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Abstract: This paper addresses the displacement path-following problem for a class of disturbed cart-
pendulum systems under the fake data injection (FDI) actuator attacks. A filter operator is proposed
to estimate the weight vector caused by unknown attacks and disturbances, so that the actuator
attacks can be parameterized using neural networks. Then, combined with filter signals and based
on adaptive neural network and integral sliding-mode techniques, robust path-following control
schemes are proposed to withdraw the impacts of disturbances and FDI attacks. The uniformly
ultimately bounded stability results of the closed-loop cart-pendulum system with neural network
weight estimations and sliding functions are achieved based on Lyapunov stability theory. Finally, a
simulation model of a material robot is used to verify the proposed control strategy.

Keywords: cart-pendulum systems; adaptive neural networks; path-following control; FDI attacks;
filter operators; sliding-mode control

1. Introduction

As a robotic system with simple structure and fast response, the cart-pendulum robot
is widely employed in complex industrial fields, including intelligent manufacturing, agri-
cultural production, logistics, and transportation. The working task of the cart-pendulum
robot is often to make the moving path of the car and the deflection angle of the pendulum
move along the given reference trajectories, that is, the working task can be considered as
the trajectory tracking of the car and pendulum [1,2]. However, due to the widespread ap-
plication of wireless equipment in the industrial territory, the cart-pendulum robotic system
is extremely vulnerable to hacker attacks [3–8]. At the same time, due to the inhomogeneity
of the operating ambient, the cart-pendulum robot is also inevitably affected by model
uncertainties and external environmental interferences. Therefore, it is of great application
significance to ensure that the cart-pendulum robot maintains trajectory tracking under
network attacks and external disturbances. In recent years, although many savants have
put forward many control methods to deal with the trajectory tracking problem, such as
adaptive control [9–11], backstepping control [12–14], sliding-mode control [15–18], and
intelligent control [19–21], there are still significant studies to be developed under the
consideration of fake data injection (FDI) actuator attacks and interferences.

In the cases of network attacks and external interferences being considered as complex
nonlinear disturbances, adaptive control and sliding-mode control with strong robustness
have been often combined to combat the disturbances in recent years. The paper [22]
proposed an adaptive sliding-mode trace controller for the nonlinear manipulator system
to realize the trail following of the manipulator under conditions of uncertain parameters.
On the basis of discussing whether the attack can be detected, the paper [23] designed
an adaptive sliding-mode observer with a parameter identification function to realize
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the accurate estimation of the attacks. An adaptive law combining integral sliding-mode
control and projection type was proposed in [24], which compensates for the disturbance
of model uncertainty, and realizes the tracking of the pitch angle trajectory of the wind-
driven generator. The paper [25] estimated the friction effect based on the state observer,
combined with sliding-mode technology to realize the path planning of the wheeled mobile
robot. In addition, neural networks are widely used in the control problems of nonlinear
systems with unmodeled dynamics and parameter uncertainties due to their powerful
approximation capabilities. The paper [26] designed an integral sliding-mode control
method combined with neural networks to ensure the stability of the system under network
attacks. In order to obtain the expected tracking performance, the authors of [27] proposed
an adaptive tracking controller, and used the neural network to reimburse the unreliability
caused by tire slipping and external disturbance online. Aiming at the uncertainty and
nonlinear disturbance of the mobile robot model, a hybrid algorithm combining with
neural networks and an adaptive control technique was presented in [28], and the results
showed that the algorithm can eliminate the tracking errors under the effects of uncertain
parameters and unidentified bounded perturbations.

Through the above research, it can be found that the control problem of the cart-
pendulum system under intentional attacks has not been deeply studied. This paper
mainly discusses the path-following of the cart-pendulum robot under actuator attacks.
First, it is assumed that hackers can obtain information about the system. Additionally,
based on that information, they can send false control signals to the actuators, which
indicates that false data injection attacks occur [29]. According to the studies in [30–32], it
can be known that the attack can be configured in the shape of neural network estimation.
However, the adaptive estimation method proposed in [31] can only guarantee that the
estimated values of the unknown neural network weights converge to near the true value.
Therefore, this paper establishes an adaptive learning framework by introducing a novel
filter, and it designs the difference between the entry and egress of the system, which
includes the estimation error into the adaptive update law to realize the precise recognition
of unknown parameters. In addition, to avoid the chattering phenomenon in the classic
sliding-mode process, an integral sliding-mode function is designed, inspired by [33–36],
so that the system state is on the sliding-mode appearance from the beginning, clearing up
the influence of the approaching phase while maintaining the strong robustness and high
precision of the sliding mode control. Combining the above two research methods, a neural
network-based adaptively integral sliding-mode strategy is advanced to ensure that the
impact of actuator attacks related to state variables of the tracking system can be suppressed
while ensuring that the tracking error can be uniformly ultimately bounded. Based on
the Lyapunov stability theorem, it is certified that the put forward sliding-mode function
and the estimation error for the unknown weights are uniformly ultimately bounded.
Finally, the simulation results of an agricultural robot are given to examine the utility of the
raised strategy.

In summary, the primary contributions of this paper can be classified as follows:

(1) The existing studies on the tracking error stability of the cart-pendulum system mainly
center on the defects caused by the nondeterminacy of system mathematical model,
and it is still insufficient to resist the purposeful attack. In this paper, the influence
of actuator attack on the system is simulated by using the nonlinear approximation
ability of a neural network, and a new control strategy is constructed to ensure that
the trajectory tracking is not affected by attacks and disturbances.

(2) The adaptive law proposed in the existing paper [31] can only satisfy that the pa-
rameter estimation error is bounded. This paper introduces a filter operator based
on the preceding research work, and it proposes an original neural network-based
self-adaptive law that achieves an accurate estimation of the unknown weights.

The remaining sections of this paper are as follows. Section 2 establishes the mathemat-
ical model of system tracking error and actuator attacks. Section 3 depicts the architecture
process of the adaptive integral sliding-mode controller, and the controllability analysis
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of the proposed control strategy. Section 4 conveys the results of the simulation model.
Section 5 summarizes the results.

2. Mathematical Model of the System

This section establishes the dynamics based mathematical model of the cart-pendulum
system, establishes the tracking error model of the robot system based on the error with the
given reference trajectory, and explains the procedure of framing the actuator attack model
by the neural network.

2.1. Cart-Pendulum Robot

Considering that the system is a rigid body, and referring to [37], we can define the
following mathematical model based on the dynamics of the cart-pendulum robot:

(mc + Mp)ẍ + Mplθ̈ cos θ + (cm + δcm)ẋ−Mplθ̇2 sin θ = τ,

Mplẍ cos θ + (I + Mpl2)θ̈ + (cM + δcM)θ̇ + Mpgl sin θ = 0. (1)

Table 1 gives all of the parameters of the mathematical model, where δcm and δcM are
the uncertainty estimate error of cm and cM. The dynamics after linearization approximation
can be rewritten as:

Dq̈ + Vq̇ + Gq + ω = Eτ, (2)

where q = [x; θ], D = (mc + Mp)I + Mpmcl2, E = [Mpl2 + I;−Mpl],

V =

[
cm(Mpl2 + I) −cM Mpl
−cm Mpl cM(mc + Mp)

]
, G =

[
0 −M2

pl2g
0 (Mp + mc)Mpgl

]
; ω represents the

perturbation caused by the complex interference of the external environment and the
wrong model parameters, which are presumed to be contained in Hypothesis 1.

Table 1. Introduction to parameters of robot model.

Parameters Characters Units

Moving distance of cart x m
Rotation angle of pendulum θ rad

The moment of inertia I kg ·m2

Barycenter distance l m
Mass of cart mc kg

Kinematic viscosity coefficient of cart cm Ns/m
Mass of pendulum Mp kg

Kinematic viscosity coefficient of pendulum cM Ns/m
Control signal τ N ·m

Gravitational acceleration g m/s2

Hypothesis 1. The disturbance ω is bounded and the boundary is restricted by the condition
‖ω‖ ≤ k1‖q‖+ k2‖q̇‖+ k3, where k1, k2, k3 are coefficients with positive value.

2.2. External Attacks

The external attack considered in this paper is a false data injection attack. It is a
spoofing attack that depends on the system state. It injects the attack signal based on
false system state into the actuator through the communication between the controller and
the actuator, so that the attacker can interfere with the performance of the system output.
Therefore, the actuator attack can be described as follows:

τ̃(t) = τ(t) + σaτ(t, e(t)) (3)
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where τ̃(t) denotes the control signals after being attacked; σaτ(t, e(t)) represents the
influence of the false system state on the control signal. According to [31], σaτ(t, e(t)) can
be approximated by neural networks in the following form:

σaτ(t, e(t)) = Ψ(e(t))W + δ f (4)

where Ψ(e(t)) is the hidden layer activation function of the neural network,which suppos-
edly has been obtained; W is the weights vector about the activation function, and δ f is the
modeling error, which should be bounded.

2.3. Objectives

The control objective in this paper is to achieve path following of the cart-pendulum
robot under the attack of the actuator. Assuming that qd is the target displacement path, it
satisfies the following equation:

Dq̈d + Vq̇d + Gqd = ET, (5)

where T is input force of the reference trajectory system. Therefore, the path-following
error for the cart-pendulum robot (2) can be expressed as:

e(t) = [e1, e2]
T = [q− qd, q̇− q̇d]

T . (6)

Substituting (6) into the dynamics (2) obtains:{
ė1(t) = e2,
ė2(t) = −VDe2 − GDe1 + EDτ − EDT −ωD,

(7)

where VD = D−1V, GD = D−1G, ED = D−1E, and ωD = D−1ω. Therefore, the relation-
ship between the two dynamics can be indicated as follows:

ė = Ae + Bτ − f (e), (8)

where A =

[
0 1
−GD −VD

]
, B =

[
0

ED

]
, f (e) =

[
0

q̈d + VD q̇d + GDqd + ωD

]
.

Defining Bd = − f (e), the above error tracking equation can be further drafted by:

ė = Ae + Bτ + Bd, (9)

It can be seen that the problem of tracking the reference path is transformed into the sta-
bility problem of the path-following error system, i.e., limt→+∞ e1(t) = 0, limt→+∞ e2(t) =
0 in the existence of the perturbations and actuator attacks.

Remark 1. As mentioned in [30], attackers can modify the data in the channel to destroy or to
control the output signal. Therefore, it is legitimate to presume that attackers can acquire the
time-varying state of system (9) and design attack signals based on this state. It can be seen from (4)
and (9) that the interfering signal and the attacked signal exist together. The disturbance is usually
a bounded signal, which exists in the actual system in various forms of uncertainty. In contrast,
the attacked signal is maliciously injected by the attacker after stealing the system state, which can
change with the system state and attack mode.

As the movement core of the system, the actuator can easily be attacked by hackers,
and the system controlled by the actuator after being attacked will show the movement
path that the attacker wants. Therefore, this paper develops a stable sliding-mode control
method to counteract the interference caused by actuator attacks and ensure the path-
following performance of the system.
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3. Design of an Adaptive Sliding-Mode Controller

This section brings forward a kind of adaptive sliding-mode control law for the cart-
pendulum system. Based on this control law, the cart-pendulum robot can achieve the
movement path-following under actuator attacks. Firstly, a linear filter is used to assist in
estimating the unconscious weight vector of the external attacks based on neural networks.
After obtaining accurate estimation values, a new adaptive sliding-mode controller is
purposed, which can ensure that robot system can still achieve path-following in the case
of actuator attacks. Finally, the proposed sliding-mode function and weight estimate errors
are proven to be uniformly and ultimately bounded.

3.1. Estimates of Unknown Weights

A neural network is a network connected by a large number of nonlinear processing
units. It can establish the mapping relationship between nonlinear input and output
via learning samples. Therefore, it is widely used in the modeling of nonlinear systems.
The estimated value σ̂(e(t)) of the attack signal σaτ in (4) is supposed to be represented in
the following form:

σ̂ = Ψ(e(t))Ŵ, (10)

where Ŵ is the estimation of unidentified weight W, and the difference between them is
the estimation error W̃ = W − Ŵ. Reducing W̃ can improve the accuracy of parameter
identification of attack signals. Therefore, this paper introduces a linear filter operator to
auxiliary estimate weight W.

Combining state space Equation (9) and attack signal in (4), a new system dynamic
formula can be acquired:

ė(t) = Ae(t) + Bτ(t) + Υ(e(t))W + Bδ1 (11)

where Υ(e(t)) = BΨ(e(t)), δ1 = δ f + d, and it satisfies ‖δ1‖ ≤ δr.
For system dynamics (11), the filtering form of each variable can be defined as follows:

ξ ė f + e f = e, e f (0) = 0 (12)

ξτ̇f + τf = τ, τf (0) = 0 (13)

ξΥ̇ f + Υ f = Υ, Υ f (0) = 0 (14)

where ξ is set as a constant with positive value. Substituting the filtered system variables
x f , u f , and Υ f into (11), we obtain the dynamics of the linear filtered system as follows:

ė f (t) = Ae f (t) + Bτf (t) + Υ f (e(t))W + Bδ1 f , (15)

where δ1 f is the virtual filter variable of δ1, i.e., ξδ̇1 f + δ1 f = δ1. Combined with the filter
operator (12) , the filtered dynamics become the following form:

e− e f

ξ
− Ae f − Bτf = Υ f W + Bδ1 f . (16)

According to the above equations, it can be found that by introducing this linear filter
operator, we can avoid using the derivative of the system variable ė f (t) for calculation.
Additionally, by calculating (12)–(14), we can easily obtain the filtered system variables e f ,
τf and Υ f .

As mentioned above, the purpose of this section is to obtain the estimation of the
unknown weight vector. By introducing a class of linear filter, we can apply the auxiliary
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matrix to collect the estimation error of the weight. For this purpose, the following matrix
M and vector N are designed as:

Ṁ = −χM + ΥT
f Υ f , (M(0) = 0) (17)

Ṅ = −χN + ΥT
f (

e− e f

ξ
− Ae f − Bτf ), (N(0) = 0). (18)

To simplify the calculation, the coefficient χ is designed as a positive value.
Then, we are able to receive the solutions of (17) and (18):

M(t) =
∫ t

0
e−χ(t−r)ΥT

f (r)Υ f (r)d(r), (19)

N(t) =
∫ t

0
e−χ(t−r)ΥT

f (r)[
e(r)− e f (r)

ξ
− Ae f (r)− Bτf (r)]d(r). (20)

Then, the weight W can be expressed with M and N, as follows:

N = MW − R, (21)

R = −
∫ t

0
e−χ(t−r)ΥT

f (r)Bδ1 f (r)d(r), (22)

where R denotes system error dynamics, and it satisfies ‖R‖ ≤ δH , δH > 0. This is because
the interference and modeling error mentioned in this paper are bounded, so the error R
is also bounded. Using the linear filter and auxiliary matrix, the estimation error of the
unknown weight is able to be expressed by the following equation:

∆ = MŴ − N = −MW̃ + R. (23)

The adaptive updating law of the estimated weight vector is shown by:

˙̂W = −Φ(η∆− (LBΨ)TS), (24)

where Φ is the designed feedback gain matrix, which has a positive value; η is a ratio
used to rectification the adaptive law; S is an independently devised integral sliding-mode
function which will be proposed later.

Remark 2. The dynamic Equation (15) of the filter is obtained by combining the dynamic Equa-
tion (11) of the tracking error system with the linear filters (12)–(14). In fact, the dynamic
Equation (15) can be regarded as a virtual dynamic equation used only for calculation, and it does
not represent any physical meaning. The main purpose of designing Equation (15) is to avoid using
higher-order parameters to represent the estimation errors of weights. In the actual process, the real
system tracking error equation and the filtered dynamic equation depend on each other and work
simultaneously.

Remark 3. As mentioned in [38], the matrix Υ meets the persistence of excitation (PE) condition.
Therefore, the auxiliary matrix M only related to matrix Υ must be a positive definite matrix, i.e.,
λmin(M) > $ > 0. By introducing matrices M and N, the parameter estimate error can be
expressed as the form of ∆. Finally, the uniformly ultimately bounded results of the estimation error
W̃ are obtained by using the Lyapunov function, which proves that the unrevealed parameters of
actuator attack based on the neural network can be accurately estimated.
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3.2. Design of an Adaptive Control Scheme

For state space equations with neural networks (11), the following controller strategy
is raised to implement the control goal:

τ = τ1 + τ0 (25)

where τ1(t) = Ce(t) is a feedback control law related to the system states, which is used
to stabilize the sliding surface; C is a gain vector, and the method to obtain C will be
introduced at the end of this section; τ0(t) is a control law that will be proposed next, which
is used to resist actuator attacks and to reduce the impact of external interference.

Sliding-mode control means that the motion state of the system will be limited to
moving in the sliding-mode plane to stability. Generally, the starting position of systems is
not on the sliding surface, and the state of the system will have a stage from the starting
point to the sliding surface. So, traditional sliding-mode control methods are unable to
guarantee that the system states always meet the anticipated performance indicators from
the initial time to the sliding-mode surface. However, the integral sliding-mode control
method can insure that the initial states of the system are already on the sliding-mode
surface, so that the system performance and anti-interference capability are improved.
In this section, a class of integral sliding-mode functions are designed for the control
objectives as follows:

S(t) = Le(t)− Le(t0)− L
∫ t

t0

(A + BC)e(r)d(r), (26)

where L is an adjustable vector, which only needs to ensure that det(LB) 6= 0. The derivative
of S(t) regarding time is

Ṡ(t) =Lė(t)− L(A + BC)e(t). (27)

Substituting (11) into (27) yields

Ṡ(t) =L(Ae(t) + Bτ(t) + BΨ(e(t))W + Bδ1)− L(A + BC)e(t)

=LB[τ(t) + Ψ(e(t))W + δ1]− LBCe(t)

=LB[τ0(t) + Ψ(e(t))W + δ1]. (28)

Then, the following sliding-mode controller τ0(t) is proposed

τ0(t) = τ2(t) + τ3(t) (29)

where

τ2(t) = −σ̂

τ3(t) = −c1(LB)TS− c2
(LB)TS‖ST LB‖
‖(LB)TS‖2 (30)

where c1 and c2 are the main parameters to be devised soon.

Theorem 1. When discussing the disturbed cart-pendulum path-following error system (9) under
the attack of an actuator which is described by (3) and (4), if the controller given by (25), (29), and
(30) is combined by the adaptive law (24) with the integral sliding-mode control (26), the controller
gain C can be solved, and there exist positive constants η to make ηλmin(M)− 1

4 > 0, so that the
uniformly ultimately bounded results of the sliding-mode variable of the system and neural network
weight vector-estimated error W̃ can be received, which also means that the path-following errors
are uniformly ultimately bounded.
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Proof. The Lyapunov function is structured as follows:

V1(t) =
1
2

STS +
1
2

W̃TΦ−1W̃. (31)

Afterwards, combined controller (30), the derivative of V1(t) regarding time becomes

V̇1 =ST Ṡ + W̃TΦ−1 ˙̃W

=ST [LB(τ0(t) + Ψ(e(t))W + δ1)] + W̃TΦ−1[Φ(η∆− (LBΨ)TS)]

=ST(LBτ3 + LBΨW̃ + LBδ1) + W̃T [η(−MW̃ + R)− (LBΨ)TS]

=− c1ST LB(LB)TS− c2ST LB
(LB)TS‖ST LB‖
‖(LB)TS‖2 + ST LBΨW̃ + ST LBδ1

− ηW̃T MW̃ + ηW̃T R− W̃T(LBΨ)TS. (32)

Design Λ = LB and select the appropriate correction coefficient η to satisfy ηλmin(M)−
1
4 > 0. Ensuring that c2 is chosen to be slightly greater than δr, and considering that the
inequality 2aTb ≤ aTa + bTb is always established, (32) can be expressed as:

V̇1 ≤− c1λmin(ΛΛT)‖S‖2 − c2‖ST LB‖+ ‖ST LB‖δr

− ηλmin(M)‖W̃‖2 +
1
4
‖W̃‖2 + η2δ2

H

≤− c1λmin(ΛΛT)‖S‖2 − (ηλmin(M)− 1
4
)‖W̃‖2 + η2δ2

H

≤− αV1 + ε, (33)

where α = min{2c1λmin(ΛΛT), 2((ηλmin(M) − 1
4 )/λmax(Φ−1))} , and ε = η2δ2

H . Since
the coefficient c1 is a positive constant and Φ is a positive definite matrix, α must be a
positive number.

Assuming that the system is under ideal conditions, that is, there is no external
disturbance and modeling error, i.e., δH = 0. According to Lyapunov stability theorem,
the sliding-mode trajectory and neural network weight vector estimate error will gradually
reach zero.

Define ϕ = [‖S‖ ‖W̃‖]T , Π = diag{µ1, µ2}, µ1 = c1λmin(ΛΛT), and µ2 = (ηλmin(M)−
1
4 ); thus, (33) can be simplified to

V̇1 ≤− µ1‖S‖2 − µ2‖W̃‖2 + ε

≤− ϕTΠϕ + ε. (34)

It is easily discovered that V̇1 is negative when ϕ satisfies the following requirement

‖ϕ‖ >

√
η2δ2

H
λmin(Π)

. (35)

Through the above formula, based on Lyapunov stability theorem, when ‖ϕ‖ >√
η2δ2

H
λmin(Π)

, the system is convergent, and the system will continue to converge until ‖ϕ‖ ≤
ηδH√

λmin(Π)
, which means that the sliding-mode function S and the estimation error W̃

designed in this paper can reach the final state that is ultimately uniformly bounded
when ϕ meets the specific conditions, and the boundary is obtained by ‖ϕ‖ ≤ ηδH√

λmin(Π)
.

Therefore, it can be concluded that the system error δH and the correction coefficients η
and c1 can affect the boundary of the sliding-mode function S and the convergence of the
estimation errors W̃.



Actuators 2023, 12, 24 9 of 17

Remark 4. As a parameter vector L that can be independently designed in the sliding-mode
function, it only needs to make det(LB) 6= 0, which means L is not unique. It can be seen from the
error convergence boundary obtained above that the smaller the eigenvalue of vector L is, the larger
the error convergence boundary obtains. Therefore, an appropriate vector L should be selected to
make the error converge within a smaller boundary.

When designing control law (30), the selected coefficient c2 should be slightly greater
than δr. In fact, δr is unknown in this system, so the control law (30) should be rewritten
as follows:

τ3(t) = −c1(LB)TS− δ̂r
(LB)TS‖ST LB‖
‖(LB)TS‖2 . (36)

The following adaptive update law is designed to estimate δr as:

˙̂δr = r(‖ST LB‖ − αδ̂r). (37)

Based on the rewritten control law (36), the following result is obtained:

Corollary 1. When discussing the disturbed cart-pendulum path-following error system (9) under
the attack of an actuator that is described by (3) and (4), if the controller given by (25), (29), and (36)
combined by the adaptive law (24), (37) with the integral sliding-mode control (26), the controller
gain C can be solved, and there exist positive constants η to make ηλmin(M) − 1

4 > 0, so the
uniformly ultimately bounded results of the sliding-mode variable of the system, the estimated error
of interference δr, and the neural network weight vector-estimated error W̃ can be received with any
limited initial values.

Proof. The Lyapunov function is structured as follows:

V2(t) =
1
2

STS +
1
2

W̃TΦ−1W̃ +
1
2

r−1δ̃2
r , (38)

where δ̃r = δ̂r − δr. Combining the controller (36) and differentiating V2(t) regarding time,
we have

V̇2 =ST Ṡ + W̃TΦ−1 ˙̃W + δ̃r
˙̃δr

=ST [LB(τ0(t) + Ψ(e(t))W + δ1)] + W̃TΦ−1[Φ(η∆− (LBΨ)TS)] + δ̃r
˙̃δr

=ST(LBτ3 + LBΨW̃ + LBδ1) + W̃T [η(−MW̃ + R)− (LBΨ)TS] + δ̃r
˙̃δr

=− c1ST LB(LB)TS− δ̂rST LB
(LB)TS‖ST LB‖
‖(LB)TS‖2 + ST LBΨW̃ + ST LBδ1

− ηW̃T MW̃ + ηW̃T R− W̃T(LBΨ)TS + δ̃r
˙̃δr. (39)

Combined with the updated adaptive law (37), and with the other parameters being
the same as those in Theorem 1, (39) can be expressed as:

V̇2 ≤− c1λmin(ΛΛT)‖S‖2 − δ̂r‖ST LB‖+ ‖ST LB‖δr + δ̃r
˙̃δr

− ηλmin(M)‖W̃‖2 +
1
4
‖W̃‖2 + η2δ2

H

=− c1λmin(ΛΛT)‖S‖2 − δ̃r‖ST LB‖+ δ̃r
˙̃δr

− ηλmin(M)‖W̃‖2 +
1
4
‖W̃‖2 + η2δ2

H

=− c1λmin(ΛΛT)‖S‖2 − αδ̃2
r − αδ̃rδr

− ηλmin(M)‖W̃‖2 +
1
4
‖W̃‖2 + η2δ2

H
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≤− c1λmin(ΛΛT)‖S‖2 − 1
2

αδ̃2
r +

1
2

αδ2
r

− ηλmin(M)‖W̃‖2 +
1
4
‖W̃‖2 + η2δ2

H

=− c1λmin(ΛΛT)‖S‖2 − (ηλmin(M)− 1
4
)‖W̃‖2 − 1

2
αδ̃2

r + η2δ2
H +

1
2

αδ2
r

≤− βV2 + ε. (40)

where β = min{2c1λmin(ΛΛT), 2((ηλmin(M)− 1
4 )/λmax(Φ−1)), α} , and ε = η2δ2

H + 1
2 αδ2

r .
This is the same as the proof process of Theorem 1; since c1 and α are positive, and Φ is a
positive definite matrix, β is also a positive number.

Similarly, according to the Lyapunov stability theorem, when the system is under
the ideal condition without interference, i.e., δH = 0, δr = 0, the sliding-mode surface
and the estimate error of the neural network weight vector will gradually reaches to zero.
Considering the system in the real situation, we have the following conclusion:

Define ϕ = [‖S‖, ‖W̃‖, δ̃r]T , and Π = diag{µ1, µ2, µ3}, where µ1 = c1λmin(ΛΛT),
µ2 = (ηλmin(M)− 1

4 ), µ3 = 1
2 α, then (40) can be expressed as

V̇2 ≤− µ1‖S‖2 − µ2‖W̃‖2 − µ3δ̃2
r + ε

≤− ϕTΠϕ + ε. (41)

This proves that V̇2 is negative when ϕ satisfies the following requirement

‖ϕ‖ >

√
η2δ2

H + 1
2 αδ2

r
λmin(Π)

. (42)

According to the above proof, based on Lyapunov stability theorem, when ‖ϕ‖ >√
η2δ2

H+ 1
2 αδ2

r
λmin(Π)

, the system is convergent, and the system will continue to converge until

‖ϕ‖ ≤
√

η2δ2
H+ 1

2 αδ2
r

λmin(Π)
, so we obtain the conclusion that the sliding curve S, the estimate error

W̃ of neural network weight and estimate error δ̃r are uniformly ultimately bounded, and

the boundary is determined by ‖ϕ‖ ≤
√

η2δ2
H+ 1

2 αδ2
r

λmin(Π)
.

The above two proofs ensure that the initiated control scheme can make the tracking
error of the robot and the estimation error of the unknown parameter achieve a uniformly
ultimately bounded state, which implies that the estimated and the true values of the
parameter are equal as long as the time is long enough. On this basis, we only require the
estimated value of the unknown parameters to be bounded rather than specified to the
true value itself, and so the adaptive laws in (24) and (37) are respectively rewritten as the
following form:

˙̂W = −Φ(LBH)TS, (43)

and

˙̂δr = r‖ST LB‖. (44)

Then, based on the rewritten adaptive update law, the following Corollary 2 can
be obtained.

Corollary 2. When discussing the disturbed cart-pendulum path-following error system (9) under
the attack of an actuator that is described by (3) and (4), if the controller given by (25), (29), and
(36) is combined by the adaptive laws (43) and (44) with the integral sliding-mode control (26),
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the controller gain C can be solved, so the sliding-mode variable S and the system path-following
error can reach zero in infinite time.

Proof. Selecting the following Lyapunov function structure

V3(t) =
1
2

STS +
1
2

W̃TΦ−1W̃ +
1
2

r−1δ̃2
r , (45)

and substituting formulas (36) and (43) into the time derivative of V3(t), we yield:

V̇3 =ST Ṡ + W̃TΦ−1 ˙̃W + δ̃r
˙̃δr

=ST [LB(τ0(t) + Ψ(e(t))W + δ1)] + W̃TΦ−1 ˙̃W + δ̃r
˙̃δr

=ST(LBτ3 + LBΨW̃ + LBδ1)− W̃T(LBΨ)TS + δ̃r
˙̃δr

=− c1ST LB(LB)TS− δ̂rST LB
(LB)TS‖ST LB‖
‖(LB)TS‖2 + ST LBδ1 + δ̃r

˙̃δr. (46)

Combining with the adaptive update law (44) yields

V̇3 ≤− c1‖ST LB‖2 − δ̂r‖ST LB‖+ ‖ST LB‖δr + δ̃r
˙̃δr

=− c1‖ST LB‖2 − δ̃r‖ST LB‖+ δ̃r
˙̃δr

=− c1‖ST LB‖2 ≤ 0. (47)

It can be easily seen from (47) that when ‖ST LB‖ 6= 0, V̇3(t) < 0, which means that
V3(0) and V3(∞) are bounded. Integrating (47), we obtain

∞∫
0

‖ST LB‖2dr ≤V3(0)−V3(∞)

c1
. (48)

Since ST LB is of uniform continuity and V3(0) and V3(∞) are bounded, the conclusion
that lim

t→∞
‖ST LB‖ = 0 can be drawn based on Barbalat lemma. Therefore, the global

asymptotical stability of the path-following system can be proven.

From Corollary 2, it can be known that the path-following error will eventually reach
the sliding surface. Therefore, for the gain vector C, it can be obtained that assuming
the sliding-mode surface is in perfect sliding status, (i.e., for the sliding-mode function S
proposed in (26), assuming that S(t) = Ṡ(t) = 0), the following formula can be obtained

Ṡ(t) =Lė(t)− L(A + BC)e(t)

=L(Ae(t) + Bτ(t) + BΨ(e(t))W + Bδ1)− L(A + BC)e(t) = 0. (49)

Then, we obtain the control input under the ideal sliding state

τie(t) = Ce(t)−Ψ(e(t))W − δ1. (50)

Substituting the equivalent control input (50) into the dynamic equation of the system
following error (11), we yield

ė(t) = (A + BC)e(t). (51)

Define a positive-definite matrix P. The sliding-mode variable is stable if P satisfies
the requirement as:

(A + BC)T P + P(A + BC) < 0. (52)
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Select the following Lyapunov function structure:

V4(t) = eT Pe (53)

Substituting (51) into the Lyapunov function after differentiating, we have

V̇4(t) = eT [(A + BC)T P + P(A + BC)]e < 0, (54)

which completes the proof.
It follows from the condition (52) that P needs to be satisfied. Define P̄ = P−1,

Q = CP−1, and then (52) can be rewritten into the following form

P̄AT + QT BT + AP̄ + BQ < 0. (55)

By solving the above linear matrix inequality, we can obtain the gain matrix C as

C = QP̄−1. (56)

4. Simulation Results

A simulation model of an agricultural cart-pendulum robot is exploited to examine
that the raised control strategy has a suppressive effect on actuator attacks and model
uncertainties in this section. According to [37], the parameters of the robot are selected as
mc = 18.04 kg, Mp = 4.06 kg, cm = 44.84 Ns/m, cM = 0.0015 Ns/m, l = 0.2 m, I = 0.14 kgm2.
The starting path-following error is chosen by e(0)=[0.5; 0.7; 0.3; −0.1]. For actuator attacks
simulated by the neural network (4), W=[−0.2; −0.5; −0.07; 0.1] is chosen as the unknown
weight of the neural network. The non-ideal perturbation factor affecting the system is
chosen as ωd = 0.02sin(e(1)t).

The coefficients of the linear filter are ξ = 0.01, χ = 1. The parameters of the adaptive
update law (24) are set by Φ = diag(25, 25, 25, 25) and η = 1.6. Considering the integral
sliding-mode function presented as (26), we chose L = [4.635 2.684 0.271 0.099], and by
solving the linear matrix inequality (55), we obtain the gain vector of the sliding-mode
function C = [−1.3575 16.3959 − 4.5989 0.0090]. Tuning the parameters of the adap-
tive control strategy, (25) can be calculated as c1 = 0.25 and c2 = 1.7. For the reference
path, T = 5 sin(t) is chosen as the tracking signal. Based on the values selected above,
the simulation result of the control strategy proposed for resisting actuator attacks is offered
as follows.

The simulation is carried out by using SIMULINK/MATLAB software, version R2021a.
In the simulation, Figure 1 describes the reference path and the actual path of the cart-
pendulum robot, which shows that the moving distance of the cart and the swinging
angle of the pendulum can track the reference path respectively, achieving the control
goal of this paper. Figure 2 depicts the path-following error of the cart-pendulum system,
indicating that the error tracking system is asymptotically stable, and it proves that the
raised control scheme (25) can automatically compensate for the impact of actuator attacks,
so that the following error converges in the minimum space close to zero. Figure 3 shows
the trajectory of the sliding-mode function, indicating that the sliding-mode trajectories
eventually converge to the region close to the origin. Figure 4 shows the estimated weight
of the neural network, indicating that the estimated value of the unknown weight can be
accurately obtained through the adaptive update law (24), and that the weight estimation
error is ultimately bounded. Figures 3 and 4 validate the conclusion that the weight
estimation error of the neural network and the sliding-mode trajectory are ultimately
uniformly bounded. Figure 5 shows the input force acting on the cart-pendulum system.
Through the above simulation diagrams, it is proven that all error values are bounded and
convergent, and that the path-following performance of the vehicle swing system under
actuator attacks has been verified.
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5. Conclusions

This paper has explored the path-following problem of a cart-pendulum robotic system
under actuator attacks and uncertainties. The unknown attack signal has been simulated
through the neural network, and the accurate estimation of the weights of the neural
network have been realized by using the filter. Then, combined with the integral sliding-
mode control method, an adaptive integral sliding-mode control scheme has been proposed,
which automatically compensates for the effects of disturbances caused by the actuator
attacks and uncertainties. A precise tracking of the reference path has been achieved based
on Lyapunov stability theory. The utility of the designed controller is confirmed by the
simulation results of the agricultural cart-pendulum robot.

Note that the control strategy proposed in this paper can achieve the control objective
of the asymptotic tracking of the system. However, in practical applications, it is often
required that the tracking system breaks away from the limits of the initial conditions and
converges to an equilibrium point in a fixed time. Therefore, we will devote ourselves to
developing a fixed-time controller in the future, and we hope to improve the robustness of
the controller so that it can resist the attacks of sensors and actuators at the same time.
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