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Abstract: The planar three-degree-of-freedom (DoF) parallel mechanism plays a significant role in
the fields of automobiles and electronics due to its advantages such as high stiffness, large carrying
capability, and stable operation. In this paper, a planar 3-DoF (2T1R) parallel mechanism is derived
by structural evolution from the parallelogram by means of Grassmann line geometry and the Atlas
method. First, the position equation of the mechanism is established and the inverse kinematics and
Jacobian matrix are investigated. The maximum deviation between the theory and simulation results
of the inverse kinematics and Jacobian matrix is 0.48%, which verifies the accuracy of the theoretical
model. Then, the constraint conditions of the mechanism are defined. Based on the inverse position
solution, the numerical method is used to solve the workspace of the mechanism. It is concluded that
the ratio of the workspace to the entire triangular space is about 15% higher than that of the 3-PRR
parallel mechanism. Next, based on the Jacobian matrix, the performance indexes are established
to evaluate stiffness and dexterity. Finally, the size of the mechanism is optimized by means of the
genetic algorithm to improve the comprehensive performance.

Keywords: planar parallel mechanism; kinematic analysis; Jacobian matrix; performance analysis;
size optimization

1. Introduction

Heavy-duty transfer robots have important applications for automotive electronics,
ship metal, and dock railway industries, among others. Heavy-duty transfer robots are
mainly composed of the robot body, the end-effector, and the root travel mechanism [1,2].
Most heavy-duty transfer robots only have a single-degree-of-freedom rotation mechanism
at the root. To increase the transfer range of the robot and improve the stiffness of the mech-
anism, a planar 3-DOF (2T1R) (T: translational DoF, R: rotational DoF) parallel mechanism is
considered for the base of the transfer robot. At present, the design of parallel mechanisms
with a large workspace, high precision, high dexterity, and low energy consumption has
been in active research. Qu Haibo et al. [3] analyzed a planar 3-DOF parallel mechanism
with kinematic redundancy and closed-loop limbs. Furthermore, the workspace of the
mechanism was expanded by means of the adjustment of structural redundant branches. Li
Xiang et al. [4] studied a single-drive 3-RRR planar parallel mechanism. It was constrained
as a single-drive parallel mechanism through a parallelogram to achieve the purpose of
easy control and low energy consumption. M. Ganesh et al. [5] classified the shape of the
workspace as a function of geometric parameters and proposed an optimization procedure
to optimize the workspace of a planar 3-DoF mechanism. This paper aims to design a planar
3-DoF (2T1R) parallel mechanism to realize high stiffness and large carrying capacity.

Type synthesis is a sub-phase of the design phase of the robot. At present, many
methods or theories of type synthesis have been proposed, for example, the methods
based on topological kinematic chains, Grassmann line geometry and Atlas, the theories
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based on screws, Lie groups [6–9], etc. Among them, the Grassmann line geometry and
Atlas methods can intuitively analyze the motion and constraints of the mechanism qual-
itatively. Meanwhile, stiffness and dexterity are also important indicators for analyzing
the mechanism. For the performance evaluation of parallel mechanisms, many scholars
have presented some standards. For the stiffness of the mechanism, Liu Xinjun et al. [10]
regarded the extreme value of the deformation of the end-effector as the stiffness evaluation
index. Xu Tianrui et al. [11] took the norm of the robot stiffness matrix under a certain type
as the evaluation index. For the dexterity of the mechanism, Zhao Fuqun et al. [12] took
the Jacobian condition number as the index of dexterity.

It is also a vital part of the mechanism’s design to optimize the size of the mechanism.
Kong Minxiu et al. [13] solved the multi-objective optimization problem based on the NSGA-
II algorithm. Zhang Dan et al. [14] optimized the global stiffness of the hybrid mechanism
based on the genetic algorithm by taking the rod size as the design variable. Huang
Guanyu et al. [15] used the genetic algorithm to perform multi-objective optimization with
workspace, stiffness, and dexterity as performance indicators.

In this paper, a planar 3-DOF parallel mechanism is designed by structural evolution
from the parallelogram by means of Grassmann line geometry and the Atlas method. The
mechanism has the advantages of high rigidity and large carrying capacity. In the same
triangular area, the workspace is about 15% larger than that of the 3-PRR mechanism. The
mechanism can be envisaged for handling, packaging, etc. In Section 2, the planar 3-DoF
(2T1R) mechanism is synthesized. In Section 3, the mechanism description is presented
and the DOF is calculated. The kinematic analysis is investigated and the Jacobian matrix
is solved in Section 4. Then, the theory and simulation data are compared to verify the
correctness of the results. Based on the Jacobian matrix, the workspace, stiffness, and
dexterity of the mechanism are analyzed in Section 5. Finally, the sizes of the mechanism
are optimized in Section 6.

2. Type Synthesis and Structural Evolution

For the 2T1R-type parallel mechanism with the rotation direction perpendicular to
the translation plane, based on Grassmann line geometry and the Atlas method [16], the
DoFs and constraints are visually represented by line graphs in Table 1. Based on the
generalized Blanding rule [17], the constraint space is a three-dimensional space with a
one-dimensional force constraint and a two-dimensional couple constraint. The constraint
space of the mechanism is decomposed into three one-dimensional spaces and assigned to
three limbs. The specific types of synthesis processes are shown in Table 1. The three limbs
can be assigned one-dimensional force constraint and two-dimensional couple constraint,
respectively, and each limb can derive a 3-DOF space with two-dimensional translation
and one-dimensional rotation. The limb can be realized through branches such as RPR, CR,
PRR, etc. (P: prismatic pair; R: revolute pair; and C: cylindrical pair).

Table 1. The result of the type synthesis.

Configuration Constraint Space DoF Space Kinematic Chain

First limb
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It is well known that the motion of each limb in the parallelogram mechanism is 
equivalent to one translation and one rotation { }{ }( ) ( , )iT v R N u . The kinematic branches 
obtained by analyzing the DoF space are series branches such as RRR and PRR. Compared 
to series branches, parallelogram branches have the advantages of strong load-bearing 
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One-dimensional force
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two-dimensional couple
constraint
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Table 1. Cont.
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: Fixed point)

It is well known that the motion of each limb in the parallelogram mechanism is
equivalent to one translation and one rotation {T(v)}{R(Ni, u)}. The kinematic branches
obtained by analyzing the DoF space are series branches such as RRR and PRR. Compared
to series branches, parallelogram branches have the advantages of strong load-bearing
capacity and high stiffness. As shown in Figure 1a, the motion form of a single branch
is 1T1R. Inspired by the parallelogram, the motion form of the branch chain in Figure 1a
is converted into a parallelogram mechanism. As shown in Figure 1b, a prismatic pair
is added to the w-direction of one of the rods of the parallelogram to achieve the same
motion form as the branch in Figure 1a. Combined with Figure 1, the equivalence of the
two motion forms is proved by the Lie group theory [18]:

{T(v)}{R(N1, u)}
= {T(v)}{R(N1, u)} ∩ {G(u)}
= {T(v)}{R(N1, u)} ∩ {T(v)}{T(w)}{R(Nb, u)}
= {R(Nd, u)}{R(Nc, u)} ∩ {R(Na, u)}{T(w)}{R(Nb, u)}

(1)

where {T(v)} denotes prismatic pair in the direction of the unit vector v; {R(N, u)} denotes
revolute pair with axis vector u and crossing point N. {G(u)} denotes the planar motion of
a normal line u, i.e., the two-dimensional motion of a plane and the rotation around the
normal line.
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Figure 1. Configuration evolution (a) single-branch PR mechanism (b) RR-RPR mechanism with
parallelogram branches.

In Table 1, the three branched chains have the same DoF space. According to the
physical meaning of the line graph, the first two branches of the three branches restrict the
two-dimensional rotations in the plane o-xy, and the third branch restricts the translation
along the z-axis. Hence, the parallel mechanism can realize two-dimensional translations
of the x-axes and y-axes and one-dimensional rotation about the z-axis. During the trans-
portation of the platform, a heavy-duty sensitive ball-type universal wheel [19] is installed
at the bottom of the platform, which increases the bearing capacity of the moving platform
and enhances the flexibility of transportation.

The mechanism is composed of three limbs. As shown in Table 1, the red line denotes
constraint force, the black line denotes rotational DoF and the black line with a double
arrow denotes translational DoF. According to Blanding dual line graph rule, the DoF-line
graph can be determined when the constraint line graph is known. The corresponding
kinematic chain of the mechanism can be identified when the DoF-line graph is given.
Note that, neither the decomposition of the constraint-line graph nor the constitution of
kinematic chains is unique to the type of synthesis process. In order to increase the transfer
range of the platform and ensure the stability of the mechanism, the structural evolution of
the PRR branch chain is considered for the first limb and the second limb of the mechanism.
Furthermore, the third limb uses a linear drive.

3. Mechanism Description and DoF Calculation

The three limbs can constitute a 3-DOF parallel mechanism as shown in Figure 2a.
The simplified diagram of the parallel mechanism is illustrated in Figure 2b. The origin of
the static coordinate system is located at O, A1 and A2 are located on the x-axis and A11 is
located on the y-axis. The moving platform D1D2D3 is an equilateral triangle. The origin of
the moving coordinate system is located at P, the positive direction of tx′-axis is parallel
to the direction of the vector D1D2 and D3 is on the y′-axis. The angle formed with the
horizontal axis is the rotation angle θ of the moving platform, C1 is the midpoint of B1B11
and C2 is the midpoint of B2B22. The inclination angle of the frames on both sides of the
mechanism is γ, the value of which is 60◦. The following parameters define the details of
the simplified schematic diagram:

l1: the length of the connecting rod A1B1, l2: the length of the vertical rod B1B11, l3: the
length of the vertical rod C1D1.
h1: the moving distance of the prismatic pair A11B11, h2: the moving distance of the
prismatic pair A22B22, h3: the moving distance of the prismatic pair A3D3.
c: the distance from the moving platform P to D1.
a: the distance of OA1, i.e., the abscissa of A1 in the static coordinate system.
d: the distance of OA2, i.e., the abscissa of A2 in the static coordinate system.
e: the abscissa of A3 in the static coordinate system.
f: the ordinate of A3 in the static coordinate system.
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Figure 2. A 2T1R-type parallel mechanism (a) three-dimensional physical model. (b) Simplified
diagram of the mechanism.

As shown in Figure 2, it is defined that the branch of A1B1D1 is the first branch, the
branch of A2B2D2 is the second branch, and the branch of A3D3 is the third branch. In the
first branch, the A1B1 rod is the actuating rod, and A1B1B11A11 constitutes a parallelogram
linkage, where A11B11 is the prismatic pair. In the second branch, the A2B2 rod is the
actuating rod and A2B2B22A22 constitutes a parallelogram linkage, where A22B22 is the
prismatic pair. In the third branch, the A3D3 rod is the actuating rod. When the first branch
is disassembled alone, there are two degrees of freedom. However, from the analysis of the
overall mechanism, the C1D1 rod is restricted by the moving platform. Since the moving
distance of the rod A11B11 can be expressed by the rotation angle of A1B1, the actuating
link of the first branch is 1. In the whole mechanism, the number of links including the
frame is 12, the number of kinematic pairs is 15, and the order of the mechanism is 3.

Therefore, the DoF can be calculated as follows:

F = λ · (n− g− 1) +
g

∑
i=1

fi = 3 (2)

where F represents the degree of freedom of the mechanism, λ represents the order of the
mechanism, n represents the number of links, g represents the number of kinematic pairs
and fi represents the degrees of the i-th kinematic pair.

4. Kinematics Analysis and Numerical Simulation Verification
4.1. Inverse Kinematics

The inverse position solution is to calculate the rotation angle of the active arm based
on the pose of the moving platform. As shown in Figure 2, the output parameters of the
mechanism are the position parameters x, y and rotation angle θ of the moving platform.
The input parameters are the angle parameters ϕ and φ of the drive pair and the movement
parameter of h3. The key to solving the inverse position solution is to obtain the coordinates
of each point of the moving platform D1D2D3. The solution process is as follows:

The origin of the moving coordinate system is located at P, which is denoted as (x, y).
The rotation matrix of the moving coordinate system relative to the static coordinate system

is o
pT =

(
cos θ − sin θ
sin θ cos θ

)
.
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According to the rotation matrix transformation formula, the coordinate of Di in

the moving coordinate system can be denoted as [D1
′, D2

′, D3
′] =

(
−
√

3
2 · c

√
3

2 · c 0
− 1

2 · c − 1
2 · c c

)
,

which can also be expressed as Di
′ = (Dix

′, Diy
′)

T . The coordinate of Di in the static coordi-
nate system is denoted as Di = (Dix, Diy)

T , i = 1, 2, 3. Then, the coordinate transformation
equation is as follows:

Di = PT + o
pT · Di

′ =

[
x
y

]
+

(
cos θ − sin θ
sin θ cos θ

)
·
[

Dix
′

Diy
′

]
(3)

The mathematical model equation of inverse position solution can be obtained by
analyzing the geometrical relationship.

(x− c · cos(θ + π
6 )− a− l1 · cos ϕ)2 + (y− c · sin(θ + π

6 )− l1 · sin ϕ)2 = l32 + ( l2
2 )

2

(x− c · cos(θ + π
6 ) +

√
3 · c · cos θ − d + l1 · cos φ)

2
+ (y− c · sin(θ + π

6 ) +
√

3 · c · sin θ − l1 · sin φ)
2
= l32 + ( l2

2 )
2

(x− c · cos(θ + π
6 ) +

√
3 · c · sin(π

6 − θ)− e)
2
+ (y− c · sin(θ + π

6 ) +
√

3 · c · cos(π
6 − θ)− f )

2
= h3

2

(4)

Equation (4) is solved and the input parameters ϕ, φ and h3 can be expressed as:

ϕ = 2arctan
(

m2−
√
−A2+m1

2+m2
2

A+m1

)
φ = 2arctan

(
−n2+
√
−B2+n1

2+n2
2

B+n1

)
h3 =

√
k1

2 + k22

(5)

where:
m1 = x− c · cos(θ + π

6 )− a
m2 = y− c · sin(θ + π

6 )

m3 = l32 + ( l2
2 )

2

n1 = x− c · cos(θ + π
6 ) +

√
3 · c · cos(θ)− d

n2 = y− c · sin(θ + π
6 ) +

√
3 · c · sin(θ)

A = m1
2+m2

2+l12−m3
2·l1

B = m3−n1
2−n2

2−l12

2·l1
k1 = x− c · cos(θ + π

6 ) +
√

3 · c · cos(θ + π
3 )− e

k2 = y− c · sin(θ + π
6 ) +

√
3 · c · sin(θ + π

3 )− f

(6)

4.2. Jacobian Matrix

The Jacobian matrix represents the transmission relationship of the velocity and force
between the operating space and the joint space, which is the basis for the performance
analysis and evaluation of the parallel mechanism [20].

In the process of solving the inverse position solution, the position constraint equations
of first limb, second limb and third limb are obtained. Equation (4) is expressed as:

F1(x, y, θ, ϕ) = 0
F2(x, y, θ, φ) = 0
F3(x, y, θ, h3) = 0

(7)

where the input speed of the driving rod are
.
ϕ,

.
φ and

.
h3; the derivation of the output

parameters of the moving platform are
.
x,

.
y and

.
θ.
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Equation (7) is derived from time to obtain the velocity constraint equations as follows:
∂F1
∂x ·

.
x + ∂F1

∂y ·
.
y + ∂F1

∂θ ·
.
θ + ∂F1

∂ϕ ·
.
ϕ = 0

∂F2
∂x ·

.
x + ∂F2

∂y ·
.
y + ∂F2

∂θ ·
.
θ + ∂F2

∂φ ·
.
φ = 0

∂F3
∂x ·

.
x + ∂F3

∂y ·
.
y + ∂F3

∂θ ·
.
θ + ∂F3

∂h3
·

.
h3 = 0

(8)

Therefore, Equation (8) can be guided:

Ji ·
.
i = Jo

.
o (9)

where Ji is denoted as the input-quantity, Ji =


− ∂F1

∂ϕ 0 0

0 − ∂F1
∂φ 0

0 0 − ∂F1
∂h3

 and Jo is denoted as

the output-quantity, Jo =


∂F1
∂x

∂F1
∂y

∂F1
∂θ

∂F2
∂x

∂F2
∂y

∂F2
∂θ

∂F3
∂x

∂F3
∂y

∂F3
∂θ

;
.
i = (

.
ϕ,

.
φ,

.
h3)

T
and

.
o = (

.
x,

.
y,

.
θ)

T
.

Hence, the Jacobian matrix of the mechanism is the following:

J = Ji
−1 · Jo (10)

4.3. The Verification of Inverse Kinematics and Jacobian Matrix

The correctness of the inverse kinematics and the Jacobian matrix is verified by the
ADAMS dynamic simulation software. The trajectory equations are the coordinates of the
point in the moving platform and the angle of rotation around the z-axis. The trajectory
equations of the moving platform are as follows:

x = 250− t
y = 190− t
θ = − π

18 · sin( t
5 )

(11)

where t represents the duration of the movement (the unit is second).
The simulation model of the mechanism in ADAMS software is presented in Figure 3.

In the first limb, A1, A11, B1, B11 and D1 are set as revolute joints and h1 is set as a prismatic
joint. In the second limb, A2, A22, B2, B22 and D2 are set as revolute joints and h2 is set as
the prismatic joint. In the third limb, A3 and D3 are set as revolute joints and h3 is set as
the prismatic joint. To ensure the uniqueness of the solution, the center P of the moving
platform is set to the revolute joint. The elementary parameters for each component of the
mechanism are given in Table 2.

Table 2. The parameters of the mechanism.

Parameter Value (mm) Parameter Value (mm)

a 20 f 450
c 134 l1 100
d 500 l2 40
e 260 l3 80

h1 (45, 135) h2 (45, 135)

The comparisons between the theory and simulation results of inverse kinematics
are shown in Figure 4, and the comparisons between the theory and simulation results of
the input velocity of the rods are shown in Figure 5. The solver of the ADAMS software
establishes the dynamic equation of the mechanical system through Lagrange’s equation of
the first kind. The result of its solution is accurate.
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In the process of verifying the inverse kinematics, due to the counterclockwise rotation
of the moving platform, the motion amplitude of the first branch of the mechanism is greater
than that of the second and third branches, resulting the larger errors in Figure 4a than
those in Figure 4b,c. It can be concluded that the theoretical data obtained from the inverse
kinematics solution and the Jacobian matrix of the mechanism are basically consistent with
the simulation data, and the maximum deviation is 0.48%. Thus, the correctness of the
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results is verified, which provides a theoretical basis for the subsequent solution of the
workspace and the performance analysis of the mechanism.

5. Performance Analysis
5.1. Workspace

(1) Constraint

The workspace of the mechanism is the working area that the end-effector can reach.
It is an important basis for evaluating the performance of the mechanism. In this paper,
the workspace is considered as the maximum active range of the center P point of the
end-effector. The main constraints that restrict the workspace include link length constraint,
the constraint of the angle of actuating rod, travel constraint of the prismatic pair, the
interference of adjacent rods, etc. The above constraints are defined as follows:

(a) Constraint of link-length

lmin ≤ li ≤ lmax, i = 1, 2, 3 (12)

where lmin is the minimum length of the i-th rod; and lmax is the maximum length of the
i-th rod.

(b) Constraint of the angle of actuating rod

In the simplified diagram of the parallel mechanism, the actuating rods of the revolute
pair are the rod A1B1 and the rod A2B2. Due to the existence of the prismatic pair A11B11
and A22B22, the rotation angles of the revolute pair are limited. Due to the differences
between the length of the rod and the position of the frame, the rotation angles of the
revolute pair are also different. Let the maximum rotation angles of the revolute pair be
ϕmax and φmax, and let the minimum rotation angles be ϕmin and φmin. Then, the constraint
conditions of rotation angle are

ϕmin ≤ ϕ ≤ ϕmax, φmin ≤ φ ≤ φmax (13)

(c) Travel constraint of the prismatic pair

The travel of the prismatic pairs is also an important factor to restrict the workspace
of the mechanism. Among them, let the maximum displacement of the prismatic pair
A3D3 and the auxiliary prismatic pairs A11B11 and A22B22 be hmax, and let the minimum
displacement be hmin. Then, the travel constraints of the prismatic pair are:

hmin ≤ hi ≤ hmax (14)

(d) The interference of adjacent rods

Since the moving platform and frame are connected by connecting rods, and there
may be some interference between the connecting rods when the mechanism works. Let

Di ≥ D, i = 1, 2, 3 (15)

where Di is the shortest distance between two adjacent rods; D is the diameter of the
cylindrical rod.

The numerical method is used to solve the workspace of the parallel mechanism [21].
According to the extreme value theory and optimization method, as many joint variables
as possible are selected, and the inverse position solution and the constraint conditions
between the rods are defined. The position coordinates of as many output points as
possible are obtained by MATLAB. The coordinate points form the workspace of the
parallel mechanism. The more coordinates are solved, the better the workspace of the
mechanism can be reflected.

The workspace of the end-effector is shown in Figure 6, and the relevant data obtained
in the diagram are shown in Table 3. The boundaries of the workspace are x ∈ [177.75 mm,
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341.22 mm], y ∈ [−6.51 mm, 201.37 mm]. By analyzing the data in Figure 6, it can be
concluded that the workspace of the mechanism is symmetrical about x = 260 mm, and the
value of the y-coordinate largely depends on the range of the prismatic pair h3. It can be
further concluded that the workspace area of the mechanism accounts for 28% of the whole
triangle area, which meets the transport requirements of the transport platform.
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Table 3. The workspace parameters of the mechanism.

Parameter Minimum Value Maximum Value

X 177.75 mm 341.22 mm
Y −6.51 mm 201.37 mm
θ 0◦ 90◦

ϕ 0◦ 97◦

φ 0◦ 94◦

h3 115 mm 331 mm

(2) Comparison to 3-PRR workspace

Due to the different rod sizes and frame positions of the mechanism, the comparisons of
the workspace are also different. The method used in this paper to compare the workspace
is the proportion method, that is, the ratio of the workspace obtained by the mechanism to
the space occupied by the entire mechanism. The optimized workspace obtained by the
3-PRR mechanism accounts for about 13% of the entire area [22], while the workspace of the
mechanism accounts for 28% of the entire area. It is noted that the workspace performance
of the mechanism can be further improved after the optimized design.

5.2. Stiffness Modeling

When the force F0 acts on the moving platform, the maximum deformation of the
moving platform can be used as an index to evaluate stiffness [10]. The stiffness of the
parallel mechanism mainly relies on the following factors, such as the length and material
of the rods, the orientation and position of the moving platform, etc.

It is supposed that the stiffness of the i-th chain is expressed as ki. Hence, the relation-
ship between the joint torque and the deformation of the branch chain is

τi = ki · ∆qi, i = 1, 2, 3 (16)

where τi is the joint torque and ∆qi is the deformation of the branched chain.
Equation (16) is derived in matrix form as:

τ = Kp · ∆q (17)
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where ∆q is the deflection of the force transmission system, Kp is the spring matrix of the
mechanism, Kp = diag(k1, k2, k3), ∆q = (∆q1, ∆q2, ∆q3)

T ,τ = [τ1, τ2, τ3]
T .

The relationship between ∆p and ∆q is

∆q = J · ∆p (18)

where ∆p is the deflection of the moving platform.
Based on the duality of kinematics and statics, the forces and moments applied at the

end-effector under static conditions are related to the forces or moments required at the
actuators to maintain the equilibrium by transposing the Jacobian matrix J [23]. Then

F = JT · τ (19)

Combining Equations (17)–(19) guides to:

∆p = K−1 · F (20)

where K = JT · Kp · J is the stiffness matrix.
To obtain the maximum value of terminal deformation, the Lagrange function is

constructed.
L = FT · K−T · K−1 · F− λpi · (FT · F− 1) (21)

where λpi is the Lagrangian multiplier.
The conditions for the conditional extremum are:{

∂L
∂F = 0 K−T · K−1 · F− λpi · F = 0
∂L

∂λpi
= 0 (F · FT − 1) = 0 (22)

Then:
K−T · K−1 · F = λpi · F (23)

From Equation (23), λpi is the eigenvalue of K−T · K−1.
Therefore, the following equation can be guided:

‖∆p‖2 = FT · K−T · K−1 · F = λpi (24)

From Equation (24), the limit value of ‖∆p‖2 is equal to the maximum or minimum
eigenvalue of (K−1)

T · K−1. Let Kp be the unit matrix and ‖F‖ = 1, then: ‖pmax‖ =
√

max(
∣∣λpi

∣∣)
‖pmin‖ =

√
min(

∣∣λpi
∣∣) (25)

When the moving platform of the mechanism rotates at 10◦, the distribution of local
stiffness index (LSI) in the workspace is shown in Figure 7. The ranges of the x-axis and
y-axis are (195, 265) and (80, 190), respectively. The minimum deformation value in the
workspace is taken as the evaluation index. The smaller the minimum deformation of a
mechanism, the better the stiffness performance. When the singular value of the mechanism
is removed, it can be obtained that the maximum value of ‖pmin‖ is 0.09, which is smaller
than 0.14 for 3-RRR and 0.35 for 2-RRR [23]. Therefore, the stiffness of the mechanism is
higher than that of the 2-RRR mechanism and the 3-RRR mechanism.
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It can be concluded from Figure 7 that the maximum stiffness is near (240, 170) and
the minimum stiffness is in the workspace area. Two high points appear near (240, 170) and
(215, 40), while the value tends to be stable in other areas. The reason is that when the two
links l1 and l2 are in the collinear position (that is, the singular position of the mechanism),
the stiffness of the mechanism tends to be infinite. Compared to the singular positions of
the first type of the 3-RRR mechanism [24], it can be found that it is similar to the positions
of the highest stiffness in this paper. The stiffness increases rapidly when the mechanism is
singular. In addition, the analysis of stiffness provides a basis for the parameter design,
working area selection and stiffness control of the mechanism.

5.3. Dexterity Analysis

At present, there are two main indexes for measuring robot dexterity: one is the
Jacobian condition number, and the other is manipulability. The manipulability can directly
identify the type of singularity, but it has defects in the evaluation of the dexterity index [25].
In this paper, the Jacobian condition number is used to evaluate the dexterity of the parallel
mechanism.

The Jacobian condition number can be calculated by means of spectrum norm as follows:

k(J) = ‖J‖ · ‖J−1‖ (26)

where ‖J‖ = max
|x|=1
‖Jx‖.

Square both sides of Equation (26) and then

‖J‖2 = max
|x|=1

xT JT Jx (27)

Therefore, the maximum singular value of matrix JT J is the spectrum norm of matrix J,
which is expressed as σmax =

√
tr(JT J). Similarly, the reciprocal of the minimum singular

value of matrix JT J is the spectrum norm of J−1, which is expressed as 1/σmin. Then

k(J) =
σmax

σmin
(28)

To understand the dexterity values of the mechanism in the workspace, when the
end-effector rotates at 30◦, the local dexterity index distribution in the workspace is shown
in Figure 8. The ranges of the x-axis and y-axis in Figure 8 are [200, 260] and [60, 145],
respectively. The value of k(J) ranges from approximately 0 to 1, and the higher the
value, the better the overall kinematic performance of the mechanism in the workspace. In
Figure 8, the maximum and minimum dexterity values in the workspace are 0.91 and 0.16.
The dexterity values are mostly in the range of 0.3~0.65.
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As shown in Figure 8, the value of k(J) in the dark purple area is small and the
kinematics performance is slightly poor. The reason is that the first limb and the second limb
of the mechanism adopt a parallelogram structure. The shorter side of the parallelogram
is relatively close to the edge of the workspace, which limits the activity space of the
mechanism. Therefore, the value of k(J) here is small and the kinematics performance is
slightly worse. The kinematics performance of the mechanism can be further improved
after optimized design.

6. Size Optimization
6.1. Evaluation Standard

The essence of optimization is to adjust the geometric dimensions of the mechanism
in order to achieve better performance [15]. In order to evaluate the characteristics of the
mechanism, a comprehensive evaluation standard is proposed.

The mechanism’s workspace is the result of the superposition of each discrete point.
The workspace can be measured by the area composed of the obtained points. Therefore,
the workspace (W) is defined as:

W =
∫

W
dW =

∫ ∫
dxdy (29)

For the mechanism’s stiffness, the concept of global stiffness index (GSI) [26] is pro-
posed. The GSI refers to the average stiffness of points in the workspace, which is denoted
as follows:

GSI =

∫
w (LSI)dW∫

W dW
(30)

The mechanism’s dexterity is also an effective factor that involves the performance
of the mechanism. The global dexterity index (GDI) can be used as an index to evaluate
dexterity, which is defined as the average dexterity in the workspace. Hence, it can be
expressed as:

GDI =

∫
w (LDI)dW∫

W dW
(31)

Based on the above criteria, the size parameters of the parallel mechanism are opti-
mized to obtain optimal performance. It is required to maximize the workspace on the
premise of better dexterity and stiffness performance of the mechanism.

6.2. Optimization Process

The genetic algorithm (GA) draws on Darwin’s theory of evolution and Mendel’s
theory of genetics, which simulates the process of inheritance and evolution of organisms
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in the natural environment, and forms an adaptive global optimization search algorithm. It
has the advantages of good convergence and robustness [27].

The genetic algorithm is utilized to optimize the size of the parallel mechanism. In the
optimization process, the optimization variables are l1, l2, l3, c. The variable constraints are
shown in Table 4. Then, the optimization parameters are set as follows: population = 30,
crossover probability = 0.8, mutation probability = 0.05, evolutional generation = 300. The
optimization results of the optimized design variables are shown in Table 5. Furthermore,
Table 6 shows the 30 sets of objective functions. Furthermore, the orders of the relevant
objective function values are consistent with the orders of the optimization design variables.

Table 4. Variable constraints.

Variable Constrants (mm) Variable Constrants (mm)

l1 70,150 l3 50,100
l2 3070 c 60,110

Table 5. Optimized design variables.

Number l1 l2 l3 c Number l1 l2 l3 c

1 122.33 60.43 76.46 105.51 16 148.16 53.72 83.50 106.35
2 149.55 30.77 87.86 76.30 17 134.42 69.74 65.97 100.10
3 110.40 43.34 94.95 88.59 18 149.79 62.94 78.92 64.27
4 115.93 40.61 99.92 101.53 19 125.14 34.19 69.15 86.13
5 145.04 53.29 52.16 108.27 20 114.68 54.79 69.02 103.86
6 117.85 52.73 75.35 86.10 21 127.92 58.95 53.49 98.18
7 134.38 35.75 86.65 83.83 22 116.65 60.65 90.99 106.06
8 107.08 58.06 80.04 95.25 23 144.73 67.56 58.16 103.34
9 130.24 34.02 64.50 98.35 24 107.88 67.58 68.37 103.65
10 121.66 56.24 89.78 91.65 25 121.83 60.72 53.53 102.34
11 137.60 45.83 62.47 83.27 26 145.47 43.75 93.90 90.22
12 122.47 52.57 66.86 93.96 27 85.55 63.56 67.35 97.22
13 117.70 51.60 75.05 87.02 28 101.36 51.12 90.21 107.50
14 130.94 38.76 90.12 74.80 29 106.34 60.34 83.12 105.12
15 144.78 68.38 71.68 78.30 30 129.38 31.82 51.48 104.85

Table 6. Objective function values.

No. Value No. Value No. Value No. Value No. Value

1 5.04 7 4.01 13 5.08 19 4.84 25 4.11
2 5.66 8 5.13 14 4.35 20 6.24 26 3.64
3 5.54 9 5.32 15 6.34 21 4.12 27 5.02
4 4.82 10 4.62 16 3.20 22 3.30 28 4.64
5 4.80 11 4.21 17 5.35 23 4.79 29 4.14
6 6.70 12 5.02 18 6.03 24 4.85 30 5.72

In order to select the best size scheme, a comprehensive index is proposed to evaluate
30 groups of design variables. According to the data, GSI is mostly in the 10−2 scale,
GDI is in the 10−1 scale, and the workspace is in the 103 scale. Therefore, the appropriate
weights can be selected to reflect the overall performance of the mechanism, so the objective
function value is

f (xi) = η1 · GSIi · 102 + η2 · GDIi · 101 + η3 ·Workspacei · 10−3(i = 1, 2, 3......30) (32)

where the weights of different objective functions are defined η1 = 0.4, η2 = 0.4, η3 = 0.2.
By comparing the objective function values in Table 6, it can be concluded that the sixth
group of solutions is the optimal solution. In the sixth group of data, the corresponding
workspace of the mechanism is 4443.18, the stiffness is 5.72, and the dexterity is 0.88. It is
concluded that the performance of the optimized mechanism is improved. Furthermore,
the sixth group of convergence diagrams based on the optimization process is shown in
Figure 9.
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7. Conclusions

(1) A planar 3-DoF (2T1R) parallel mechanism is derived by structural evolution from
the parallelogram by means of Grassmann line geometry and the Atlas method. The
key property of the mechanism is that the two branches are designed as parallel
closed-loop structures. The overall mechanism has the characteristics of high stiffness
and large carrying capacity.

(2) The position equation of the mechanism is established and the inverse kinematics and
Jacobian matrix are investigated. The maximum deviation between the theory and
simulation results of the inverse kinematics and Jacobian matrix is 0.48%, which veri-
fies the accuracy of the theoretical model. Based on the results of inverse kinematics,
the workspaces of the mechanism can be produced. The ratio of the workspace to the
entire triangle space is about 15% higher than that of the 3-PRR parallel mechanism.

(3) Based on the Jacobian matrix, the performance indexes are established to evaluate
the stiffness and dexterity of the mechanism. Finally, the genetic algorithm is used
to optimize the size of the rods to improve the comprehensive performance of the
mechanism.

In addition, future work will focus on the position deployment of the frame and
the branches, the singularity of the mechanism and the development of the prototype to
enhance the practicability of the research.
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