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Abstract: In conventional piezoelectric ceramics, their brittle nature and containing lead are two
crucial issues that significantly restrict their uses in many applications such as biomedical devices. In
this work, we suggest the use of an eco-friendly piezoelectric nanocomposite material to piezoelectri-
cally activate a cantilever meta-structure plate to be used as a novel actuator/sensor or even energy
harvester; this cantilever plate is formed of several polymeric links to create an auxetic core plate
that structurally shows a negative Poisson’s ratio. Moreover, the active nanocomposite materials are
used as the face sheets on the auxetic plate; these active layers are made of nanowires of zinc oxide
(ZnO) that are placed into an epoxy matrix in different forms of functionally graded (FG) patterns.
For such active sandwich plates (ASPs) with potential electromechanical applications, a coupled
electromechanical analysis has been performed to numerically investigate their natural frequencies
as a crucial design parameter in such electromechanical devices. By developing a meshless method
based on a higher plate theory, the effects of nanowire volume fraction, nanowire distribution, aux-
etic parameters, layer dimensions, and electrical terminal set-up have been studied; this in-depth
study reveals that ASPs with an auxetic core have much lower natural frequencies than ASPs with
honeycomb cores which would be very helpful in designing actuators or energy harvesters using the
proposed cantilever sandwich plates.

Keywords: electromechanical vibrations; active sandwich plates; auxetic plate; piezoelectric zinc
oxide nanowire; eco-friendly piezoelectric materials

1. Introduction

Recently, due to the high demand for self-powered electronic devices, researchers from
both academia and industry are becoming more interested in active structures. Among
the newly introduced active structures, those activated with piezoelectric materials have
gained more attention due to their real-time conversion of electrical potential to mechanical
deflections or vice versa [1]. Another reason for the popularity of this material is the fast de-
velopment of electronic devices; this development makes those devices miniaturized with
fewer electric power needs indeed, therefore generating that power using piezoelectric is
becoming more feasible [2–4]. The technology of the Internet of Things (IoT) is a promising
example of such an electronic devices that needs a set of self-powered sensors and actuators
to provide real-time sensing or actuating signals [5,6]. The required energy to power such
electronics can be obtained using piezoelectric effects. However, the conventional, widely
used piezoceramics have various disadvantages, such as their brittle nature and containing
a toxic material (i.e., lead) [7,8]; these issues with lead-based piezoceramics have motivated
scientists to propose alternatives such as piezoelectric nanocomposites which eliminate
toxic materials [9–11]; it was found that ZnO fibers as an eco-friendly piezoelectric ma-
terial perform greater at nanoscales in comparison with their bulk sizes [12–14]. Hence,
the mixture of nanoscale ZnOs and a passive/active polymer are examined to be substi-
tuted for conventional brittle and lead-based piezoceramics. The resulting piezoelectric
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nanocomposite brings some other benefits to the final electronic device, including structural
weight reduction and biocompatibility [15,16]. However, the broader application of such
piezoelectric nanocomposites needs extensive knowledge of their electromechanical be-
haviours [17,18]. Given their applications as actuators, sensors, nanogenerators, or energy
harvesters, the demands for modal analysis of piezoelectrically activated structures are
brighter [19–21].

With the successful application of nanocomposite materials in introducing multifunc-
tional structures, it has been demonstrated that the use of such material leads to significant
improvements in the mechanical behaviour of the resulting structures [22–27]. Carbon
nanotube, graphene, and nanoclay reinforced nanocomposite materials are the three most
highlighted nanofillers among the passive nanoscale reinforcements [28–34]. The use
of nanocomposites reinforced with one or a combination of these passive nanofillers in
a nanocomposite structure would improve natural frequencies of that structure [35–37].
However, recently, the use of biocompatible and eco-friendly piezoelectric nanofillers such
as ZnO, gallium nitride, or barium titanate has also been considered. For example, bimorph
polymeric plates with embedded ZnO or gallium nitride nanowires were suggested in [38]
where the static and vibration behaviour of such piezoelectrically activated plates were
compared. Mossalaei et al. [11] proposed piezoelectric PVDF cylindrical shells with embed-
ded piezoelectric nanotubes of boron nitride; they presented torsional buckling resistance
of such shells in a framework of a coupled thermo-electromechanical study. Moreover, to
propose active lightweight panels, a polymeric foam plate has been considered in between
two polymeric face sheets with embedded ZnO nanowires [39,40]. For such piezoelectric
sandwich plates, the mechanical and thermal buckling stability behaviours were reported.
Electromechanical characterization of piezoelectric nanocomposite materials with em-
bedded nanoscale ZnO that can be used as a nanogenerator were presented in [41,42].
Arshid et al. [43] proposed the use of piezoelectric PVDF nanoplates reinforced with carbon
nanotubes in FG patterns; they also presented the buckling stability of such eco-friendly
nanoplates. Moreover, various application-oriented devices made of advanced materials
have been introduced, where the use of eco-friendly piezoelectric materials is highlighted.
To mention some, pure PVDF and PVDF-TrFE as piezoelectric polymers were utilized to
propose inexpensive and wearable energy harvesters with biomedical applications [44,45].
To introduce a biocompatible insulin micropump, Angelou et al. [46] successfully pro-
posed the use of a piezoelectrically activated diaphragm made of PVDF/barium titanate.
Cantilever-type energy harvesters with a point mass made of a mixture of PVDF/aluminum
nitride were also proposed to convert mechanical vibration energies to electrical one [47,48].
Moreover, a cantilever passive polymeric beam with embedded ZnO nanowires were
proposed for harvesting energies from low-frequency vibrations of a human body and
powering a temperature sensor [49].

However, in this work, a novel lightweight active sandwich plate is suggested to elim-
inate the concerns with structures/devices that contain PZT-based piezoelectric materials.
Due to the use of an auxetic polymeric core and piezoelectric ZnO nanowire-reinforced
face sheets, the resulting ASP is also lightweight and eco-friendly; this ASP is considered
as a cantilever plate to be used as an actuator, sensor, or energy harvester. To improve the
performance of the ASP, FG patterns have been employed for the dispersion of nanowires
in the face sheets. Therefore, the newly proposed ASP is not only an eco-friendly multi-
functional structure, but is also lightweight structure. As an essential design parameter
for the potential electromechanical applications of the proposed ASP, the vibrational be-
haviour of the ASP has been characterized by evaluating the effects of nanowire content
and distribution, auxetic parameters, ASP dimensions, and electrical terminal set-ups. To
do so, a meshless solution incorporated with Reddy’s higher plate theory with only five
unknowns and MLS shape functions has been developed. To impose the effect of supports,
the transformation matrix has been used to avoid penalty parameters employed in the
element-free Galerkin method. Therefore, the combination of the developed meshless
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solution and the utilized plate theory is expected to offer a computationally cost-effective
procedure while the accuracy level of results is still high.

2. Modeling of the Structure

As described before, a novel active sandwich structure which includes a cantilever
auxetic plate sandwiched by two eco-friendly piezoelectric nanocomposite layers with
potential applications as a sensor/actuator or energy harvester is proposed in this study as
illustrated in Figure 1; it is assumed that the inner surfaces of the piezoelectric layers are
grounded while the outer ones are electrically free or connected to a receiver (in sensor or
energy harvester applications) or an electrical source (in actuator applications). Moreover,
as shown in Figure 2, there are four geometrical design dimensions including lx, hx, tx
and θ in auxetic structures; it should be mentioned that since the thickness of the ASP
is well-smaller than length and width of the ASP, a plate model has been considered so
normal stress along the thickness of the plate (σzz) is negligible. Moreover, it is assumed
that the face sheets are perfectly attached (no slip) to auxetic core. Furthermore, a linear
voltage variation through the thickness of face sheets has been assumed.
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2.1. Material Properties

As stated before, the middle cellular layer is made of a polymeric material with an
auxetic unit cell shape; this specific type of unit cell dedicates negative Poisson’s ratio to
the structural behaviour of the middle layer. The geometrical shape of such structures can
be described by utilizing the inclined angle θ, the ratio of cell wall length αx = hx/lx, and
the slenderness ratio of the unit cell wall βx = tx/lx. Using these shape parameters and
the material properties of the employed material, the density ρc, Poisson’s ratio νc, and the
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shear Gc and Young’s Ec moduli of an auxetic unit cell and generally the middle layers are
estimated as follows [50]:

Ec
11 = E(βx)

3 cos θ

(αx + sin θ) sin2 θ
, Ec

22 = E(βx)
3 (αx + sin θ)

cos3 θ
(1)

Gc
12 = E(βx)

3 (αx+sin θ)

(αx)
2(1+2αx) cos θ

, Gc
13 = Gβx

cos θ
(αx+sin θ)

,

Gc
23 = Gβx

(1+2 sin2 θ)
2 cos θ(αx+sin θ)

(2)

νc
12 =

cos2 θ

(αx + sin θ) sin θ
(3)

ρc = ρ
βx(αx + 2)

2 cos θ(αx + sin θ)
(4)

where ρ, ν, G and E show the material properties of the polymeric material used for the
middle layer; it should be mentioned that for the negative values of inclined angle θ, the
Poisson’s ratio of the middle layer νc

12 would be negative.
Regarding the active layers of the sandwich plates, it is assumed that the nanowires of

ZnO are dispersed into the polymeric matrix in FG patterns to improve the functionality
of the overall structure. To estimate the overall electromechanical properties of such
piezoelectric nanocomposite, a closed-form coupled model that uses a linear piezoelectric
theory were utilized [10]; this model was verified by finite element simulations in [10]. In
this work, the profiles of nanowire distribution in the z direction of outer layers can be
determined using the following equations [51]:

Top skin layer : fr(z) =
[
1 + (2z − t)/2tp

]p f0 (5)

Bottom skin layer : fr(z) =
[
1 − (2z + t)/2tp

]p f0 (6)

where fr and f0 are ZnO nanowire volume fractions along in z direction and at the outer
surfaces. In addition, p is a number called exponent value that can control the distribution
of nanowires.

2.2. Governing Equations

For such APSs in electromechanical environments, the weak form of the equation of
motion is described as follows [52]:∫

V

[
ρ(z)

..
dt.δdt +σ.δε− D.δE

]
dΩ = 0 (7)

where dt =
{

u v w
}T is the displacement vector of the structure along a Cartesian

coordinate system. Moreover, σ, D, ε and E are vectors of mechanical stress, electrical
displacement, mechanical strain and electric filed, respectively. Furthermore, V is the
volume of the APSs.

In this work, the displacement field of these APSs is defined using a five-unknown
higher-order theory introduced by Reddy as follows [53]:

u = u0(x, y) + zθx(x, y) + z3c1(θx + w0,x)
v = v0(x, y) + zθy(x, y) + z3c1

(
θy + w0,y

)
w = w0(x, y)

(8)

where the constant is defined as c1 = −4/3t2 and the subscript 0 is used for showing the
mid-plane deflections. Moreover, θx and θy are mid-plane rotations.
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Accordingly, the linear in- and out-of-plane strain vectors (i.e., εb and γ) of the such
APSs can be as [53]:

εb = ε0 + zε1 + c1z3ε3 , γ =
(

1 + 3c1z2
)
γ0 (9)

where

εb =


u0,x
v0,y

u0,y + v0,x

 , ε1 =


θx,x
θy,y

θx,y + θy,x

 , ε3 =


θx,x + w0,xx
θy,y + w0,yy

θx,y + θy,x + 2 w0,xy

 , γ0 =

{
θx + w0,x
θy + w0,y

}
(10)

The main difference between piezoelectric material and passive materials are in the
definition of their constitutive law where for piezoelectric materials, the constitutive law is
defined as a set of coupled electromechanical equations as below [11]:{

σ = Qε− eTE
D = eε+ kE

(11)

where the piezoelectric constant matrix e couples the definitions of mechanical stress and
electrical displacement vectors. Moreover, in this equation, Q and k are elastic stiffness
and dielectric matrices in piezoelectric materials. Considering a plate theory (σzz = 0), the
components of Equation (11) can be described as follows [39]:

ε =
{
εb γ

}T (12)

σ =
{
σb σs

}T , σb =
{

σxx σyy τxy
}T , σs =

{
τyz τxz

}T (13)

E = −
{

0 0 V,z
}T (14)

Q =

[
Qb 0
0 Qs

]
(15)

e =
[[

ep
]

3×3 [es]3×2

]
(16)

here V,z is the electric potential variation.

3. Meshless Solution

The first step in this numerical solution is the approximation of the displacement field.
In this paper, MLS shape functions χ that have a smooth bell-shape variation over the
effective domain have been used to approximate the five unknowns of the displacement
field introduced in Equation (8) as follows [39,54]:

d̂ =
[
û0i, v̂0i, ŵ0i, θ̂xi, θ̂yi

]T
=

n

∑
i=1

χi di (17)

where d̂ and d are the approximated and real values of unknowns over the node numbers
n in the effective domain, respectively. The difference between d̂ and d can be found
in [39,54].

Given the meshless form of the approximated values of displacement field (Equation
(17)), the strain and electric field vectors can be defined in meshless forms based on
approximated displacement and electric potential vectors as follows:

εb =
{
ξ0 + z ξ1 + c1z3 ξ3

}
d̂ , γ =

(
1 + 3c1z2

)
ξs d̂ (18)

E = −ξVV̂ (19)
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where

ξ0 =

χi,x 0 0 0 0
0 χi,y 0 0 0

χi,y χi,x 0 0 0

 , ξ1 =

0 0 0 χi,x 0
0 0 0 0 χi,y
0 0 0 χi,y χi,x

 , ξ3 =

0 0 χi,xx χi,x 0
0 0 χi,yy 0 χi,y
0 0 2χi,xy χi,y χi,x

 (20)

ξs =

[
0 0 χi,x χi 0
0 0 χi,y 0 χi

]
, ξv =

[
0 0 1/tp

]
(21)

By implementing all the meshless forms of vectors and matrices utilized in the weak
form (Equation (7)), this equation can be rearranged to determine the governing eigen
value equations for the proposed APSs as follows:

M
.̂.
d + Keqd̂ = 0 (22)

where M and Keq are the mass and equivalent stiffness matrices which are expressed as:

M =
∫
Ω

[
ξT

0 ξT
1 ξT

3
]

M
[
ξT

0 ξT
1 ξT

3
] T dΩ (23)

Keq = Kuu + KuvK−1
vv Kvu (24)

in which the pure mechanical Kuu, coupled electromechanical Kuv, and piezoelectric per-
mittivity Kvv stiffness matrices are described as below:

Kuu =
∫
Ω

[
ξT

0 ξT
1 ξT

3
]

Qb
[
ξ0 ξ1 ξ3

] TdΩ +
∫
Ω

[
ξT

s BT
s
]

Qs
[
ξs ξs

] T dΩ (25)

Kuv = KT
vu =

∫
Ω

[
ξT

0 ξT
1 ξT

3
]

EbeξvdΩ +
∫
Ω

[
ξT

s ξT
s
]

EseξvdΩ (26)

Kvv =
∫
Ω

[
ξT

v
¯
kξv

]
dΩ (27)

where Q, E, M and
¯
k are as follows:

Qb =

t/2∫
−t/2

 1 z c1z3

z2 c1z4

Sym. c2
1z6

 Qbdz , Qs =

t/2∫
−t/2

[
1 3c1z2

3c1z2 9c2
1z4

]
Qsdz (28)

Ebe =

t/2∫
−t/2

{
1 z c1z3}Teb dz, Ese =

t/2∫
−t/2

{
1 3c1z2}T es dz (29)

M =

t/2∫
−t/2

ρ

 1 z c1z3

z2 c1z4

Sym. c2
1z6

 dz,
¯
k =

t/2∫
−t/2

k dz (30)

4. Results and Discussions

It is assumed that the active layers of the proposed eco-friendly APSs are made of
ZnO nanowires placed into a polymeric matrix made of Epoxy. Moreover, the auxetic core
layer is made of another polymeric material called PMMA to introduce a lightweight and
eco-friendly APS. The electromechanical properties of the utilized polymers and nanowires
are as follow:

Epoxy [55,56]: ρ = 1150 Kg/m3, υ = 0.34, E = 3.8 GPa, k11= k22= k33 = 0.07965 × 10−9 F/m
PMMA [57]: ρ = 1150 Kg/m3, υ = 0.34, E = 2.5 GPa
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ZnO NW [58,59]: Q11= Q22 = 209.7, Q13= Q23 = 105.1, Q12 = 121.1 GPa, Q44 = Q55 = 42.47,
ρ = 5680 Kg/m3, e24 = e15 = −0.48 C/m2, e31 = e32 = −0.573, e33 = 1.32,
k11 = k22 = 0.0757×10−9, k33 = 0.0903 × 10−9 F/m

4.1. Validation

Given the novelty of the proposed ASP, there is no reported results for such structures.
Therefore, the verification of the developed meshless solution has been confirmed by
considering another ASP consisting of a plate made of Aluminum Oxide and sandwich
between two active layers of G-1195N piezoceramics. The natural frequencies of such
ASP have been reported by Askari et al. [60] and Rouzegar and Abad [61] using an FDST-
based Levy’s and an HSDT-based Navier’s solutions, respectively. Table 1 compares the
first five frequencies of this ASP reported by those references with our meshless results.
The dimension of this fully simply supported ASP is as a = b = 400 mm, tc = 5 mm, and
tp = 0.1 mm; this comparison shows our meshless results are between the two other set of
natural frequencies which verifies the accuracy our developed method.

Table 1. Natural frequencies (Hz) of a simply supported ASP consisting of a passive layer sandwich
between G-1195N piezoceramics.

Reference 1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Rouzegar and Abad [61] 260.03 651.86 651.86 1047.76 1306.58
Askari et al. [60] 265.11 662.20 662.20 1058.59 1322.46
Present 264.09 656.71 657.00 1046.84 1299.86

In addition to the verification of our results with a simplified model, the convergence
of the developed meshless solution has also been illustrated in Figure 3. for the eco-friendly
ASPs proposed in this paper. In this regard, a cantilever ASP with open-circuit (OC)
electrical terminals (as shown in Figure 1), and with a = b = 0.3 m, tc = 9 mm; tp = 0.5 mm,
f0 = 0.4, p = 1, αx = 1, βx = 0.1 and θ = −45 has been considered. The variation trend of
the obtained frequencies confirms the convergence of the obtained natural frequencies as
the curve has no considerable change after using 19 nodes in each direction.
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4.2. Frequencies of the Proposed ASP

This section presents the natural frequency characterization of the eco-friendly ASPs
proposed in this paper. In the following simulations, the cantilever ASPs that have been
considered for the convergence study have been considered, unless it is mentioned.

Figure 4 illustrates the effects of auxetic unit cell parameters on the natural frequencies
of the proposed ASP; this figure shows both cell wall length αx and slenderness βx ratios
have a significant effect on the natural frequency of ASPs, especially when the core has
a negative Poisson’s ratio which means θ < 0; it also observed that with the increase in
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inclined angle θ which introduces cores with less negative Poisson’s ratio, the natural
frequency of ASPs is increased. However, when the inclined angle is a positive value,
its variation does not considerably affect the natural frequency of the APSs. Moreover,
it can be seen that auxetic cores with higher values of cell wall length αx and/or lower
slenderness βx ratios offer ASPs with higher natural frequencies. The reason is that the
increase in these two parameters in the core leads to ASPs which have higher structural
stiffness. Generally speaking, ASPs with an auxetic core have a lower natural frequency
in comparison with those with a honeycomb (positive Poisson’s ratio) core. Therefore, in
ASPs with energy harvester or sensor applications, the use of an auxetic core can be more
useful if they are subjected to lower-frequency excitations.
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After investigating the auxetic core parameters, Figure 5 explores the effects face sheets’
parameters on the frequencies of such ASPs by changing the values nanowire volume
fraction f0 and nanowire distributions p; this figure reveals that in ASPs with negative
values of inclined angle (negative Poisson’s ratio), both f0 and p have a considerable
effect on the natural frequencies of the ASPs such that the face sheets with f0 offers
ASPs with higher natural frequencies and p values in face sheets leads to ASPs with
lower natural frequencies. However, in ASPs with honeycomb core (θ > 0), these two
parameters do not have a significant influence on the frequencies of the proposed ASPs
as these types of cores are strong enough to play a considerable role in the structural
stiffness of the sandwich plates. Although the existence of ZnO nanowire as the only active
component in the proposed ASP is a must, the increase in its volume fraction results in
improving the structural stiffness and consequently increasing the natural frequency of the
ASP which could have a negative impact on the performance of ASPs when they use as
energy harvesters.

The thicknesses of face sheets and core are the other parameters which are investigated
in Figures 6 and 7, respectively. Figure 6 shows that increasing the face sheet thickness
sharply increases the natural frequency of ASP. Moreover, it shows that lower values of p
offer ASPs with higher natural frequencies. Comparing Figure 6b proves that ASPs with
higher f0 have slightly higher natural frequencies. Figure 6 shows that the increase in core
thickness also improves the natural frequency of the proposed ASPs at any inclined angles
(θ > 0) although this increase is more notable at higher values of cell wall length ratio αx or
lower negative values of inclined angles. In addition, the comparison between Figure 7a,b
reveals that auxetic cores with higher values of cell wall length ratio offer APSs with higher
natural frequencies.
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Finally, the effect of electrical terminals is investigated on the natural frequencies of
proposed ASPs as shown in Table 2; this table lists the natural frequencies of the proposed
ASPs with open-circuit and closed-circuit (CC) electrical terminals. Technically the dif-
ference between these two electrical terminal set-ups is that in CC both surfaces of the
piezoelectric layers are grounded then there would be no piezoelectric effect in APSs. In
other word, CC terminals makes the sandwich plate as a passive structure. The comparison
between the natural frequencies of APSs with OC and CC terminals discloses that the
electrical terminal set-up slightly affects the natural frequency of APSs especially if the
amount of the piezoelectric ZnO nanowires is low. Although small differences between
the natural frequencies of the same active and passive structures are expected, these very
slight differences observed for the proposed ASPs are due to the weak piezoelectric coeffi-
cients of the ZnO nanowire/Epoxy nanocomposite used in the face sheets. Moreover, the
results listed in this table show that APSs with higher aspect ratios (a/b) have significantly
lower natural frequencies which means that in the design of such structures as an energy
harvester, considering a cantilever beam with the same layer arrangement would result in
harvesting higher electrical energy out of mechanical displacements.

Table 2. Natural frequencies (Hz) of the proposed APSs with different electrical terminal set-ups,
plate aspect ratio, ZnO nanowire volume fraction and inclined angle when a= 0.3 m, tc = 9 mm;
tp = 0.5 mm, p = 1, αx = 1 and βx = 0.1.

θ Electrical
Terminals

a/b = 0.5 a/b = 1 a/b = 2

f0 = 0.1 f0 = 0.4 f0 = 0.1 f0 = 0.4 f0 = 0.1 f0 = 0.4

−60 OC 47.843 52.501 12.111 13.348 3.026 3.343
CC 47.838 52.481 12.110 13.344 3.026 3.342

−30 OC 104.211 108.166 26.797 28.039 6.724 7.059
CC 104.199 108.128 26.794 28.030 6.723 7.057

−15 OC 121.766 123.115 31.595 32.268 7.948 8.148
CC 121.752 123.075 31.592 32.258 7.947 8.146

5. Conclusions

In this work, a novel eco-friendly active sandwich plate was introduced to be used
as an actuator/sensor or even an energy harvester. The proposed APS was made of an
auxetic cantilever plate activated by two piezoelectric layers made of ZnO nanowires and
Epoxy. As an important design parameter, the natural frequency of such eco-friendly ASPs
was characterized using an in-depth numerical study; this numerical study was based on a
developed meshless solution incorporating MLS shape functions and a higher-order plate
theory. The following results were concluded:

• ASPs with an auxetic (negative Poisson’s ratio) core have much lower natural frequen-
cies in comparison with ASPs with a honeycomb core (θ > 0).

• The increase in cell wall length ratio or the decrease in the slenderness ratio in core
layer increases the natural frequency of ASPs.

• The increase in nanowire volume or changing the nanowire distribution pattern
considerably affects the natural frequencies of ASPs with an auxetic core.

• According to Table 2, it is expected that the proposed ASP would be weaker than
structures that are activated with traditional piezoceramics in terms of electrical-
mechanical energy conversion, although the proposed ASP is an eco-friendly and
bio-compatible structure.

• Furthermore, the effect of the electrical terminal set-up on the natural frequencies was
found insignificant. Nevertheless, the electrical terminal set-up plays a crucial role in
the electrical functionality of the device.

• Another concern of the proposed ASP is some manufacturing limitations associated
with auxetic core, which mainly needs to be 3D-printed.
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