrating them via an SMC control action, a novel adap-
tive super-twisting sliding mode control method based on the extended state observer
(ASTSMC-ESO) is proposed for the high-accuracy position control of the UWML. The intro-
duction of AST can effectively suppress the chattering effect and enhance the steady-state
control accuracy while ensuring the robustness of the feedback controller SMC. The inte-
gration of ESO and the experimentally tested data can make a feedforward compensation
for the system uncertainties, and the external disturbances of the hydrodynamic force,
dynamic seal resistance, and compensation oil viscous resistance.

The rest of this paper is organized as follows. Section 2 establishes the models of the
UWML and gives the problem formulation. Section 3 presents the ESO design procedure,
while Section 4 carries out the ASTSMC-ESO design procedure. Sections 5 and 6 describe
the simulation and experimental verification results, respectively, and some conclusions
are made in Section 7.

2. Models and Problem Formulation
2.1. Kinematic Model

The UWML is a 3-DOF serial mechanism shown in Figure 1. The D-H coordinate
systems and the corresponding parameters used to develop the kinematic model of the
UWML are shown in Figure 2 and Table 1, respectively.

Figure 1. The structure of the UWML.

Actuators 2023, 12, x FOR PEER REVIEW 3 of 21 
 

 

ESO was applied to estimate the unmeasurable states and total disturbances, which were 

then incorporated into the controller design [25]. 

Based on the above analysis and the UWML’s system characteristics, by borrowing 

ideas from ESO and AST and integrating them via an SMC control action, a novel adaptive 

super-twisting sliding mode control method based on the extended state observer 

(ASTSMC-ESO) is proposed for the high-accuracy position control of the UWML. The in-

troduction of AST can effectively suppress the chattering effect and enhance the steady-

state control accuracy while ensuring the robustness of the feedback controller SMC. The 

integration of ESO and the experimentally tested data can make a feedforward compen-

sation for the system uncertainties, and the external disturbances of the hydrodynamic 

force, dynamic seal resistance, and compensation oil viscous resistance. 

The rest of this paper is organized as follows. Section 2 establishes the models of the 

UWML and gives the problem formulation. Section 3 presents the ESO design procedure, 

while Section 4 carries out the ASTSMC-ESO design procedure. Section 5 and Section 6 

describe the simulation and experimental verification results, respectively, and some con-

clusions are made in Section 7. 

2. Models and Problem Formulation 

2.1. Kinematic Model 

The UWML is a 3-DOF serial mechanism shown in Figure 1. The D-H coordinate 

systems and the corresponding parameters used to develop the kinematic model of the 

UWML are shown in Figure 2 and Table 1, respectively. 

 

Figure 1. The structure of the UWML. 

 

Figure 2. D-H coordinate systems of the UWML. 

  

Figure 2. D-H coordinate systems of the UWML.

Table 1. D-H parameters of the UWML.

# q d a α

0–1 q1 0 L1 (0 m) 90◦

1–2 q2 0 L2 (0.66 m) 0◦

2–3 q3 0 L3 (0.85 m) 0◦
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The coordinates of the foot tip of the UWML with respect to the base frame {0} can be
determined as:

0 p3 =

x
y
z

 =

−s1(L1 + L2c2 + L3s23)
c1(L1 + L2c2 + L3s23)

L2s2 − L3c23

 (1)

Then, the joint angles can be derived using the inverse kinematics, as follows:

q1 = arctan2(−x, y)

q2 = arccos
(

−z√
M2 + N2

)
− ϕ

q3 = arcsin

(
A2 + z2 − L2

2 − L2
3

2L2L3

) (2)

where x, y, and z are the coordinates of the foot tip, si = sin(qi),ci = cos(qi),sij = sin
(
qi + qj

)
,

cij = cos
(
qi + qj

)
, A = y/c1 − L1, M = L2 + L3s3 = ρ sin(ϕ), N = L3c3 = ρ cos(ϕ),

and ϕ = arctan2(M, N).

2.2. Dynamic Model

When taking into account the external disturbances of hydrodynamics τw, dynamic
seal resistance τf , compensation oil viscous resistance τs, and the system uncertainty d, the
dynamic model of the UWML is:

τ = M
..
q + C

.
q + G + τf + τs − τw + d (3)

where
.
q and

..
q are the joint velocity and acceleration, respectively. M, C, and G are the

inertia matrix, the coriolis/centrifugal matrix, and the gravity vector, respectively.
In general, due to parameter perturbation, testing errors, and unmodeled dynamics,

the model (3) differs from the actual model of the UWML, and the differences become un-
certainties of the system. When considering the impact of system uncertainties, the system
parameters M, C, and G and the external disturbances τw, τf , and τs can be represented as:

M = Mn + ∆M

C = Cn + ∆C

G = Gn + ∆G

τf = τf n + ∆τf

τs = τsn + ∆τs

τw = τwn + ∆τw

(4)

where Mn, Cn and Gn are the nominal values of the inertia matrix, the coriolis/centrifugal
matrix, and the gravity vector of the UWML, respectively, which can be found in the
author’s published article [28]. ∆M, ∆C, and ∆G are the modeling uncertainties. τf n
and τsn are the tested results of the dynamic seal resistance and compensation oil viscous
resistance, respectively, which are shown in Figures 3 and 4; τwn is the hydrodynamics
calculated with the fitted parameters, of which the detailed analysis can be found in the
author’s recently published article [29]. ∆τf , ∆τs, and ∆τw represent the uncertainties
caused by the testing errors.
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Figure 3. Compensation oil viscous resistance with different rotation speed and pressure.
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Figure 4. Dynamic seal resistance with respect to rotation speeds and pressure.

Substituting (4) into (3) yields the nonlinear dynamic model of the UWML:

τ = Mn
..
q + Cn

.
q + Gn + τf n + τsn − τwn + ∆ (5)

where ∆ = ∆M
..
q + ∆C

.
q + ∆G + ∆τf + ∆τs − ∆τw + d represents the total dynamic uncer-

tainties caused by the parameter uncertainties, testing errors, and unmodeled dynamics.
According to the robotic theory, the inertia matrix Mn is a bounded symmetric positive
definite matrix, and Mn − 2Cn is a skew-symmetric matrix, satisfying xT(Mn − 2Cn)x = 0
for any vector x.

To simplify the design and analysis, define the state variable of the UWML as
x = [x1, x2]

T =
[
q,

.
q
]T, then the dynamic model (5) can be rewritten in a state-space form:{ .

x1 = x2
.
x2 = M−1

n τ −M−1
n

(
Cnx2 + Gn + τf n + τsn − τwn

)
−M−1

n ∆
(6)

2.3. Control Objective

The control objective is to design a high-performance controller for the UWML with
strong nonlinearities (i.e., structure nonlinearity, friction resistance, and oil resistance
nonlinearity) and uncertainties (i.e., parameter uncertainties, unmodeled dynamics)
to ensure the actual foot trajectory y(t) tracking the planned trajectory yd(t) as close
as possible.

3. Observer Design

To reduce the impact of uncertainties on the UWML’s control performance, the total
uncertainties of the dynamic system (6) have to be compensated in the controller, which
can be extended to a new state variable and estimated via an ESO. Based on this idea, the
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uncertainties −M−1
n ∆ is extended to a state variable x3, and its time derivative is set to be

h(t). Thus, the extended dynamic model of the UWML can be expressed as:
.
x1 = x2
.
x2 = M−1

n τ −M−1
n

(
Cnx2 + Gn + τf n + τsn − τwn

)
+ x3

.
x3 = h(t)

(7)

Assumption 1. h(t) is bounded, and there exists a constant h0 > 0 such that ‖h(t)‖ ≤ h0.

Based on the extended system model (7), the ESO can be designed as:
.
x̂1 = x̂2 + l1ω0(x1 − x̂1)
.
x̂2 = M−1

n τ −M−1
n (Cnx2 + Gn + τf n + τsn − τwn) + x̂3 + l2ω2

0(x1 − x̂1)
.
x̂3 = l3ω3

0(x1 − x̂1)

(8)

where x̂ = [x̂1, x̂2, x̂3]
T is the estimated state, L = [l1, l2, l3]

T is the observer gain, and
ω0 > 0 is the observer bandwidth.

To ensure the stability of ESO, the observer gain is designed to satisfy the follow-
ing polynomial:

p(s) = s3 + l1s2 + l2s + l3 = (s + 1)3 (9)

Let x̃ = x− x̂ = [x̃1, x̃2, x̃3]
T denote the observation error, then the dynamic of the

observation error can be obtained from (7) and (8):
.
x̃1 = x̃2 − l1ω0 x̃1
.
x̃2 = x̃3 − l2ω2

0 x̃1
.
x̃3 = h(t)− l3ω3

0 x̃1

(10)

Define the proportional observation error εi = x̃i/ωi−1
0 , i = 1, 2, 3. Then, the

dynamic of the proportional observation error can be obtained according to (10):

.
ε = ω0 Aε + B

h(t)
ω2

0
(11)

where ε = [ε1, ε2, ε3]
T , A =

−3I3×3 I3×3 03×3
−3I3×3 03×3 I3×3
−I3×3 03×3 03×3

, B =

03
03
I3

; 03×3 and I3×3 are the

3×3 zero matrix and the identity matrix, respectively; and 03 and I3 are the 3-dimensional
zero vector and the unit vector, respectively.

Theorem 1 [27,30]. Under Assumption 1, according to the dynamic Equation (6), when designing
an ESO (8), there exist constants σij > 0, c > 0, and finite time T1 > 0, such that the state
estimation error x̃ij is bounded, and its value of the state estimation error can be adjusted by
changing the bandwidth ω0:

∣∣x̃ij
∣∣ ≤ σij , σij = O

(
1

ωc
0

)
; i = j = 1, 2, 3 ∀t ≥ T1 (12)

4. Controller Design
4.1. Design of SMC-ESO Controller

Since the UWML is subject to strong external disturbances and uncertainties
when working in a complex underwater environment, an SMC-ESO control method,
possessing strong robustness, is adopted to deal with the trajectory tracking problem
of the UWML intuitively.
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The tracking errors of the joint position and velocity of the UWML are defined as e1
and e2, respectively:

e1 = x1d − x1 (13)

e2 =
.
x1d − x2 (14)

where x1d and
.
x1d are the joint position and velocity command obtained from the reference

foot trajectory via inverse kinematics (6).
Then, the sliding mode surface function s can be defined as:

s = e2 + λ1e1 (15)

where λ1 ∈ R3×3 is a positive definite diagonal parameter matrix.
Based on Equations (7) and (13)–(15), the time derivative of s can be expressed as:

.
s =

.
e2 + λ1

.
e1

=
..
x1d + λ1e2 −M−1

n τ + M−1
n

(
Cnx2 + Gn + τf n + τsn − τwn

)
− x3

(16)

From (16), the SMC-ESO with an exponential convergence rate can be designed as:

τ = τeq + τsw (17)

τeq = Mn
( ..

x1d + λ1e2
)
−Mn x̂3 + Cnx2 + Gn + τf n + τsn − τwn (18)

τsw = Mn(λ1s + λrsign(s)) (19)

where −Mn x̂3 is the estimated value of the system uncertainties ∆, which can be calculated
from the extended state of the ESO; λ2 and λr ∈ R3×3 are positive definite diagonal
parameter matrices; and sign(s) is the signum function vector.

Although the above SMC-ESO can ensure the stability of the closed-loop system, it has
inherent defects of conventional SMC. On the one hand, the sliding mode switching control
action τsw contains a discontinuous signum function sign(s) leading to the “chattering”
phenomenon. On the other hand, the gain λr of τsw must be selected based on the upper
bound of the system uncertainties, which are usually unknown. If the value is too conser-
vative to be large, it will exacerbate the system chattering. However, if a smaller value is
selected, it may cause the system to be unstable. To avoid sacrificing the control accuracy
or robustness by using traditional methods such as the boundary layer method and the
modified switching signal with saturation to suppress chattering, this paper introduces
the AST into the above SMC-ESO to eliminate the chattering and improve the control
performance of the system.

4.2. Design of ASTSMC-ESO Controller

To eliminate the chattering effect of the conventional SMC, an ASTSMC-ESO is pro-
posed, in which a super-twisting control action [16,31] is applied to replace the discontinu-
ous sliding mode control law τsw:{

τsw = Mn

[
α(t)|s|

1
2 sign(s) + k1(t)s− ξ + φ(s, L(t))

]
.
ξ = −β(t)sign(s)− k2(t)s

(20)

where ξ is an intermediate variable; L(t) is the parameter adaptive function to be de-
signed later; and α(t), β(t), k1(t), and k2(t) are positive definite parameter matrices;
φ(s, L(t)) = −

.
L(t)s/L(t).

In the above super-twisting algorithm, the values of α(t) and β(t) should be deter-
mined based on the upper bound of system uncertainties and its rate of change. For the
UWML, since the system uncertainties have been estimated via the expanded state observer,
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α(t) and β(t) should be determined based on the upper bound of the estimation error and
its rate of change. Since these two values are both difficult to determine, the adaptive laws
are designed for the parameters of (20), which are shown in (21):

α(t) =
√

L(t)α0

β(t) = L(t)β0

k1(t) = L(t)k10

k2(t) = L2(t)k20

(21)

where α0, β0, k10, and k20 are the constants, and L(t) are adaptive functions that will be
designed using a double-layer gain-adaptation algorithm in Section 4.4.

Substituting (17)–(20) into (16) yields:

ṡ = −x̃3 − α|s|
1
2 sign(s)− k1s−

∫ t

0
(β sign(s) + k2s)dt− φ(s, L) (22)

Define z = −
∫ t

0(βsign(s) + k2s)dt− x̃3, f (t) = −
.
x̃3, then (22) can be rewritten as:{

.
s = −α|s|

1
2 sign(s)− k1s + z− φ(s, L)

.
z = −βsign(s)− k2s + f (t)

(23)

According to Theorem 1 and Equation (10), it can be seen that f (t) = −
.
x̃3 = −h(t) +

l3ω3
0 x̃1 is bounded. Let its upper bound be denoted as σ0, thus || f (t)|| ≤ σ0.

4.3. Controller Stability Analysis

The stability proof of the ASTSMC-ESO is relatively complex. Here, only the following
stability theorem is presented. The detailed proof process can be found in Appendix A.

Theorem 2. Based on Assumption 1, Lemma 1, and Theorem 1, the ASTSMC-ESO controller (17),
(18), (20), and the parameter adaptive function (21) are designed for the dynamic system (7) of the
UWML. When Li(t) > σ0i ≥ | fi(t)|, and the appropriate parameters α0i, β0i, k10i and k20i are
selected to make the matrix Pi, Bi, and Qi (which was expressed as (24)–(26)) positive definite, then
the closed-loop system of the UWML is stable, and the joint position error e1i will converge to the
origin in finite time, where i = 1, 2, 3.

Pi =
1
2

4β0i + α2
0i α0ik10i −α0i

α0ik10i 2k20i + k2
10i −k10i

−α0 −k10i 2

 (24)

Bi = k10i

β0i + 2α2
0i 0 0

0 k20i + k2
10i −k10i

0 −k10i 1

 (25)

Qi = Ai − Ci (26)

Ai =
α0i
2

2β0i + α2
0i 0 −α0i

0 2k20i + 5k2
10i −3k10i

−α0i −3k10i 1

 (27)

Ci =


−α0iϑi −1

2
k10iϑi ϑi

−1
2

k10iϑi 0 0

ϑi 0 0

 (28)
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ϑi =
fi(t)sign(si)

Li(t)
(29)

Compared to the conventional ASTSMC-ESO algorithm applied in other fields [32], The
main improvement of the method proposed in this paper is to increase the convergence speed
of the system states. It can be seen from the proof results (A16) of the ASTSMC-ESO in this
paper, when the Lyapunov function V is relatively close to the equilibrium, the nonlinear
term λ2V1/2

i is much bigger than the linear term λ1Vi, so the nonlinear term λ2V1/2
i mainly

determines the convergence speed. When the Lyapunov function V is far from the equilibrium,
the linear term λ1Vi is much bigger than the nonlinear term λ2V1/2

i , so the linear term λ1Vi
mainly determines the convergence speed. Nevertheless, for conventional ASTSMC-ESO, no
matter where the Lyapunov function is, the convergence speed is determined only by the
nonlinear term λ2V1/2

i , so when the Lyapunov function V is far from the equilibrium, slow
convergence speed will present [20]. The above analysis shows that by adding linear terms to
the conventional AST, the ASTSMC-ESO designed in this paper improves the convergence
characteristics. From the viewpoint of the controller, the newly designed ASTSMC-ESO
is equivalent to adding a proportional and integral sliding mode control action than the
conventional one. Therefore, the convergence speed and control accuracy are improved.

4.4. Design of the Adaptive Function Li(t)
As mentioned in the previous design process, the parameters αi(t), βi(t), k1i(t), and

k2i(t) of (20) must be adjusted via the adaptive function Li(t). To ensure stability, Li(t)
should satisfy the condition Li(t) > | fi(t)|, where a dual-layer adaption algorithm is
adopted to design Li(t).

According to the concept of “equivalent control”, the system (23) enters the sliding
mode surface when si =

.
si = 0 and zi =

.
zi = 0. To maintain the system trajectory on

the sliding surface, the equivalent effect of the discontinuous switching term βisign(si),
denoted as ueqi, can be used to compensate for fi(t):

ueqi = βisign(si)
∣∣eq = fi(t) (30)

In practical applications, ueqi can be estimated from βisign(si) online via a low-pass filter:

.
ueqi =

1
τ

(
βisign(si)− ueqi

)
(31)

where τ is the time constant of the filter.
From (30) and (31), an online estimation of fi(t) can be achieved by filtering the

discontinuous switch term. This estimation value can be used to design Li(t):

Li(t) = l0i + li(t) (32)

where l0i is a small positive design parameter, li(t) is a time-varying parameter whose rate
of change is defined as the first-layer adaptive algorithm:

.
li(t) = −(ρ0i + ρi(t))sign(δi) (33)

where ρ0i is a constant positive parameter, ρi(t) is a time-varying parameter, and its rate of
change is defined as the second-layer adaptive algorithm:

.
ρi(t) = γi|δi| (34)

where γi is a positive design parameter.
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The variable δi in the above two-layer adaptive rate is:

δi = Li(t)−
1

aiβ0i

∣∣ueqi
∣∣− εi (35)

where 0 < ai < 1/β0i < 1, and εi is a small positive parameter.
Using the above dual-layer adaption algorithm, the condition Li(t) > | fi(t)| can be

guaranteed within a finite time, which can be described as the following theorem.

Theorem 3 [20]. Consider the system in (23) is subject to uncertainty f (t), which satisfies the
two constraints | fi(t)| < σ0i and |

.
f i(t)| < σ1i, where the positive scalars a0 and a1 are finite

but unknown. Then, the dual-layer adaption algorithm in (32)–(34) ensures Li(t) > | fi(t)| in
finite time.

Theorem 3 is a supplement to Theorem 2, which resolves the parameter selecting-
problem of the ASTSMC-ESO. In practical applications, in order to reduce the influence of
noise and disturbances,

.
ρi(t) can be obtained with a dead zone δi0:

.
ρi(t) =

{
γi|δi|, if |δi| > δi0

0, otherwise
(36)

From Equations (17), (18), (20), and (21), it can be seen that the ASTSMC-ESO mainly
consists of two parts: τeq is the model compensation term, which enables the system output
to quickly track the desired trajectory, while τsw is the stabilizing feedback term, which
ensures that the tracking error of the system is stable. Further analysis of the composition

of τsw reveals that, in addition to the conventional approaching term |s|
1
2 sign(s) and the

exponential approaching term k1s, it also includes an integral term of the signum function
of the sliding mode variable

∫ t
0βsign(s)dt and an integral term of the sliding mode variable

itself
∫ t

0k2sdt. The former compensates for the estimation error of the system uncertainties,
while the latter reduces the steady-state error of the system, thereby improving both the
dynamic convergence speed and the steady-state control accuracy of the system. In addition,
an adaptive function Li(t) is designed to adjust the parameters αi(t), βi(t), k1i(t), and k2i(t)
of the controller, which effectively eliminates the chattering phenomenon of the SMC. The
principle of the ASTSMC-ESO control system for the UWML is shown in Figure 5.
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Figure 5. The principle of the ASTSMC-ESO controller for the UWML.

5. Simulation Results

To verify the effectiveness of the proposed ASTSMC-ESO, the trajectory tracking
performance of the UWML is studied via simulation.
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5.1. Simulation Model

The simulation model of the UWML is shown in Figure 6, which is built using
Simulink/Simscape. The parameters of the UWML are listed in Table 2. To simulate
the effects of the dynamic seal resistance τf , compensation oil viscous resistance τs, and the
hydrodynamic τw, a tabular form of τs and τw from the tested results in Figures 3 and 4,
which are added to the dynamic model of the UWML, while τw is added according to the
calculation formulas with the fitted hydrodynamic parameters. The initial values of the
system states are x1 = [0.294, 0.158,−0.105]T, and x2 = [0, 0, 0]T; the initial values of
the states of ESO are x̂1 = [0, 0, 0]T, x̂2 = [0, 0, 0]T, and x̂3 = [0, 0, 0]T, while the band-
width is ω0 = 60. The controller parameters are presented in Table 3. For convenience,
a cycloidal foot trajectory [28] is planned for the UWML, which is shown in (37), with the
step length S0 = 0.4 m, step height H0 = 0.2 m, step period T = 8 s, translational phase
period Tm = 4 s, and initial height of the foot tip z0 = −0.61.

x =


S0
2π

(
2πt
Tm
− sin

(
2πt
Tm

))
− S0

2 , (0 ≤ t ≤ Tm)

S0 − S0
2π

(
2πt
Tm
− sin

(
2πt
Tm

))
− S0

2 , (Tm < t ≤ T)

y = L2, (0 ≤ t ≤ Tm)

z =


2H0

(
t

Tm
− 1

4π sin
(

4πt
Tm

))
+ z0, (0 ≤ t ≤ Tm/2)

−2H0

(
t

Tm
− 1

4π sin
(

4πt
Tm

))
+ 2H0 + z0, (Tm/2 < t ≤ Tm)

z0, (Tm ≤ t ≤ T)

(37)
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Table 2. Parameters of the UWML.

Link Mass (kg) Center of Mass (m) Inertia Matrix (kg·m2)

1 10.758 [0, 0.001, −0.017]T diag{0.044, 0.039, 0.032}
2 19.261 [−0.154, 0, −0.014]T diag{0.135, 1.455, 1.375}
3 10.375 [−0.391, 0, −0.045]T diag{0.138, 2.437, 2.327}
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Table 3. Parameters of the simulation controller.

Controller Parameters

ASTSMC-
ESO

λ1 = diag{400, 800, 800}, k10 = diag{12, 20, 4}, k20 = diag{200, 200, 200},
α0 = diag{6.32, 6.32, 8.94}, β0 = diag{5, 5, 10}, τ = diag{0.01, 0.01, 0.01},
a = diag{0.86, 0.86, 0.86}, l0 = diag{0.5, 0.5, 0.5}, ρ0 = diag{0.5, 0.5, 0.5},
γ = diag{0.002, 0.002, 0.002}, δ0 = diag{50, 50, 50}, ε = diag{0.1, 0.1, 0.1}

5.2. Simulation Study

Three working conditions were studied with the ASTSMC-ESO. Condition 1 is the
basic condition, where no disturbances are added to the UWML, and the action time is
0 s ≤ t ≤ 20 s, 40 s ≤ t ≤ 60 s, and 80 s ≤ t ≤ 100 s, respectively. Condition 2 is the
condition where the modeling uncertainty disturbances are added, of which the parameters
M, C, and G of the UWML are set with an amplitude of 50% variation during the time
period of 20 s ≤ t ≤ 40 s, and the changing law is shown in Equation (38). Condition 3 is
the condition where the external disturbances are added, of which the system uncertainty d
in the dynamic equation of the UWML has a fluctuation of 50 Nm during the time period
of 60 s ≤ t ≤ 80 s, and the variation law is shown in Equation (39). The simulation results
are shown in Figures 7–10.

M = Mn[1 + 0.5 sin(0.25πt)](20 ≤ t ≤ 40)

C = Cn[1 + 0.5 sin(0.25πt)](20 ≤ t ≤ 40)

G = Gn[1 + 0.5 sin(0.25πt)](20 ≤ t ≤ 40)

(38)

d = 50 sin(0.25πt)(60 ≤ t ≤ 80) (39)

From the foot trajectory tracking results in Figure 7, it can be seen that the ASTSMC-
ESO can accurately control the UWML to move along the planned trajectory under all
the three working conditions with tracking errors within 10−2 mm in all three directions
of the workspace, which illustrates the effectiveness of the ASTSMC-ESO. In addition,
from Figure 7, we can also see that the foot trajectory tracking errors under two external
disturbances are not significantly different from those without disturbances, indicating that
the ASTSMC-ESO has excellent robustness. Further analysis of the joint position control
results in Figure 8 shows that the actual joint position almost coincides with the reference
joint position. Even under the time-varying modeling uncertainties with an amplitude
up to 50% of the nominal value of the system parameters in working condition 2 and the
external disturbances with an amplitude up to 50 Nm in working condition 3, the position
tracking error of each joint can still be maintained within 10−5 rad and is hardly affected by
external disturbances.

The estimated uncertainties in Figure 9 show that no matter which working conditions,
the ESO can accurately estimate the system uncertainties. This indicates that the ESO has
good estimation ability for the system uncertainties. As can be seen, with the help of the
ESO, the uncertainties of different working conditions can be effectively compensated
via ASTSMC-ESO, so that the joint control torque can respond quickly and accurately to
reduce the impact of these uncertainties on the system performance. In addition, it can be
seen from Figure 10 that the parameter’s adaptive function Li(t) has good convergence
performance and can be adjusted online periodically according to the motion of UWML,
thereby eliminating the chattering of SMC.
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Figure 7. Foot trajectory tracking results. (a) Foot trajectory; (b) Foot trajectory tracking error.
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Figure 8. Joint position tracking results. (a) Joint position; (b) Joint position tracking error.
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Figure 9. System uncertainty estimation and joint control torque. (a) Uncertainties estimation;
(b) Joint control torque.
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Figure 10. Parameter adaptive function Li(t).

6. Comparative Experimental Results

To further test the performance of the ASTSMC-ESO, experimental research was
conducted with the UWML, of which the test platform is presented in Figure 11, and its
main components are listed in Table 4. To illustrate the control performance, comparative
studies were carried out on the ASTSMC-ESO, SMC [33], and AFSMC [34].
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Table 4. The main components of the experimental platform of the UWML.

Name Specification Name Specification

Motor for joint 1/2/3 Kollmorgen TBMS-7646-A Velocity sensor of joint 2 Tamagawa S2620N271E14
Reducer for joint 1/2/3 Benrun BHS32-160 Position sensor of joint 3 Tamagawa S2640N321E64

Motor driver for joint 1/2/3 Elmo G-SOLTWI15/100ER1 Velocity sensor of joint 3 Tamagawa S2620N271E14
Position sensor of joint 1 Tamagawa TS2660N31E148 Motion controller Beckhoff CX5140 PLC
Velocity sensor of joint 1 Tamagawa TS2620N271E14 Main power DC48V
Position sensor of joint 2 Tamagawa TS2620N271E14 Control power DC24V
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6.1. Comparison Controllers

(1) SMC: This is the traditional sliding mode controller with the compensation of
external disturbances of τf , τs, and τw:

τ = Mn
( ..

x1d + λ1e2
)
+ Cnx2 + Gn + τf n + τsn − τwn + λ2s + λrsign(s) (40)

where λ1, λ2, and λr are positive definite diagonal parameter matrices. In order to sup-
press the chattering phenomenon caused by the signum function sign(), the saturation
function sat() with a boundary layer thickness of δ is used instead of the sign() function in
the application.

(2) AFSMC: This is the adaptive fuzzy sliding mode controller with the compensation
of disturbances of τf , τs, and τw:

τ = Mn
( ..

x1d + λ1e2
)
+ Cnx2 + Gn + τf n + τsn − τwn + λ2s + λr (41)

λ̂ri = θ̂T
i ψi(si) (42)

.
θ̂i = −Γsiψi(si) (43)

where λ1, λ2, and Γ are positive definite diagonal parameter matrices. The elements λri
in λr are approximated by an adaptive fuzzy logic system (AFLS), as shown in (42), with

a weight adaptive rate
.
θ̂i given by (43). The fuzzy rules are shown in Table 5, and the

Gaussian functions (44) are chosen as the membership functions, where i = 1, 2, 3 and
j = 1, 2, 3, 4, 5. 

ψj(s1) = exp

(
−
[

s1 + π/12− (j− 1)π/24
3π/48

]2
)

ψj(s2) = exp

(
−
[

s2 + π/12− (j− 1)π/24
20π/48

]2
)

ψj(s3) = exp

(
−
[

s3 + π/12− (j− 1)π/24
3π/48

]2
)

(44)

Table 5. Fuzzy rules of λri.

Condition Conclusion

IF si is NB THEN λri is NB

IF si is NS THEN λri is NS

IF si is ZE THEN λri is ZE

IF si is PS THEN λri is PS

IF si is PB THEN λri is PB

6.2. Experimental Study

The controller parameters of the experimental study are shown in Table 6. For fairness
of comparison, some parameters of ASTSMC-ESO and AFSMC are inherited from the
SMC. To evaluate the performance of the three control algorithms, the maximum error
Me, average error µe, and standard deviation error σe of the foot trajectory were used as
indicators [35]. The results are shown in Figures 12–14, and the performance evaluation
results are listed in Table 7.
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Table 6. Controller parameters of the experimental study.

Controller Parameters

SMC λ = diag{400, 600, 600}, k1 = diag{10, 20, 8},
k2 = diag{150, 180, 100}, δ = diag{0.1, 0.1, 0.1}

AFSMC λ = diag{400, 600, 600}, k1 = diag{10, 20, 8}, Γ = diag{1500, 1500, 1500}

ASTSMC-
ESO

λ = diag{400, 600, 600}, k10 = diag{10, 20, 8}, k20 = diag{100, 100, 100},
α0 = diag{6.32, 6.32, 8.94}, β0 = diag{5, 5, 10}, τ = diag{0.01, 0.01, 0.01},
a = diag{0.19, 0.19, 0.38}, l0 = diag{0.5, 0.5, 0.5}, ρ0 = diag{0.5, 0.5, 0.5},
γ = diag{0.005, 0.005, 0.005}, δ0 = diag{80, 80, 80}, ε = diag{0.1, 0.1, 0.1}
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Figure 12. Foot trajectory tracking results with different controllers. (a) Foot trajectory; (b) Foot
trajectory tracking error.
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Figure 13. Joint position tracking results with different controllers. (a) Joint position; (b) Joint position
tracking error.
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Figure 14. System uncertainty estimation and joint control torque with different controllers. (a) Un-
certainty estimation; (b) Joint control torque.

Table 7. Evaluation results of the trajectory tracking performance with different controllers.

Controller Me (mm) µe (mm) σe (mm)

SMC [17.90, 22.76, 21.15] [6.42, 6.52, 6.17] [4.25, 6.05, 5.78]
AFSMC [8.94, 14.67, 13.73] [2.79, 4.32, 3.44] [2.01, 3.91, 3.04]

ASTSMC-ESO [5.92, 8.28, 6.26] [1.42, 1.96, 1.54] [0.91, 1.49, 1.28]

The desired foot trajectory and corresponding tracking performance under the three
controllers are shown in Figure 12. As seen, the proposed ASTSMC-ESO controller performs
better than the other two controllers throughout the movement. From the performance
evaluation results in Table 7, it can be seen that all the performance indicators of ASTSMC-
ESO are better than SMC and AFSMC. Comparing the joint positions in Figure 13, it can
be seen that through uncertainty compensation, the joint position control accuracy can be
effectively improved. Further comparing of the joint position errors of ASTSMC-ESO and
AFSMC indicates that the former has better robustness than the latter, which is mainly due
to the better control mechanism of ASTSMC-ESO than AFSMC.

From Figure 14, we can conclude that the differences in the trajectory tracking perfor-
mance are mainly due to the differences in the joint control torques of each control method,
even though they seem minor. Furthermore, we can see that the torque differences of joint
2 are more significant than those of the other two joints, which are mainly caused by the
accuracy of uncertainty compensation, as shown in Figure 14a. AFSMC and ASTSMC-ESO
estimate and compensate for the system uncertainties with different methods, so their out-
put control torques can effectively improve the trajectory tracking performance compared
with SMC. However, due to the difference in estimation performance, ASTSMC-ESO can
compensate for the system uncertainties more precisely than AFSMC, thus further improv-
ing the system performance. In addition, it can be seen that the chattering phenomenon
of the joint control torques of AFSMC and ASTSMC-ESO is effectively eliminated, which
indicates that the AFLS and AST can effectively suppress the chattering effect of SMC while
ensuring the control performance of the system.
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7. Conclusions

In this paper, a novel adaptive super-twisting sliding mode control method with
an extended state observer is proposed for the high-accuracy position control of the UWML
in the presence of both uncertainties and external disturbances, which considers the system
uncertainties and the external disturbances from the underwater working environment. On
the one hand, an accurate model compensation is made with SMC feedback control based
on the model information of the UWML to ensure a quick response performance. On the
other hand, a feedforward compensation of the system uncertainties is achieved with the
estimated uncertainties by ESO to reduce their impact on the control performance. Finally,
the AST is introduced to eliminate the chattering phenomenon and further improve the
steady-state control accuracy. Simulation and comparative experimental studies were con-
ducted to illustrate the effectiveness of this proposed control scheme, which shows that the
proposed controller can effectively compensate for system uncertainties and disturbances
and significantly enhance system control accuracy and robustness without the steady-state
chattering effect.
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Appendix A. Proof of Theorem 2

Before the proof of Theorem 2, the following finite-time convergence lemma is introduced:

Lemme A1 [36]. For nonlinear system:

x(t) = f (x(t)), f (0) = 0, x ∈ D (A1)

if there exists a continuously differentiable positive definite function V(x) and parameters λ1 > 0,
λ2 > 0, 0 < θ < 1, such that the following inequality holds:

.
V(x) ≤ −λ1V(x)− λ2Vθ(x) (A2)

then the state of the system (A1) will converge to the origin in finite time tr, which satisfies:

tr ≤
1

λ1(1− θ)
ln

λ2 + λ2V1−θ(0)
λ2

(A3)

To simplify the proof, system (20) is decomposed into three subsystems, where the ith
subsystem is: { .

si = −αi|si|1/2sign(si)− k1isi + zi + φi(si, Li)
.
zi = −βisign(si)− k2isi + fi(t)

(A4)

Define the following Lyapunov function for the subsystem (A4):

Vi(si, zi, Li) = 2βi|si|+ k2is2
i +

1
2

z2
i +

1
2

ζ2
i (A5)

where ζi = αi|si|1/2sign(si) + k1isi − zi.
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The time derivative of Vi(si, zi, Li) is:

.
Vi(si, zi, Li) =

∂Vi
∂si

.
si +

∂Vi
∂zi

.
zi +

∂Vi
∂Li

.
Li =

.
Vi1 +

.
Vi2 (A6)

where
.

Vi1 and
.

Vi2 are given below:

.
Vi1 =

∂Vi
∂si

.
si +

∂Vi
∂zi

.
zi = βisgn(si)

.
si0 + 2k2isi

.
si0

+zi
.
zi

(
αi|si|1/2sign(si) + k1isi − zi

)
(

αi

2|si|1/2
.
si0 + k1i

.
si0 −

.
zi)

+2βisgn(si)φi + 2k2isiφi +
(

αi|si|1/2sign(si) + k1isi − zi

)
(

αi

2|si|1/2 φi + k1iφi)

(A7)

.
Vi2 =

∂Vi
∂Li

.
Li = 2

.
Liβ0isgn(si)si + 2Li

.
Lik20is2

i

+
(

αi|si|1/2sign(si) + k1isi − zi

)
(

1
2
√

Li

.
Liαi0|si|1/2sign(si) +

.
Lik1i0si)

= −2βisgn(si)φi − 2k2isiφi −
(

αi|si|1/2sign(si) + k1isi − zi

)
(

αi

2|si|1/2 φi + k1iφi)

(A8)

where
.
si0 = −αi|si|1/2sign(si)− k1isi + zi.

Substituting (A7) and (A8) into (A6) yields:

.
Vi(si, zi, Li) =

.
Vi1 +

.
Vi2

= 2βisgn(si)
.
si0 + 2k2isi

.
si0 + zi

.
zi + (αi|si|1/2sign(si)

+k1isi − zi)(
αi

2|si |1/2

.
si0 + k1i

.
si0 −

.
zi)

(A9)

Applying
.
si0 = −αi|si|1/2sign(si)− k1isi + zi and

.
zi = −βisign(si)− k2isi + fi(t) to

(A9), we can obtain:

.
Vi(si, zi, Li) = −

√
Li

|si|1/2 ξT
i (Ai − Ci)ξi − Liξ

T
i Biξi (A10)

where ξi =
[√

Li|si|1/2sign(si) fi, Lisi, zi

]T
, Ai, Bi and Ci are shown in (25), (27), and (28),

respectively.
From (A10) we can see that by selecting the appropriate parameters α0i, β0i, k10i, and

k20i such that the matrices Qi = Ai − Ci and Bi are positive definite, then
.

Vi(si, zi, Li) can
be transformed into:

.
Vi ≤ −

√
Li

|si|1/2 λmin(Qi)‖ξi‖2 − Liλmin(Bi)‖ξi‖2 (A11)

From the definition of Vi(si, zi, Li) and ξi, Vi(si, zi, Li), it can also be expressed as:

Vi(si, zi, Li) = ξT
i Piξi (A12)

Therefore, by selecting appropriate parameters α0i, β0i, k10i and k20i such that the
matrix Pi is positive definite, then Vi(si, zi, Li) can be transformed into:

Vi(si, zi, Li) ≤ λmax(Pi)‖ξi‖2 (A13)

From (A13), we can obtain:

‖ξi‖2 ≤ Vi
λmax(Pi)

(A14)
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|si|1/2 = |ξi1| ≤ ‖ξi‖ ≤
V1/2

i

λ1/2
max(Pi)

(A15)

Substituting (A14) and (A15) into (A11), we can obtain:

.
Vi ≤ −

Liλmin(Qi)λ
1/2
min(Pi)

λmax(Pi)
V1/2

i − Li
λmin(Bi)

λmax(Pi)
Vi = −λ1Vi − λ2V1/2

i (A16)

where λ1 = Liλmin(Bi)/λmax(Pi), λ2 = Liλmin(Qi)λ
1/2
min(Pi)/λmax(Pi).

According to the conclusions in [31,37], when Li(t) > σ0i ≥ | fi(t)|, |ϑi| =
∣∣∣ fi(t)sign(si)

Li(t)

∣∣∣ < 1
and the selecting parameters are α0i, β0i, k10i, and k20i to satisfy the following conditions in
(A17), it can be guaranteed that Bi, Pi, and Qi are positive definite matrices.

α0i > 50.25, β0i > 1, k10i > 0, k20i >
8k2

10iβ0i + 22k2
10i + 9α2

0ik
2
10i

4(β0i − 1)
(A17)

when Bi, Pi, and Qi are positive definite matrices, then λ1 > 0 and λ2 > 0. According to
Lemma 1, the result of (A16) shows that the state of subsystem (A4) can converge to the
origin within a finite time tr, which completes the proof of Theorem 2.
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