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Abstract: To improve the robustness of a slice rotor system supported by active magnetic bearings
(AMBs), here, we propose a backstepping controller based on a model-assisted extended state
observer (MESO-BC). Based on a generalized extended state observer (GESO), a model-assisted
extended state observer is studied with consideration of the linear model of AMBs. The model-
assisted extended state observer can estimate the unknown disturbances of the active magnetic
bearing system, such as model inaccuracy and external disturbance, and is superior to the generalized
extended state observer with respect to observation errors and the speed of convergence errors. In
addition, it is compared with the backstepping controller based on a generalized extended state
observer (GESO-BC) and conventional adaptive backstepping controller (ABC), and the simulation
and experimental results verify the effectiveness of the proposed method. The experimental results
demonstrate that the overshoot of the MESO-BC decrease by 5.94% and 13.2% as compared with the
GESO-BC and ABC under the effect of pulse disturbance, respectively, and the rotor displacement of
the MESO-BC reduce by 40.3% and 54.6% as compared with the GESO-BC and ABC under the effect
of the sinusoidal disturbance, respectively.

Keywords: active magnetic bearings; slice rotor; backstepping control; extended state observer (ESO);
disturbance rejection

1. Introduction

Active magnetic bearings (AMBs) have generally been applied in vacuum, pure, and
high-speed industrial applications because of their non-mechanical contact, non-lubrication,
and active control. The rotor can be categorized as a conventional rotor or a slice rotor
according to its length. The length of a slice rotor is significantly smaller than its diameter,
and usually only requires one radial magnetic bearing unit for stability. For industrial
applications where space is a constraint, an AMB system with a slice rotor is generally
applied, for example, in artificial hearts [1], optical scanning systems [2], and textiles [3].

In addition to determining the topological structure of a rotor, controlling the rotor
position is one of the greatest challenges, which can determine the efficiency of the AMB
system. However, magnetic bearings exhibit negative stiffness, indicating the inherent
instability of magnetic bearing systems. Further, an AMB system is also susceptible to
parameter variations and external disturbances that can cause the rotor to move from its
equilibrium position. Therefore, the position of a rotor must be controlled by actively
adjusting the control current of the coil and generating the corresponding electromagnetic
force. As a result, several control strategies have been presented to limit the displacement
of a rotor within a reasonable range. Proportional–integral–differential (PID) control is the
most widely used strategy for position control due to its advantages in implementation and
parameter tuning [4,5]. However, it is weakly robust to internal and external disturbances,
such as system uncertainty or load vibrations [6]. To enhance the performance of the AMB
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system with unknown dynamics, some advanced control strategies have been vigorously
developed, such as H∞ control [7], sliding-mode control [8], neural network control [9],
observer-based control [10], predictive control [11], and backstepping control [12,13]. The
backstepping control strategy has a favorable disturbance rejection capability for systems
with external disturbances among these advanced control strategies. Moreover, the back-
stepping control strategy has a solid ability to adapt to uncertainties in system parameters,
which can enhance transient performance when the system is disturbed [14]. Since it
is usually difficult to determine the upper limits of disturbance, increasing the control
voltage of controllers may contribute to better control performance; however, it is not an
ideal solution.

A variety of observers have been proposed to estimate the unknown disturbance and
to gain insight into unknown states. For the majority of observers, however, systematic
model information is required. To overcome the dependence of observers on plant models,
extended state observers have been studied and employed in AMB systems [15,16]. How-
ever, some of the above methods still use conventional PID controllers for position control,
or the controllers are too complex for easy parameter adjustment.

In this paper, we present a backstepping controller based on a model-assisted extended
state observer (MESO-BC) for a slice rotor supported by AMBs, which reduces control
cost and increases robustness of the system to disturbance. The MESO-BC combines
a backstepping control strategy with a model-assisted ESO that is used to estimate the
state variables and lumped disturbances of the AMB system. The backstepping controller
continuously updates its control law through the lumped disturbance estimated by the
MESO in real time, thus, reducing the impact of uncertainties on the system. The novelty
of the proposed method is that the model information about AMB dynamics is considered
in the MESO design, which is used to estimate the lumped disturbance. The model
information about AMB dynamics is added to the MESO design, which can reduce the
workload of the MESO and can improve the disturbance estimation effect of the MESO.
Therefore, the control performance of the MESO-BC is also improved and is superior to the
backstepping controller based on a generalized extended state observer (GESO-BC).

This paper is organized as follows: The plant model of a slice rotor supported by
AMBs is presented in Section 2; in Section 3, we demonstrate the design process of the
backstepping controller and stability analysis using the Lyapunov theorem; in Section 4, we
describe the GESO-BC, MESO-BC, and gain tuning strategy for the ESO; in Section 5, the
simulation and experimental results on the AMB system demonstrate that the MESO-BC is
superior to the GESO-BC and a conventional adaptive backstepping controller (ABC); in
Section 6, we summarize the paper.

2. Model Description of the Slice Rotor Supported by AMBs

Figure 1 represents the employed three-dimensional structure of the slice rotor sup-
ported by AMBs. It contains a ring-shaped stator made of silicon lamination, which carries
the magnetic flux. Eight coils are wound in the slot inside the ring-shaped stator. The
dimensions and parameters of the AMB system are listed in Table 1.

2.1. Passive Stability of Axial and Tilting Directions

Since the rotor is slice-shaped (height < diameter) and has a height similar to the
stator, the passive stability of the bearingless slice motor is also applied to the AMBs of the
slice rotor [17]. According to the principle of slice-type rotors [18], the axial movements
and deflection of the rotor are passively stabilized by reluctance forces. When the rotor
generated an axial displacement (z-direction), the increased air gap between the rotor
and stator resulted in a restoring reluctance force that eliminated the displacement (see
Figure 2a). A similar torque was generated when the rotor was deflected around a radial
axis (x- or y-axis), as shown in Figure 2b.
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Figure 1. Topology of the slice rotor supported by one active magnetic bearing unit. 𝑥/𝑦, radial di-
rection; 𝑧, axial direction. 

Table 1. The parameters of the AMB system. 

Symbol Parameter Value Unit 𝐴௠௣ Area of magnetic pole 56 mm2 𝑑ଵ Rotor diameter 56.4 mm 𝑑ଶ Stator inner diameter 57.4 mm 𝑑ଷ Stator outer diameter 140 mm ℎ Rotor height 13.2 mm 𝐼଴ Bias current 1 A 𝑘௔ Transfer function of the power amplifier 0.2 A/V 𝑘௜ Current stiffness coefficient 3.7449 N/A 𝑘௦ Transfer function of the displacement sensor 5 V/mm 𝑘௫ Displacement stiffness coefficient 7489.72 N/m 𝑚 Rotor mass 0.105 kg 𝑁 Turns of single pole coil 120 ---- 𝛼 Angle between the magnetic pole and the axis 22.5 deg 𝛿଴ Nominal air gap 0.5 mm 
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Figure 2. Passive stabilization: (a) Axial direction; (b) tilting directions. 

  

Figure 1. Topology of the slice rotor supported by one active magnetic bearing unit. x/y, radial
direction; z, axial direction.

Table 1. The parameters of the AMB system.

Symbol Parameter Value Unit

Amp Area of magnetic pole 56 mm2

d1 Rotor diameter 56.4 mm
d2 Stator inner diameter 57.4 mm
d3 Stator outer diameter 140 mm
h Rotor height 13.2 mm
I0 Bias current 1 A
ka Transfer function of the power amplifier 0.2 A/V
ki Current stiffness coefficient 3.7449 N/A
ks Transfer function of the displacement sensor 5 V/mm
kx Displacement stiffness coefficient 7489.72 N/m
m Rotor mass 0.105 kg
N Turns of single pole coil 120 —-
α Angle between the magnetic pole and the axis 22.5 deg
δ0 Nominal air gap 0.5 mm
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2.2. Active Control of Radial Directions

Generally, the axial movements and deflections of the rotor are passively stabilized
by reluctance forces. However, attracting force can pull the rotor even further away from
equilibrium if the rotor produces radial displacements [19]. Thus, rotor movements must
be controlled actively in radial directions. Without active-controlled bearing forces, the
slice rotor cannot be stabilized in radial directions.

According to Newton’s law, the plant model of radial magnetic bearings is ob-
tained [20] as follows:

m
..
x = kxx + kii (1)

where m represents rotor mass; x represents the rotor displacement in radial directions; i
represents the control current; kx and ki represent the displacement stiffness coefficient and
current stiffness coefficient of magnetic bearings, respectively, representing the linearized
magnet force/displacement and force/current relationship at the equilibrium position.
Valid in every degree of freedom, the displacement and current stiffness coefficient have
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been proved through many years of practical experience to work extraordinarily well for a
wide range of applications.

While Equation (1) only describes the fundamental behavior of AMBs under current
control, it was a linear approximation of the actual relationship, which works in the
proximity of the equilibrium position. However, many experimental results have shown
that the linear relationship works successfully across a wide range. Furthermore, a more
complex and nonlinear model should be considered only in limited circumstances, such as
rotor-stator contact, extremely low bias currents, and flux saturation [21].

By applying Laplace transform to Equation (1), the magnetic bearing transfer function
in radial directions can be derived, with rotor displacement X(s) and control current I(s)
as output and input, respectively:

G(s) =
X(s)
I(s)

=
ki

ms2 − kx
(2)

We have ki and kx represented by:

ki =
µ0N2 Amp I0

δ2
0

· cos α (3)

kx =
µ0N2 Amp I2

0

δ3
0

· cos α (4)

where µ0 represents the vacuum permeability, N represents the single-coil turns, Amp
represents the single magnetic pole area, α is the half-angle between two poles, I0 is the
bias current, and δ0 is the nominal air gap.

The AMB system control loop with a linearized mechanical plant model, power
amplifier, and displacement sensor is illustrated in Figure 3. The power amplifier and
sensor can be modeled as linear transfer functions at low frequencies [15]. As exhibited in
the control loop of the AMB system, Equation (2) can be rewritten with rotor displacement
X(s) and control voltage U(s) as output and input, respectively:

GP(s) =
X(s)
U(s)

=
kakiks

ms2 − kx
(5)

where ka and ks represent the transfer function of the power amplifier and sensors, respectively.
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The rotor displacement x(t) and velocity
.
x(t) are assumed to be state variables. The

input and output of the system are u(t) and y(t), respectively. Considering the external
force p, the state-space description of the AMB system is represented by:

.
x1 = x2
.
x2 = kakiks

m u + kx
m x1 +

p
m

y = x1

(6)
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3. Backstepping Controller Design and Stability Proof

The AMB system is always subject to various uncertainties, including parameter
variations, unknown dynamics, and external interferences, all of which have an adverse
impact on the regular operation of the system. The slice rotor must remain near the equilib-
rium point when the AMB system is operating. Hence, the backstepping control method
is adopted to generate appropriate bearing force to ensure that the rotor displacement
remaines within acceptable boundaries.

The backstepping control method is the process of recursively determining control
output step by step. First, a sophisticated system is split into several subsystems whose
numbers do not exceed the order of the original system. Afterward, Lyapunov functions
are constructed and the convergence of errors in each subsystem, by designing virtual
control laws, is ensured. By recursion, the original system’s output can be obtained. This
procedure is described below.

Equation (6) indicates that AMBs are second-order systems. Nevertheless, the demand
for precise AMB controllers has seen an increase with the advancement of model analysis.
Consequently, in this study, an n-order backstepping controller is studied. The AMBs
model presented in Equation (6) is rewritten in the form of a lower triangular system of
n-order as follows: 

.
xi = xi+1 + Fi(x1, · · · , xi), i = 1, · · · , n− 1
.
xn = Fn(x) + bu + f ,
y = x1,

(7)

where x1, · · · , xn represent system state; i ∈ N , [1, · · · , n] represent the order of the
system; f ∈ Rp and p ∈ N are the constant and unknown, respectively, representing
unmodeled disturbance; Fi(·) is the known linear or nonlinear function; u is control input;
and b represents the known input coefficient.

The error variables of the system state are defined as:{
e1 = x1d − x1,
ei = x(i−1)

1d + εi−1 − xi, i = 2, · · · , n
(8)

where x1d represents the desired displacement of the rotor, and virtual control laws can be
designed as: {

ε1 = k1e1 − F1(x),
εi = kiei − Fi(x) +

.
εi−1 + ei−1, i = 2, · · · , n− 1

(9)

To eliminate the unmodeled disturbance f , let the estimated value of f be f̂ . Note that
disturbance f is constant. The error between f and f̂ can be defined as:

f̃ = f̂ − f (10)

Time derivative of f̃ can be calculated as:

.

f̃ =
.
f̂ (11)

The design process of the n-order backstepping controller is described below, which
can be divided into three steps. The final objective of this controller is to ensure that
x1 → x1d as t→ ∞ .

Step 1: The first Lyapunov function is designed as:

V1 =
1
2

e2
1 (12)
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Its time derivative can be denoted:
.

V1 = e1
( .
x1d − x2

)
(13)

Equations (8) and (9) are substituted into (13):

.
V1 = −k1e2

1 + e1e2 (14)

If the error variable e2 = 0, e1 will converge asymptotically according to the Lya-
punov theorem.

Step 2: From the defined error variables, the corresponding Lyapunov function for
ei (i = 2, · · · , n− 1) can be expressed as:

Vi = Vi−1 +
1
2

e2
i (15)

Its time derivative can be calculated as:
.

Vi =
.

Vi−1 + ei

[
x(i)1d +

.
εi−1 −

.
xi

]
(16)

From Equation (7) and the designed virtual control law, Equation (16) can be rewrit-
ten as: .

Vi =
.

Vi−1 − kie2
i + eiei+1 − eiei−1

= −
i−1

∑
j=1

k je2
j + ei−1ei − kie2

i + eiei+1 − eiei−1

= −
i

∑
j=1

k je2
j + eiei+1

(17)

If ei+1 = 0, the error variables ei (i = 1, · · · , n− 1) will converge asymptotically.
Step 3: The final Lyapunov function can be constructed as:

Vn = Vn−1 +
1
2

e2
n +

1
2

ρ f̃ 2 (18)

where ρ = en/
.
f̂ > 0 represents the compensation coefficient. The corresponding derivative

of Vn can be calculated as:

.
Vn =

.
Vn−1 + en

.
en + ρ f̃

.
f̂

=
.

Vn−1 + en

[
x(n)1d +

.
εn−1 − Fn(x)− bu− f

]
+ ρ f̃

.
f̂

= −
n−1

∑
j=1

k je2
j + en[en−1 + x(n)1d +

.
εn−1 − Fn(x)− bu− f ] + ρ f̃

.
f̂

(19)

The control law u needing to be designed appears and could be designed as:

u =
1
b

[
en−1 + x(n)1d +

.
εn−1 − Fn(x)− f̂ + knen

]
(20)

where f̂ is estimated in real time by the ESO. Equation (20) is substituted into (19):

.
Vn = −

n−1

∑
j=1

k je2
j − kne2

n + en

(
f − f̂

)
+ ρ f̃

.
f̂

= −
n

∑
j=1

k je2
j ≤ 0

(21)
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According to the Lyapunov-like lemma, the error variables ei (i = 1, · · · , n) are con-
vergent asymptotically, meaning that the rotor can track the desired displacement.

4. ESO-Based Backstepping Controller Design
4.1. Extended State Observer

The backstepping control strategy has certain robustness to modeling inaccuracy and
external disturbance [21]. Nevertheless, a larger control gain is required for the backstep-
ping control strategy to be robust against the fast-changing disturbances of unknown form
or more significant disturbances, which can lead to a larger control voltage and undesirable
chattering problem. Thus, in this section, we aim at exploring the application of the ESO to
observe and compensate for system disturbance during the control process.

An ESO was proposed as the core of active disturbance rejection control [22,23]. The
ESO begins by borrowing the idea of a state observer, expanding the disturbance possibly
affecting controller outputs into a new system state variable, and then reconstructing all the
states of the original state variable and disturbance using system inputs and outputs. The
ESO includes both linear and nonlinear ESOs. The nonlinear ESO uses nonlinear functions
containing many parameters, and tuning can be quite challenging. Accordingly, the linear
ESO is considered in this study to observe disturbance.

Consideration is given to a second-order nonlinear system with single-input and
-output u and y, respectively:

.
x1 = x2.
x2 = f (x1, x2, t,ω(t)) + bu
y = x1

(22)

where b is the known input coefficient, ω is the external disturbance. Here, f (x1, x2, t,ω(t))
is simply denoted as fld, representing the lumped disturbance. The only information given
for this plant is the system order and parameter b, which indicates that the ESO is not
dependent on accurate plant models. To this end, fld is assumed to be differentiable and
h =

.
f ld. Equation (22) can be augmented as:

.
x1 = x2.
x2 = x3 + bu
.
x3 = h =

.
f ld

y = x1

(23)

To estimate the system states, the following linear ESO with inputs u and y is used:
.
x̂1 = x̂2 − l1(x̂1 − x1).
x̂2 = x̂3 − l2(x̂1 − x1) + bu
.
x̂3 = −l3(x̂1 − x1)

(24)

where l1, l2, and l3 are observer gains needing to be designed.
The error system of Equations (23) and (24) is obtained as:

.
e1 = e2 − l1e1.
e2 = e3 − l2e1
.
e3 = −l3e1 −

.
f ld

(25)

where ei = x̂i − xi, and i = 1, 2, 3 are estimation errors. The errors are convergence to zero
for well-tuned l1, l2, and l3. The control law is updated to:

u =
u0 − f̂ld

b
(26)
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where u0 is the feedback control law of errors, reducing Equation (22) to a cascade integral
form plant:

.
x2 ≈ u0 (27)

which can be easily controlled utilizing state feedback as compared with the original system.
The stability analysis of the ESO is given in [24]. In this paper, the ESO using only the
system order and parameter b is denoted as the GESO.

4.2. The GESO-BC Design

The GESO required no accurate plant information for its design. Thus, suppose that
only the system order and input coefficient b can be obtained. The state-space description
of Equation (6) can be augmented as:

.
x1 = x2
.
x2 = x3 +

kakiks
m u

.
x3 =

.
f ld

y = x1

(28)

where x3 = fld represents the lumped disturbance. The augmented state-space description
of the system is: { .

x = Ax + Bu + Eh
y = Cx

(29)

with A =

0 1 0
0 0 1
0 0 0

, B =

 0
kakiks

m
0

, C =
[
1 0 0

]
, E =

0
0
1

 and h =
[ .

f ld

]
.

According to the form of the general Luenberger observer,{ .
x̂ = Ax̂ + Bu + L(y− ŷ)
ŷ = Cx̂

(30)

bring ŷ = Cx̂ into
.
x̂, and Equation (30) is rewritten as follows with u and y as inputs:{ .

x̂ = Ax̂ + Bu
ŷ = Cx̂ + Du

(31)

with A =

−l1 1 0
−l2 0 1
−l3 0 0

, B =

 0 l1
kakiks

m l2
0 l3

, u =

[
u
y

]
, C =

1 0 0
0 1 0
0 0 1

, D =

0 0
0 0
0 0

.

The GESO can work more efficiently by configuring observer gains more conveniently.
Therefore, all the eigenvalues of A are placed at−ωo, representing observer bandwidth [25].
The gain of the GESO can be obtained:

L =
[
l1 l2 l3

]
=
[
3ωo 3ω2

o ω3
o
]

(32)

From Equation (26), the GESO estimated the lumped disturbance f̂ld for updating the
control law, and a new control law of the GESO-BC is obtained:

u′ =
m

kikska

(
e1 +

..
x1d + k1

.
e1 + k2e2 − f̂ld

)
(33)

4.3. The MESO-BC Design

As mentioned previously, the GESO is not reliant on accurate plant models. However,
plant information is available, which can be incorporated into the ESO design, reducing its
bandwidth and sensitivity to noise [26,27]. The internal dynamic of the AMB system fin is
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completely known, that is, fin = kx
m x1 is given in Equation (6). Then, the new augmented

system can be obtained: 
.
x1 = x2
.
x2 = x3 +

kakiks
m u

.
x3 =

.
f ld =

.
f ex +

.
f in

y = x1

(34)

where fex is the external disturbance other than fin. The state-space description can be
rewritten as: { .

x = A′x + Bu + Eh′

y = Cx
(35)

with A′ =

0 1 0
0 0 1
0 kx

m 0

, h′ = [
.
f ex].

The corresponding MESO can be obtained as follows with u and y as inputs:
.
x̂1.
x̂2.
x̂3

 =

−l′1 1 0
−l′2 0 1
−l′3

kx
m 0

x̂1
x̂2
x̂3

+

 0 l′1
kakiks

m l′2
0 l′3

[u
y

]
+

0
0
1

[ .
f ex]

ŷ =

1 0 0
0 1 0
0 0 1

x̂1
x̂2
x̂3

+

0 0
0 0
0 0

[u
y

] (36)

All the eigenvalues of

−l′1 1 0
−l′2 0 1
−l′3

kx
m 0

 are placed at −ωo, and the MESO gain was

obtained as follows:

L′ =
[
l′1 l′2 l′3

]
=
[
3ωo 3ω2

o +
kx
m ω3

o +
3ωokx

m

]
(37)

According to Equation (37), the MESO gain is higher than that of the GESO (see
Equation (32)) at the same bandwidth ωo. The corresponding control law of the MESO-BC
can be formulated as follows by considering the estimated disturbances fin and fex:

u′′ =
m

kikska

(
e1 +

..
x1d + k1

.
e1 + k2e2 − f̂in − f̂ex

)
(38)

5. Simulation and Experimental Verification

In this section, simulation studies and experimental tests applying the MESO-BC,
the GESO-BC, and the existing adaptive backstepping controller based on the quadratic
Lyapunov function [28] to the AMB system were performed to verify the effectiveness of
the proposed controller. The dimensions and parameters of the employed AMB system are
listed in Table 1.

5.1. Simulations Results
5.1.1. Simulations of Floating Performance Contrast

The rotor stops randomly within the air gap when the AMB system is out of operation,
and returns to its equilibrium position if the system is restarted. The starting and equi-
librium positions of the rotor are assumed to be (−0.5, 0 mm) and (0, 0 mm), respectively.
Additionally, the controller parameters k1 and k2 are chosen as 200 and 400, respectively, to
ensure fairness. The adaptive coefficient ke of the ABC is chosen as 0.25, and the bandwidth
ωo of the GESO and the MESO is selected as 2000.

Figure 4 illustrates the simulation results for rotor floating, and Figure 5 shows the
observation errors of the GESO and the MESO. In Figure 4, the maximum overshoot
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values of the ABC, GESO-BC, and MESO-BC are 0.1124 mm, 0.0971 mm, and 0.0949 mm,
respectively. The settling times of the ABC, GESO-BC, and MESO-BC are 0.0350 s, 0.0309 s,
and 0.0305 s, respectively. As presented in Figure 5, both the observation errors of the
GESO and MESO converged to zero. However, the MESO has more minor observation
errors and faster errors convergence.
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5.1.2. Simulations Contrast of Robustness to External Disturbances

The external pulse and sinusoidal disturbances are injected into the AMB system.
Figure 6 shows the response waveforms with a 3 N external pulse disturbance, a period
of 1 s, and a pulse width of 1%. Figure 7 displays the estimation errors for the GESO and
MESO. As illustrated in Figure 6, the maximum overshoot values of the ABC, GESO-BC,
and MESO-BC are 0.1181 mm, 0.0975 mm, and 0.0731 mm, respectively. The adjustment
time for the GESO-BC and MESO-BC is approximately 0.05 s, while that for the ABC is
longer and exceeds 0.1 s. As shown in Figure 7, the MESO exhibits more minor estimation
errors than the GESO for the same bandwidth, and observation errors can converge in a
shorter period.
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The system is subjected to a sinusoidal disturbance with an amplitude of 6 N at
a frequency of 200 Hz. The response waveforms and observation errors are shown in
Figures 8 and 9. Figure 8 indicates the peak-to-peak values for the ABC, GESO-BC, and
MESO-BC are 0.116 mm, 0.100 mm, and 0.095 mm, respectively. Figure 9 shows that the
GESO has greater observation errors than the MESO.

Actuators 2022, 11, 266 11 of 16 
 

 

5.1.2. Simulations Contrast of Robustness to External Disturbances 
The external pulse and sinusoidal disturbances are injected into the AMB system. 

Figure 6 shows the response waveforms with a 3 N external pulse disturbance, a period 
of 1 s, and a pulse width of 1%. Figure 7 displays the estimation errors for the GESO and 
MESO. As illustrated in Figure 6, the maximum overshoot values of the ABC, GESO-BC, 
and MESO-BC are 0.1181 mm, 0.0975 mm, and 0.0731 mm, respectively. The adjustment 
time for the GESO-BC and MESO-BC is approximately 0.05 s, while that for the ABC is 
longer and exceeds 0.1 s. As shown in Figure 7, the MESO exhibits more minor estima-
tion errors than the GESO for the same bandwidth, and observation errors can converge 
in a shorter period. 

 
Figure 6. Response waveforms under 3 N pulse disturbance simulations. 

  
(a) (b) 

Figure 7. ESO estimation errors: (a) Estimation error of 𝑦 and 𝑦ො; (b) estimation error of 𝑓௟ௗ and 𝑓መ௟ௗ. 

The system is subjected to a sinusoidal disturbance with an amplitude of 6 N at a 
frequency of 200 Hz. The response waveforms and observation errors are shown in Fig-
ures 8 and 9. Figure 8 indicates the peak-to-peak values for the ABC, GESO-BC, and 
MESO-BC are 0.116 mm, 0.100 mm, and 0.095 mm, respectively. Figure 9 shows that the 
GESO has greater observation errors than the MESO. 

 
Figure 8. Response waveforms under 6 N sinusoidal disturbance simulations. Figure 8. Response waveforms under 6 N sinusoidal disturbance simulations.

Actuators 2022, 11, 266 12 of 16 
 

 

  
(a) (b) 

Figure 9. ESO estimation errors: (a) Estimation error of 𝑦 and 𝑦ො; (b) estimation error of 𝑓௟ௗ and 𝑓መ௟ௗ. 

Based on the above simulation results, ESO-based backstepping controllers are su-
perior to ABC concerning both overshoot and stabilization time. Moreover, a compari-
son of the MESO-BC and GESO-BC shows that the MESO model information-assisted 
design has better observation results and faster convergence of observation errors than 
the GESO in the case of the same bandwidth. Observation errors can be reduced by in-
creasing the bandwidth of the ESO. However, the bandwidth is limited by the sampling 
noise of the system. Increasing the bandwidth of the ESO will increase the sensitivity of 
the system to noise. Therefore, the ESO bandwidth should be determined by balancing 
the size of observation errors and the sensitivity of the system to measurement noise. 

5.2. Experimental Setup 
In this paper, a slice rotor supported by AMBs was constructed as a testing plat-

form to verify the feasibility and performance of a MESO-BC. Figure 10 presents the an-
notated photograph of the test platform, consisting primarily of a slice rotor supported 
by AMBs, the motor, the power amplifier, the digital control system, and the power 
supply system, where the motor and rotor are connected by a flexible coupling. Flexible 
couplings serve only to direct the rotation of the rotor without affecting the axial dis-
placement of the rotor. Moreover, rotor displacement is measured by two sets of differ-
ential displacement sensors in both radial directions, and the sampling frequency is 10 kHz. 

The experimental research includes floating experiments, pulse and sinusoidal dis-
turbance rejection experiments, and rotational experiments. A GESO-BC and a conven-
tional ABC are also used for comparison. 

 
Figure 10. Photograph of the constructed AMB platform. 

Figure 9. ESO estimation errors: (a) Estimation error of y and ŷ; (b) estimation error of fld and f̂ld.

Based on the above simulation results, ESO-based backstepping controllers are supe-
rior to ABC concerning both overshoot and stabilization time. Moreover, a comparison
of the MESO-BC and GESO-BC shows that the MESO model information-assisted design
has better observation results and faster convergence of observation errors than the GESO
in the case of the same bandwidth. Observation errors can be reduced by increasing the
bandwidth of the ESO. However, the bandwidth is limited by the sampling noise of the
system. Increasing the bandwidth of the ESO will increase the sensitivity of the system
to noise. Therefore, the ESO bandwidth should be determined by balancing the size of
observation errors and the sensitivity of the system to measurement noise.
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5.2. Experimental Setup

In this paper, a slice rotor supported by AMBs was constructed as a testing platform
to verify the feasibility and performance of a MESO-BC. Figure 10 presents the annotated
photograph of the test platform, consisting primarily of a slice rotor supported by AMBs,
the motor, the power amplifier, the digital control system, and the power supply system,
where the motor and rotor are connected by a flexible coupling. Flexible couplings serve
only to direct the rotation of the rotor without affecting the axial displacement of the rotor.
Moreover, rotor displacement is measured by two sets of differential displacement sensors
in both radial directions, and the sampling frequency is 10 kHz.
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The experimental research includes floating experiments, pulse and sinusoidal distur-
bance rejection experiments, and rotational experiments. A GESO-BC and a conventional
ABC are also used for comparison.

5.3. Experimental Results
5.3.1. Experimental Floating Performance

Figure 11 shows the results of the floating experiment in the x-direction of the rotor,
which has been enlarged for a more detailed view. The maximum overshoot values of the
ABC, GESO-BC, and MESO-BC are 0.178 mm, 0.138 mm and 0.122 mm, respectively. The
settling time for the GESO-BC and MESO-BC is approximately 0.025 s, which is significantly
faster than 0.05 s for the ABC.
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5.3.2. Experimental Contrast of Robustness to External Disturbances

A pulse disturbance of 3 N and a sinusoidal disturbance of 6 N with a frequency of
200 Hz were injected into the AMB system in the x-direction to demonstrate the robustness
to the external disturbance of the MESO-BC.
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Figure 12 presents the rejection results of 3 N pulse disturbance. Figure 12a shows the
rotor displacement, and Figure 12b shows the control voltage. In Figure 12a, it is evident
that the rotor controlled by the GESO-BC and MESO-BC demonstrated more rapid stability.
By comparing the GESO-BC and MESO-BC, it can be found that the rotor displacement
under the control of the MESO-BC is more minor than that of the GESO-BC. For quantitative
comparison, the L2 norm of the rotor displacement tracking error e and control output
voltage u are calculated, denoted as ||e||2 and ||u||2, respectively. The ||e||2 values for the
ABC, GESO-BC, and MESO-BC are 0.9113, 0.8400, and 0.7901, respectively, indicating that
the MESO-BC has the smallest tracking error. Moreover, the ABC, GESO-BC, and MESO-BC
have ||u||2 values of 25.9171, 18.3519, and 17.3877, respectively, implying that the MESO-BC
has the lowest control cost.
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(b) control voltage.

The rejection waveforms of 6 N sinusoidal disturbance are shown in Figure 13. As il-
lustrated in Figure 13a, the peak-to-peak displacement values of the slice rotor controlled by
the ABC, GESO-BC, and MESO-BC are approximately 0.207 mm, 0.159 mm, and 0.096 mm,
respectively. The ABC, GESO-BC, and MESO-BC have ||e||2 values of 1.0256, 0.7807, and
0.4657, respectively, implying that the displacement tracking performance of the MESO-BC
is superior to that of the GESO-BC and ABC. The ||u||2 values for the ABC, GESO-BC, and
MESO-BC are 24.5332, 18.0029, and 15.3364, respectively, suggesting that the MESO-BC has
a lower control cost than the GESO-BC and ABC, and is more energy-efficient.
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5.3.3. Experimental Rotation Performance

To evaluate the performance of each controller, the rotor was accelerated to a rotational
speed of 12,000 rpm (200 Hz) and stabilized at that speed. Figure 14 illustrates the rotor
displacement. In Figure 14, the maximum rotor displacements during acceleration for the
ABC, GESO-BC, and MESO-BC are 0.0933 mm, 0.0651 mm, and 0.0597 mm, respectively. For
quantitative comparison, the ABC, GESO-BC, and MESO-BC have ||e||2 values of 20.6672,
20.2093, and 19.4420, respectively. Furthermore, the ||u||2 values for the ABC, GESO-BC,
and MESO-BC are 496.9778, 485.7276, and 475.5005, respectively. The experimental results
show that the MESO-BC has displacement tracking performance superior to the GESO-BC
and ABC, and lower control cost.
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Figure 14. Rotor displacement from standstill to 12,000 rpm (200 Hz) accelerated rotation experiments:
(a) ABC; (b) GESO-BC; (c) MESO-BC.

According to the above experimental results, the ESO has the capability of estimating
the lumped disturbance of the AMB system and compensating for it in the control pro-
cess. Furthermore, the MESO has smaller observation errors and faster convergence of
observation errors than the GESO for the same bandwidth. The reason is that the MESO
incorporated known model information into its design. Therefore, the MESO-BC provided
better control performance.

6. Conclusions

A backstepping controller based on a MESO is proposed to improve the displacement
tracking performance and robustness for a slice rotor supported by AMBs. First, a back-
stepping controller for the AMB system is developed. Then, a MESO is designed with
consideration of the model information about AMB dynamics, and then is used to estimate
the lumped disturbance of the AMB system. The tuning method of the MESO bandwidth
is also given. The control law of the backstepping controller is updated online based on the
lumped disturbance estimated by the MESO, thus, reducing the influence of uncertainties
on the system.

To validate the effectiveness of the MESO-BC, simulations and experiments are con-
ducted, and the MESO-BC is compared with a GESO-BC and an ABC. The simulation
results show that the MESO has more minor observation errors and faster convergence of
observation errors than the GESO in the case of the same bandwidth because the model
information about AMB dynamics is considered in the MESO design, which can reduce the
workload of the MESO. The experimental results demonstrate that the slice rotor under the
control of the MESO-BC has minor displacement tracking error, stronger robustness to the
lumped disturbance, and lower control cost than under the control of the GESO-BC and
the ABC. Therefore, the robustness and displacement tracing performances of the system
of a slice rotor supported by AMBs are improved.
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