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Abstract: In this paper, we propose a lateral stability control strategy for four-wheel independent
drive (4WID) electric vehicles. The control strategy adopts a hierarchical structure. First, a seven-
degree-of-freedom (7DOF) 4WID electric vehicle model is established. Then, the upper controller
adopts the integral sliding mode control (ISMC) method to obtain the desired yaw moment by
controlling both the yaw rate and the sideslip angle. A new sliding mode reaching law (NSMRL)
is designed to reduce chattering and make state variables converge faster, and the superiority of
NSMRL is verified by theoretical analysis. The lower controller proposes a new optimal allocation
algorithm, which selects the tire utilization rate and the standard deviation coefficient of the tire
utilization rate as the objective function. The safety performance of vehicle is improved, and the
instability caused by the significant difference in the stability margin between the four wheels under
extreme road conditions is avoided. Finally, a simulation is carried out to verify the effectiveness of
the proposed control strategy under single-lane-change and J-turn maneuvers.

Keywords: 4WID electric vehicle; lateral stability; sliding mode control; optimal distribution torque

1. Introduction

Electric vehicles (EVs) have recently become a research hotspot of new energy vehicles.
They have significant advantages in reducing pollution, flexible control, and rapid response.
Investment by automotive companies has developed various configurations of electric
vehicles, among which EVs with 4WID are one of the most prominent configurations [1–4].
In 4WID electric vehicles, each in-wheel motor can control one wheel independently and
adjust the wheel torque or speed through a more flexible control strategy, improving the
vehicle’s handling and driving stability. The stability of EVs in an emergency is essential.
Therefore, how to ensure the stability of 4WID electric vehicles under complex working
conditions and to make full use of the advantages of independent control of four-wheel
drive torque has become an important research topic.

Many studies show that direct yaw moment control (DYC) is one of the most effective
control strategies to improve handling stability [5–9]. According to the existing literature,
lateral stability control generally adopts a hierarchical structure to keep the control variables
following the ideal value [10,11]. The DYC method includes two levels of control, where
the upper controller provides the desired yaw moment, and the lower controller reasonably
distributes the yaw moment to the four wheels.

The DYC system has nonlinear solid, uncertain, and coupling characteristics. The
design of the upper controller is the first difficulty. In the early stage, the PID controller has
the advantage of easy implementation and is the most extensively used scheme to generate
yaw moment [12–14]. However, it is challenging to adjust the parameters of the PID
controller, and the character is often limited. Some modern linear control methodologies
are proposed to obtain a better control performance. The yaw moment that keeps the
vehicle stable is calculated by using the linear quadratic regulator (LQR) method, and the
vehicle stability is controlled [15–17]. However, the method cannot cope with the solid
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nonlinear characteristics, especially when the electric vehicle is traveling at high speed.
The model predictive control (MPC) method has been adopted on 4WID electric vehicles.
The disadvantage of the method is that the calculation of the iterative matrix is extensive,
and the implementation of multiple variables is complex [18]. With the development of
intelligent technology, fuzzy control is widely used to design the upper controller, and the
method can calculate the yaw moment and keep the vehicle stable [19]. Although a fuzzy
controller has the advantage of solving nonlinear problems, its control rules are complex,
and the membership function is obtained according to mature experience, so it cannot be
the best choice for vehicle stability control.

However, there are many interferences and uncertainties in the practice DYC system,
which may come internally or externally. The above methods are complicated to use in
solving these problems, significantly when the EVs run at a high speed. In recent decades,
nonlinear variable structure SMC has been regarded as an effective control technique.
Therefore, the SMC method has attracted extensive attention, some theories have been
studied, and many achievements have been made [20,21]. The design of SMC includes
two parts. The first part is the selection of the sliding mode surface, and the second part
is the design of the sliding mode reaching law. Once the sliding surface is determined,
the stability and dynamic character of the sliding motion are determined. The traditional
linear sliding mode surface can meet the design requirements of the control system, and
the parameter design is also easy [22–25]. Many studies for DYC systems have been based
on a linear sliding mode surface, but it considers only yaw rate as a stability index [22–24].
The vehicle’s center of mass slip angle and yaw rate characterize the vehicle’s stability
from different sides. Single control of any state parameter is inadequate. Therefore,
many controllers consider both states simultaneously in the design process to improve
stability [25–27]. However, its limitation is that the state tracking error of the system
will not converge to zero within a finite time. Therefore, a linear sliding mode surface is
unsuitable for nonlinear systems with high speed and accuracy requirements. The yaw rate
and sideslip angle influence the integral SMC (ISMC). The results show that the controller
significantly enhances the tracking performance and yaw damping [28,29]. The above
SMC control strategies are based on the two-degree-of-freedom (2DOF) or three-degree-of-
freedom (3DOF) bicycle model. The calculation of the yaw moment by adding the unknown
additional torque has excellent limitations, which is equivalent to simplifying the actual
force state when the vehicle is running, ignoring the influence caused by the change in tire
force under extreme driving conditions. Due to the error between the 2DOF/3DOF model
and the actual vehicle dynamic model, its control effect will be impacted. In addition, the
SMC method suppresses external disturbances and parameter changes through switching
functions, but the oscillation caused by chattering limits the advantages of sliding mode
control [30]. Therefore, researchers have proposed many schemes to reduce chattering, such
as reaching law [31,32], higher order sliding mode [33,34], and fractional sliding mode [35].
The concept of reaching law is introduced to reduce the chattering of the sliding mode.
Through the design of the reaching law, the movement speed of the state quantity when
approaching the sliding mode surface can be increased, and the chattering vibration can be
effectively reduced. The isokinetic reaching law is applied in [22]. However, the coefficient
of the reaching law is constant, and there is a considerable contradiction between reducing
chattering and shortening the arrival time. Presently, the sliding mode controller design
generally adopts the exponential reaching law method. Although it has suitable control
performance for a specified system, the parameters of the exponential reaching law are
typically fixed and have no self-adjustment function. A novel exponential reaching law is
proposed to design the controller, in which the system state variables are used to suppress
the chattering problem [36]. However, in the above reaching law, the discontinuity gain
decreases rapidly due to the change in the sliding surface function, which reduces the
robustness of the controller near the sliding surface and increases the approach time.

The purpose of the lower control of the DYC system is to reasonably distribute the yaw
moment obtained by the upper control to the four wheels. Different control distribution
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methods will yield different results of motor torque. These methods mainly include a
rule-based allocation algorithm and a torque allocation method based on optimization. The
average distribution algorithm [37] and vertical load dynamic distribution algorithm [38]
are rule-based allocation methods. These two methods do not take full advantage of the
independent controllability of each wheel. Regarding the torque allocation method based
on optimization, many optimization objective functions have been proposed to improve
vehicle performance. For instance, reference [39] adopts a multi-objective driving/braking
torque allocation algorithm to achieve minimum energy consumption while maintaining
vehicle stability. Reference [40] proposes a method based on the minimum tire slip criterion
to prevent sideslip due to tire force saturation. In this work, we add the steady-state margin
standard deviation coefficient to the optimal objective function. The objective is to prevent
the gap in the stability margin between the four tires from becoming too large to affect
handling in extreme conditions.

Based on the above discussions, we propose a method combining novel SMC and the
optimal distribution torque algorithm. An integral sliding mode surface method based on
the 7DOF dynamics vehicle model is proposed in the upper sliding mode controller. The
desired yaw moment is obtained by controlling both yaw rate and sideslip angle. A new
sliding mode reaching law is designed to solve the problems of the traditional reaching
law sliding mode’s surface-reaching time and system chattering, and its superiority is
demonstrated. The lower controller adopts the utilization rate of four tires and its standard
deviation coefficient as the objective function, which can keep the stability margin gap
between tires from being too large.

This paper is divided into six parts. Section 1 introduces the motivation of this study.
Section 2 presents the dynamic vehicle model. Section 3 is pertinent to designing the upper
controller. The ISMC, based on the 7DOF model, controls the yaw rate and sideslip angle
simultaneously to obtain the required yaw moment. Section 4 presents the lower control for
optimal distribution. Section 5 evaluates the effectiveness of the proposed method under
different road conditions, and the simulation results are given. Finally, the conclusion is
given in Section 6.

2. Vehicle Dynamic Model and Problem Formulation

In this section, we first propose a 7DOF vehicle model, including the longitudinal
motion, lateral motion, yaw motion, and rotational dynamics of four wheels, and a tire
model is given. Then, a 2DOF vehicle model is established to calculate the ideal yaw rate
and sideslip angle. Finally, the problem formulation is presented.

2.1. 7DOF Vehicle Model

The 7DOF vehicle model is shown in Figure 1. The vehicle coordinate system satisfies
the right-sided requirement, and the positive direction of the X-axis is the vehicle’s forward
direction. The following assumptions for establishing the 7DOF model are made for
the vehicle:

1© The vehicle always travels on a horizontal road, the displacement of the vehicle
along the Z-axis is not considered, and the roll angle around the X-axis and the pitch angle
around the Y-axis are both zero;

2© The front tires of the left and right wheels have the same steering wheel angle, and
the rear wheel angle is considered zero;

3© The mechanical properties of the four tires are the same; and
4© The air resistance is ignored.

In Figure 1, ωγ is the yaw rate; β is the sideslip angle; L f and Lr are the distances from
the front axle and rear axle to the center of centroid, respectively; L is the total distance
between the front axle and rear axle of the vehicle, B f and Br are the front track width and
rear track width, respectively; δ is the front steering angle; vx and vy are the longitudinal
velocity and lateral velocity at the center of centroid of vehicle, respectively; αij is the
slip angle; and Fxij and Fyij denote the longitudinal tire force and the lateral tire force,
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respectively (the first subscript of (·)ij denotes front wheel and rear wheel, and the second
subscript denotes left wheel and right wheel).
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The longitudinal motion is modeled as

m
( .
vx −ωγ · vy

)
=
(

Fx f l + Fx f r
)

cos δ−
(

Fy f l + Fy f r
)

sin δ + Fxrl + Fxrr (1)

where m is the total mass of the car vehicle.
The lateral motion is expressed as

m
( .
vy + ωγ · vx

)
=
(

Fx f l + Fx f r
)

sin δ +
(

Fy f l + Fy f r
)

cos δ + Fyrl + Fyrr (2)

The yaw motion is described as

Iz ·
.

ωγ =
[(

Fy f l + Fy f r
)

cos δ
]

L f +
[(

Fy f l − Fy f r
)

sin δ
]B f

2
−
(

Fyrl + Fyrr
)

Lr + Mz (3)

where Iz is the yaw moment of inertia of vehicle, and Mz is the yaw moment described by

Mz = L f
(

Fx f l + Fx f r
)

sin δ +
B f

2
(

Fx f r − Fx f l
)

cos δ +
Br

2
(Fxrr − Fxrl) (4)

The force state of the wheel during rotation is shown in Figure 2.
When the vehicle is running, the wheels are mainly subjected to the driving torque Tdij

output by the in-wheel motor, the braking torque Tbij applied by the braking system, the
rolling resistance torque Tf , and the friction force Fxij and the vertical force Fzij provided by
the ground.
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Figure 2. The force state of the wheel.

The wheel rotational dynamics are given as

J
.

ωij = Tdij − Tbij − FxijR− Tf (5)

where J is the moment of inertia of the wheel, ωij is the wheel angular velocity, and R is the
rolling radius of the tire.

Rolling resistance is mainly caused by the friction between the tire and the ground
when the wheel is rolling. The following equation can obtain the rolling resistance torque.

Tf = f · FzijR (6)

where f is the tire rolling resistance coefficient.
The vertical load of each tire is given as

Fz f l =
mgLr

2L −
mhgax

2L − mhgay
2B f

Fz f r =
mgLr

2L −
mhgax

2L +
mhgay

2B f

Fzrl =
mgL f

2L +
mhgax

2L − mhgay
2Br

Fzrr =
mgL f

2L +
mhgax

2L +
mhgay

2Br

(7)

where g is the acceleration of gravity, hg is the distance from ground to centroid, and ax
and ay are the longitudinal and lateral acceleration of the vehicle, respectively, which can
be described as

ax =
1
m
(

Fx f l + Fx f r
)

cos δ +
1
m
(

Fxrl + Fxrr
)
− 1

m
(

Fy f l + Fy f r
)

sin δ (8)

ay =
1
m
(

Fx f l + Fx f r
)

sin δ +
1
m
(

Fyrl + Fyrr
)
+

1
m
(

Fy f l + Fy f r
)

cos δ (9)

2.2. Tire Model

The mechanical properties of tires play a vital role in the analysis of vehicle handling
stability, so building a reasonable tire model is the basis for studying vehicle dynamics
control. The magic formula tire model (MF Tire Model) commonly used in vehicle dynamics
research is empirical. This model can better represent the nonlinear characteristics of tires,
and its application is relatively mature. Some professional automobile simulation software
can quickly obtain the relevant fitting parameters. Therefore, for the tire modeling in this
work, we selected the MF Tire Model.
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The MF Tire Model is obtained based on the recursive analysis of experimental data.
The general expression is as follows:

y(x) = D sin{Carctan[B(x + Sh)(1− E) +Earctan(B(x + Sh))]}+ Sv (10)

where B, C, D, E, Sh, Sv are characteristic parameters.
The longitudinal force of the tire Fxij is calculated as follows:

Fxij
(
Sij
)
= D sin

{
Carctan

[
B
(
Sij + Sh

)
(1− E) +Earctan

(
B
(
Sij + Sh

))]}
+ Sv (11)

The lateral force of the tire Fyij is calculated as follows:

Fyij
(
αij
)
= D sin

{
Carctan

[
B
(
αij + Sh

)
(1− E) +Earctan

(
B
(
αij + Sh

))]}
+ Sv (12)

The inputs of the tire model consist of each tire slip ratio Sij and slip angle αij. The slip
rate Sij can be calculated by the wheel angular velocity ωij and the reference speed of the
four wheels vij, as shown in the following equation:

Sij =
vij −ωijR

vij
(13)

In addition, the input parameter slip angle αij is calculated as follows:

α f l = arctan
( vy+ωz L f

vx−ωzB f

)
− δ

α f r = arctan
( vy+ωγ L f

vx+ωγB f

)
− δ

αrl = arctan
(

vy−ωγ Lr
vx−ωγB f

)
αrr = arctan

(
vy−ωγ Lr
vx+ωγB f

) (14)

Under combined braking (driving) and steering conditions, the lateral and longitudinal
forces should meet the following correction conditions: Fxij =

|σxij|
σij

y(x), Fyij =
|σyij|

σij
y(x)

σij =
√

σ2
xij + σ2

yij, σxij =
Sij

1+Sij
, σyij =

tan αij
1+Sij

(15)

2.3. 2DOF Vehicle Reference Model

The 2DOF vehicle model shown in Figure 3, called the linear bicycle model, is em-
ployed here to calculate the ideal yaw rate and sideslip angle.
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The dynamic equation of the lateral motion and yaw motion can be expressed as
follows: {

m
( .
vy + m · vx

)
=
(
C f + Cr

)
β + 1

vy

(
L f C f − LrCr

)
ωγ − C f δ

Iz ·
.

ωγ =
(

L f C f − LrCr
)

β + 1
vx

(
L2

f C f − L2
r Cr
)
ωγ − L f C f δ

(16)

where C f and Cr are the front and rear tire cornering stiffness, respectively.
The 2DOF vehicle model does not consider the effects of tire nonlinearity, steering,

or suspension. The car is driving in the linear region, which can better describe the stable
state of the vehicle and the driver’s driving intention. The linear 2DOF vehicle model is
always regarded as the reference model, and the ideal values of parameters such as the
yaw rate and sideslip angle can be obtained. Therefore, the 2DOF vehicle model needs to
be analyzed.

When the car is driving in a steady state, the yaw rate and the sideslip angle should
satisfy the following equation: { .

vy = 0
.

ωγ = 0
(17)

According to vehicle dynamics, the arctangent value of the ratio of lateral velocity to
longitudinal velocity is defined as the sideslip angle. Because the sideslip angle of vehicle
motion is usually in a small range, the sideslip angle can be approximately expressed as

β =
vy

vx
(18)

Substituting Equations (17) and (18) into (16), the ideal yaw rate ωd and sideslip angle
βd can be expressed as

ωγd =
vx/L

1 + Kv2
x

δ (19)

βd =
vxδ

L(1 + Kv2
x)

(
Ly

v2
x
+

mL f

CγL

)
vx (20)

where K = m
L2

(
Lp
Cγ
− Lr

C f

)
, representing the stability factor of the vehicle’s steady-state

response.
Substituting Equation (19) into (20), we can obtain the following equation:

βd = ωγd

(
Lr

v2
x
+

mL f

CrL

)
vx (21)

The lateral acceleration of the vehicle in a constant-speed circular motion is affected by
the road adhesion coefficient µ. The lateral acceleration in the limit steady state must meet

ay =
v2

x
Rr

=
(Rrωγd)vx

Rr
= ωγdvx ≤ µg (22)

From Equation (22), the maximum expected yaw rate in the limit steady state is
expressed as

ωγd =
µg
vx

(23)

Combining Equations (19) and (23), we can calculate the ideal yaw rate:

ωγd = min
{∣∣∣∣ vx/L

(1 + Kv2
x)

δ

∣∣∣∣, ∣∣∣∣µg
vx

∣∣∣∣}sign(δ) (24)

Combining Equations (21) and (23), the maximum sideslip angle in the limit steady
state is expressed as

βd = µg
(

Lr

vx2 +
mL f

CrL

)
(25)
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Combining Equations (21) and (25), we can obtain the ideal sideslip angle:

βd = min
{∣∣∣∣ωγd

(
Lr

v2
x
+

mL f

CrL

)
vx

∣∣∣∣, ∣∣∣∣µg
(

Lr

v2
x
+

mL f

CrL

)∣∣∣∣}sign(δ) (26)

2.4. Problem Formulation

The DYC control system designed in this paper is divided into upper and lower layers.
The upper controller consists of a sliding mode controller and a speed tracking PI controller,
as shown in Figure 4.
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Figure 4. The schematic of the proposed control scheme.

Based on the 7DOF vehicle model, the sliding mode controller was selected according
to two control parameters: yaw rate and sideslip angle. The vehicle state parameters
obtained from the 7DOF and 2DOF ideal reference models are compared. Then, the SMC
algorithm controls the difference between the yaw rate and the sideslip angle. Finally,
the magnitude of the additional yaw moment required to maintain the vehicle’s stability
is calculated.

The speed tracking PI controller obtains the total demand force Fx required to drive
the vehicle at a constant speed through the PI control. Based on the difference ∆vx between
the live vehicle speed vx and the expected initial vehicle speed vdes, the total demand force
Fx for maintaining vehicle movement is calculated as follows:{

∆vx = vx − vdes
Fx = kp∆vx + ki

∫
∆vxdt

(27)

where kp and ki are the gain coefficient.
For the lower controller, the objective function of torque optimization distribution is

first established, and then the constraints of the torque optimization distribution process are
comprehensively considered. There are mainly additional yaw moment constraints, road
adhesion conditions constraints, vehicle power demand constraints, and motor maximum
torque constraints. Finally, the calculated additional yaw moment required to keep the
vehicle stable is reasonably distributed on each wheel.

3. Upper Controller

Generally, the design of SMC includes the following two factors: 1© the sliding surface
function is designed so that the state trajectory of the system has suitable dynamic char-
acteristics such as asymptotic stability after entering the sliding mode, and 2© the sliding
mode reaching law means the system state trajectories are driven onto the sliding surface
for a finite time and are maintained in motion on it.

From the motion equation of the vehicle model, the lateral velocity, longitudinal
velocity, and yaw angular velocity are selected to participate in the controller design.
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Assuming that the longitudinal vehicle velocity is constant, taking the derivative of this
Equation (18), we can obtain the following equation:

.
β =

.
vy

vx
(28)

Combining Equations (1)–(3) and (28), the differential equations of the yaw rate and
sideslip angle can be obtained.

.
β =

(
Fx f l + Fx f r

)
sin δ +

(
Fy f l + Fy f r

)
cos δ + Fyrl + Fyrr

mvx
−ωγ (29)

.
ωγ =

L f
(

Fy f l + Fy f r
)

cos δ +
B f
2
(

Fy f l − Fy f r

)
sin δ−

(
Fyrl + Fyrr

)
Lr + Mz

Iz
(30)

3.1. Designing of Integral Sliding Mode Surface

The sliding surface of the linear structure can fully meet the design requirements of
the control performance of the linear system, which makes the stability analysis simple and
convenient when the system is in the sliding mode, and the parameter design is also easy.
However, its limitation is that when the linear sliding surface is used, the state tracking
error will not converge to zero in a finite time. Therefore, the linear sliding mode surface is
suitable for nonlinear systems where the speed and accuracy requirements are not very
high. Adding an integral term to the sliding mode surface can significantly improve the
approaching process tracking accuracy.

The first step in the SMC design is the sliding mode surface selection. Once the
sliding surface is determined, the sliding mode motion’s stability and dynamic quality
are determined.

The integral sliding surface can be chosen as

s = c1(ωγ −ωγd) +
∫ t

0
(ωγ −ωγd)dt + c2(β− βd) +

∫ t

0
(β− βd)dt (31)

where c1 > 0, c2 > 0, representing the weight coefficient, which can reflect the proportion
of yaw rate and sideslip angle.

Taking the derivative of Equation (31), we can obtain the following equation:

.
s = c1

( .
ωγ −

.
ωγd

)
+
(
ωγ −ωγd

)
+ c2

( .
β−

.
βd

)
+ (β− βd) (32)

Substituting (29) and (30) into (32), the equation can be expressed as follows:

.
s = c1

L f (Fy f l+Fy f r) cos δ+ B
2 (Fy f l−Fy f r) sin δ−(Fyrl+Fyrr)Lr

Iz
+ c1

Mz
Iz
− c1

.
ωγd + ωγ −ωγd

+c2
(Fx f l+Fx f r) sin δ+(Fy f l+Fy f r) cos δ+Fyrl+Fyrr

mvx
−ωγ − c2

.
βd + β− βd

(33)

3.2. Designing of Sliding Mode Reaching Law

A. Conventional Sliding Mode Reaching Law
The reaching law determines the system’s quality in the normal motion phase from

outside the sliding surface into the sliding surface. By choosing different reaching laws,
different dynamic quality characteristics can be obtained. The forms of the early reaching
law include isokinetic reaching law, exponential reaching law, general reaching law, and
power reaching law. Among them, the isokinetic and exponential reaching laws are the
most commonly used.

The conventional sliding mode reaching law (CSMRL) can widely be expressed as

.
s = −η1 · sgn(s)− η2s (34)
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where η1 > 0, η2 > 0.
It is not difficult to prove that the approach rate (34) can meet the sliding mode

reaching condition. The reaching law consists of two parts: −η1 · sgn(s) is the constant rate
term, and −η2s is the pure exponential term. When the system state point is far from the
sliding mode surface, the reaching law is mainly determined by the pure exponential term.
When the motion reaches the sliding mode surface, the pure exponential term is zero, and
the constant rate term determines the reaching law. The constant rate reaching law is a part
of the traditional exponential reaching law. It is known that the trajectory of approaching
motion is banded under the action of symbolic function, and the system state variables
cannot be stable at the origin but always chatter near the origin. The system states are
unable to eventually converge to the equilibrium point, which indicates that yaw rate and
sideslip angle cannot eventually reach the ideal value and the steady-state characteristics
of the system are not ideal, so the isokinetic rate reaching law must be analyzed as follows:

.
s = −η1 · sgn(s) (35)

where t1 is the required time for the system using the reaching law (35) to reach the sliding
mode surface, and s(t1) = 0. Then, integrating Equation (35) from 0 to t1, the reaching time
is derived as

t1 =

{ s(0)
η1

s(0) ≥ 0
−s(0)

η1
s(0) < 0

(36)

The expression of t1 can be rewritten as follows:

t1 =
|s(0)|

η1
(37)

B. New Sliding Mode Reaching Law
From Equation (37), we can see that as η1 increases, the time to reach the sliding mode

surface becomes shorter, and the system’s robustness is enhanced. However, under the
action of the sign function, increasing η1 will bring high-frequency chattering. To solve the
problem, a new sliding mode reaching law (NSMRL) is given as

.
s = −η1eq(x, s)sgn(s)− η2s (38)

eq(x, s) =
1

ε +
(

1 + 1
tann(|x1|+|x2|)

− ε
)

e−ρ|s|
(39)

{
x1 = eω = ωγ −ωγd
x2 = eβ = β− βd

(40)

where ρ > 1, 0 < ε < 1, n is even and n > 1, and x =
[
x1 x2

]T is the state variable of the
DYC system.

When the system is far from the sliding surface, and |s| is large enough, e−ρ|s| will
be very small, and the eq(x, s) converges to 1

ε . The system will quickly approach the
sliding mode surface under the joint action of variable speed term −η1eq(x, s)sgn(s) and
exponential term −η2s. The speed is higher than the conventional reaching rate. When
the system is close to the sliding surface, and the values of |s| and x are near 0, the eq(x, s)
converges to tann(|x1|+|x2|)

1+tann(|x1|+|x2|)
. At this moment, the exponential term is small and close to

0. The speed change term −η1eq(x, s)sgn(s) bears the leading role. Under the action of
the sliding mode reaching law, the system approaches the origin. At the same time, due
to the continuous reduction in the speed change term, its reduction speed is faster than
the conventional reaching law, which realizes the smooth transition with the sliding mode
surface and weakens the effects of chattering.
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Taking the first term of the NSMRL, we can obtain the following equation:

.
s = − η1

ε +
(

1 + 1
tann(|x1|+|x2|)

− ε
)

e−ρ|s|
sgn(s) (41)

Conducting quantitative analysis and calculating the time t1 to reach the sliding mode
surface, Equation (41) can be written as follows:

.
s
[

ε +

(
1 +

1
tann(|x1|+|x2|)

− ε

)
e−ρ|s|

]
= −η1sgn(s) (42)

By integrating Equation (42) from 0 to t2, we have

∫ s(t2)

s(0)

1
sgn(s)

[
ε +

(
1 +

1
tann(|x1|+|x2|)

− ε

)
e−ρ|s|

]
ds =

∫ t2

0
−η1dt (43)

The reaching time t2 is derived as

t2 =


1
η1

[
εs(0) + 1

ρ

(
1 + 1

tann(|x1|+|x2|)
− ε
)(

1− e−ρs(0))], s(0) ≥ 0
1
η1

[
−εs(0) + 1

ρ

(
1 + 1

tann(|x1|+|x2|)
− ε
)(

1− eρs(0))], s(0) < 0
(44)

The expression of t2 can be rewritten as follows:

t2 =
1
η1

[
ε|s(0)|+ 1

ρ

(
1 +

1
tann(|x1|+|x2|)

− ε

)(
1− e−ρs|0|)] (45)

The time difference under the two reaching laws can be expressed as

∆t = t2 − t1 = 1
η1

[
ε|s(0)|+ 1

ρ

(
1 + 1

tann(|x1|+|x2|)
− ε
)(

1− e−ρ|s(0)|)]− |s(0)|η1

= 1
η1

[
(ε− 1)|s(0)|+ 1

ρ

(
1 + 1

tann(|x1|+|x2|)
− ε
)(

1− e−ρ|s(0)|)] (46)

Since
(
1− e−ρs|0|) < 1, it can be known that

∆t <
1
η1

[
(ε− 1)|s(0)|+ 1

ρ

(
1 +

1
tann(|x1|+|x2|)

− ε

)]
= Q (47)

Let
Q = 1

η1

[
(ε− 1)|s(0)|+ 1

ρ

(
1 + 1

tann(|x1|+|x2|)
− ε
)]

= 1
ρη1

[
ρ(ε− 1)|s(0)|+

(
1 + 1

tann(|x1|+|x2|)
− ε
)] (48)

Here, x1, x2 6= 0 can be satisfied in that the value is always between 0 and t, if
parameter ρ is chosen as

ρ((ε− 1)|s(0)|)�
(

1 +
1

tann(|x1|+|x2|)
− ε

)
(49)

The equation Q can be presented in a simplified form as

Q = (ε− 1)
|s(0)|

η1
(50)

Therefore, according to (49) and inequality (50), we can obtain

∆t < (ε− 1)
|s(0)|

η1
(51)
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Note that the term |s(0)|
η1

is strictly positive and 0 < ε < 1; then,∆t < 0 can be guaranteed.
It can be seen that under the action of the new exponential term, the system state can

reach the sliding surface in a shorter time than the constant rate term. In summary, when
away from the sliding mode surface, the system state approach speed is composed of two
parts: the new exponential term and the pure exponential term, and the speed is greater
than that under the traditional exponential approach law. When approaching the sliding
mode surface, the pure exponential term is zero. The rate of the new exponential term is
gradually reduced, which can avoid the large inertia of the system state variable under the
action of high speed and intense chattering on the sliding mode switching surface, ensuring
the smoothness of the system control process.

The Lyapunov function proves the stability of the proposed NSMRL. First, the Lya-
punov function is defined as

V =
1
2

s2 (52)

The derivative of Equation (52) can be described as

.
V = s

.
s (53)

Substituting Equations (38)–(40) into (53), the equation can be expressed as follows:

.
V = s[−η1eq(x, s)sgn(s)− η2s]

= −η1|s| 1

ε+

(
1+ 1

tann(|x1|+|x2|)
−ε

)
e−ρ|s|

− η2s2 (54)

In Equation (54), because η1 > 0, η2 > 0, and 1 + 1/ tann(|x1|+|x2|)− ε > 0 ,
.

V ≤ 0 can be established. Therefore, according to the stability judgment conditions
of the Lyapunov function, the proposed controller based on NSMRL can satisfy the sliding
mode reaching condition.

According to Equations (33) and (38)-(40), the yaw moment controller is designed as

Mz = − Iz
c1
{ η1

ε+

(
1+ 1

tann(|x1|+|x2|)
−ε

)
e−ρ|s|

sgn(s) + η2s+

c1
L f

(
Fy f l+Fy f r

)
cos δ+ B

2

(
Fy f l−Fy f r

)
sin δ−

(
Fyrl+Fyrr

)
Lr

Iz
+

c1
Mz
Iz
− c1

.
ωγd + ωγ −ωγd + c2

(
Fx f l+Fx f r

)
sin δ+

(
Fy f l+Fy f r

)
cos δ+Fyrl+Fyrr

mvx
−ωγ − c2

.
βd + β− βd}

(55)

Based on the above analysis, the designed ISMC can guarantee the DYC system to
reach the sliding mode surface in a limited time and be stable on the sliding surface.

4. Lower Controller

The primary purpose of the lower controller is to reasonably distribute the additional
yaw moment and total demand force obtained from the previous session to the four wheels.
A comparison of the average distribution torque methods is also made here to verify the
optimal distribution strategy designed.

4.1. Average Distribution Torque (ADT)

The ADT method is relatively simple so that the total longitudinal force Fx and
additional yaw moment Mz are equally distributed on each wheel. The individual tire force
can be obtained as follows:
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Fx f l =
Fx
4 −

R
4 ·

Mz
(B f +Br+a sin δ)

Fx f r =
Fx
4 + R

4 ·
Mz

(B f +Br+a sin δ)

Fxrl =
FX
4 −

R
4 ·

Mz
(B f +Br+a sin δ)

Fxrr =
Fx
4 + R

4 ·
Mz

(B f +Br+a sin δ)

(56)

Then, the motor torque Tdij required by each wheel can be expressed as

Tdij = Fxij · R (57)

4.2. Optimal Distribution Torque (ODT)

The disadvantage of ADT is that the yaw moment is uniformly distributed on the four
wheels according to the average rule. However, ODT is an integrated torque distribution
method, and it takes into account the three factors of tire utilization rate, motor output
torque, and road adhesion conditions. Thus, it can better ensure the stability of the driving
process under extreme road conditions.

In optimal control allocation, the basic problem is defining the objective function and
selecting the appropriate optimization target. In this paper, the concept of “tire utilization
rate” is first introduced, which refers to the sum of four tires’ ratio of road adhesion on a
single wheel to the maximum adhesion it can obtain. When this value is close to 1, it means
that the working ability of the tire is close to its limit and cannot provide greater adhesion.
Without control at this point, the vehicle is very likely to lose stability. The mathematical
definition of a single tire attachment utilization rate is given as follows:

χ = Σ
F2

xi + F2
yi

(µFzi)
2 , i = f l, f r, rl, rr (58)

where µ is the road adhesion coefficient.
Masato Abe proposed that the minimum sum of squares of all tire utilization rates

should be taken as the objective function to distribute the force on each tire to ensure that
all wheels can maintain stability and have a certain stability margin [41]. The formula with
the minimum sum of squares of the utilization rate of four tires as the objective function is
shown as

minJ = ∑
i= f l, f r,rl,rr

F2
xi + F2

yi

(µFzi)
2 (59)

For 4WID electric vehicles, the calculation is complicated when considering the opti-
mization under the combined action of longitudinal force, transverse force, and vertical
force, and the online real-time optimization cannot be realized. Vehicles with high real-time
requirements will have great safety risks. Therefore, to increase the timeliness of vehi-
cle control, the objective function of this paper is simplified to consider only the control
longitudinal force:

minJ = ∑
i= f l, f r,rl,rr

F2
xi

(µFzi)
2 (60)

We propose the objective function by combining the tire utilization rate with the
standard deviation coefficient. Adding the standard deviation coefficient to the optimiza-
tion goal ensures that the mean and variance of the target value reach the optimal value
simultaneously. The optimization objective function is expressed as
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minJ = ∑
i= f l, f r,rl,rr

F2
xi

(µFzi)
2 +

√√√√ 1
4 ∑

i= f l, f r,rl,rr

(
F2

xi
(µFzi)

2 − 1
4 ∑

i= f l, f r,rl,rr

F2
xi

(µFzi)
2

)2

1
4 ∑

i= f l, f r,rl,rr

F2
xi

(µFzi)
2

(61)

The Lagrange multiplier method in Table 1 is used to solve the optimization problem.
The equality constraints are as follows:

ψ1(Fx f l , Fx f r, Fxrl , Fxrr) = (Fx f l cos δ + Fx f r cos δ + Fxrl + Fxrr)− Fx = 0 (62)

ψ2(Fx f l , Fx f r, Fxrl , Fxrr) = [
B f

2
(−Fx f l cos δ + Fx f r cos δ + Fxrr − Fxrl ) + L f

(
Fx f l sin δ + Fx f r sin δ

)
]−Mz = 0 (63)

Table 1. Lagrange multiplier method.

Lagrange Multiplier Method

min f (x)
s.t h(x) = 0
g(x) ≤ 0
By introducing slack variables Ω, inequality constraints are transformed into equality constraints
minL(x, λ, Ω) = f (x)− λ1h(x)− λ2(g(x) + Ω2)
where λ1, λ2 are the Lagrange computing factors, Ω2 is introduced to ensure that it is
non-negative, so that the constraint function is less than or equal to zero is satisfied.
The derivative of L(x, λ, Ω) with respect to each variable is 0
∂L
∂x = 0, ∂L

∂λ1
= h(x) = 0, ∂L

∂λ2
= g(x) + Ω2 = 0, ∂L

∂Ω = −2Ω,
By solving the equations above, we can obtain x.

First, an auxiliary solution function is constructed as

g
(

Fx f l , Fx f r, Fxrl , Fxrr, λ1, λ2

)
= J + λ1ψ1(Fx f l , Fx f r, Fxrl , Fxrr) + λ2ψ2(Fx f l , Fx f r, Fxrl , Fxrr) (64)

where λ1, λ2 are the computing factors.
At the same time, the longitudinal force Fxij should meet the constraint conditions of

motor torque and ground longitudinal adhesion, expressed as{
ψ3(Fx f l , Fx f r, Fxrl , Fxrr) = |Fxi| − (Tmax/R) ≤ 0, i = f l, f r, rl, rr
ψ4(Fx f l , Fx f r, Fxrl , Fxrr) = F2

xi + F2
yi − (µFzi)

2 ≤ 0, i = f l, f r, rl, rr
(65)

where Tmax is the maximum output torque of the motor.
By introducing slack variables Ωi(i = 1, 2), inequality constraints are transformed into

equality constraints, which can be solved quickly by the Lagrange multiplier method. The
new Lagrange function is written as

g
(

Fx f l , Fx f r, Fxrl , Fxrr, λ1, λ2, λ3, λ4, Ω1, Ω2

)
= J − λ1ψ1(Fx f l , Fx f r, Fxrl , Fxrr)− λ2ψ2(Fx f l , Fx f r, Fxrl , Fxrr)

− λ3(ψ3(Fx f l , Fx f r, Fxrl , Fxrr) + Ω1
2)− λ4(ψ4(Fx f l , Fx f r, Fxrl , Fxrr) + Ω2

2) (66)

where λ3, λ4 are the computing factors.
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The partial derivative of the Lagrange function in Equation (67) is expressed as

∂g
∂Fx f l

= ∂J
∂Fx f l
− λ1

∂ψ1
∂Fx f l
− λ2

∂ψ2
∂Fx f l
− λ3

∂ψ3
∂Fx f l
− λ4

∂ψ4
∂Fx f l

= 0
∂g

∂Fx f r
= ∂J

∂Fx f r
− λ1

∂ψ1
∂Fx f r
− λ2

∂ψ2
∂Fx f r
− λ3

∂ψ3
∂Fx f r
− λ4

∂ψ4
∂Fx f r

= 0

∂g
∂Fxrl

= ∂J
∂Fxrl
− λ1

∂ψ1
∂Fxrl
− λ2

∂ψ2
∂Fxrl
− λ3

∂ψ3
∂Fxrl
− λ4

∂ψ4
∂Fxrl

= 0
∂g

∂Fxrr
= ∂J

∂Fxrr
− λ1

∂ψ1
∂Fxrr
− λ2

∂ψ2
∂Fxrr
− λ3

∂ψ3
∂Fxrr
− λ4

∂ψ4
∂Fxrr

= 0
∂g

∂λ1
= ψ1(Fx f l , Fx f r, Fxrl , Fxrr) = 0

∂g
∂λ2

= ψ2(Fx f l , Fx f r, Fxrl , Fxrr) = 0

v ∂g
∂λ3

= (ψ3(Fx f l , Fx f r, Fxrl , Fxrr) + Ω1
2) = 0

∂g
∂λ4

= (ψ4(Fx f l , Fx f r, Fxrl , Fxrr) + Ω2
2) = 0

∂g
∂Ω1

= −2Ω1, ∂g
∂Ω2

= −2Ω2

(67)

The above equation can solve the longitudinal forces. By (57), the required motor
torque can be obtained. The Lagrange multiplier method is given in Table 1. The results are
solved using the MATLAB software to write programs.

5. Simulation

The simulation was carried out based on MATLAB/Simulink software. The three
control strategies are compared under the conditions of a single lane change and J-turn to
verify the effectiveness of the proposed control algorithm. It includes the CSMRLADT strat-
egy composed of the conventional sliding mode reaching law and ADT, the NSMRLADT
strategy composed of the new sliding mode reaching law and ADT, and the NSMRLODT
strategy composed of the new sliding mode reaching law and ODT. The vehicle parameters
are shown in Table 2.

Table 2. Vehicle parameters.

Description Symbol Value

Total mass of the car vehicle m 1480 (kg)
Distance from front axle to the center of centroid L f 1.2 (m)
Distance from rear axle to the center of centroid Lr 1.4 (m)
Yaw moment of inertia of vehicle Iz 1523 (kg·m2)
Moment of inertia of the wheel J 2.1 (kg·m2)
Distance from the center of centroid to ground hg 0.5 (m)
Front track width B f 1.6 (m)
Rear track width Br 1.6 (m)
Rolling radius of the tire R 0.354 (m)
Front wheel cornering stiffness C f 35796 (N/rad)
Rear wheel cornering stiffness Cr 35400 (N/rad)
Peak torque of the motor tire Tmax 400 (N·m)
Rolling resistance coefficient f 0.018

5.1. Performance Analysis under Single Lane Change (SLC) Maneuver

The front wheel corner input is given a sine-wave input (3–7 s) with an amplitude of
0.08 rad, as shown in Figure 5. Road friction coefficients are set as 0.5 to simulate wet roads.
The starting speed is set to 108 km/h.
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Figure 5. Front wheel steering angle under SLC maneuver.

The two stability index curves under the condition of SLC are shown in Figure 6.
The peak value under control is lower than without control, the changes in the curve
are relatively gentle, and the changing trend is more suitable for the SLC maneuver. It
shows that the proposed control strategy can improve the vehicle’s stable driving and
trajectory-keeping ability. In contrast, NSMRLODT has relatively lower peak values and
smaller fluctuations, showing a suitable performance, which indicates that the NSMRLODT
method has an adequate control effect.
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The simulation comparison results between NSMRLADT and NSMRLODT are shown
in Figure 7. The vehicle track is given in Figure 7a. NSMRLADT and NSMRLODT can
better track the desired trajectory path. Vehicles with ODT control have better lateral
stability compared to ADT control. The

.
β − β phase diagram is shown in Figure 7b.

The sideslip angle of the two methods is in the controllable range and presents a closed-
loop convergence structure. Still, the overall control effect of NSMRLODT is superior
to NSMRLADT. The ADT and ODT are shown in Figure 7c,d, respectively. The torque
of the same side wheel under NSMRLADT control is the same, while the NSMRLODT
control method can distribute the torque required to change among four respective in-wheel
motors. It is possible to prevent the wheel with a small vertical load from quickly reaching
the longitudinal force saturation. Although the torque distribution trend of the wheel on
the same side under the NSMRLODT control method is the same, the amplitude is different.
The front wheel torque is greater than the rear wheel torque, and this is because the front
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wheel is a steering wheel. As shown in Figure 7e, the sum of the load ratios of each wheel
of NSMRLODT is smaller than that of NSMRLADT, indicating that the torque of each
wheel is reasonably distributed under NSMRLODT. The maximum stability margin is kept
as much as possible under the precondition of meeting the current yaw moment control.
Leaving sufficient longitudinal force at the disposal of the car can make the vehicle more
secure and reliable.
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5.2. Performance Analysis under J-turn Maneuver

To further test the effectiveness of the proposed control strategy, we used the front
steering angle for analog input, as shown in Figure 8.
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The simulation results are shown in Figure 9, assuming driving at an initial speed of
80 km/h on a slippery road with an adhesion coefficient of 0.3.
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The uncontrolled vehicle under the extreme road conditions of J-turn is unstable
compared to the sinusoidal road conditions. In particular, the sideslip angle is worse
than that of the SLC road condition. Compared with the uncontrolled vehicle’s yaw rate
and sideslip curves, the CSMRLADT and NSMRLADT have converged the final tracking
results. Still, the poor road conditions make the path tracking accuracy and stability poor.
In contrast, the amplitude deviation of the yaw rate and sideslip angle is large, and there is
chattering. The NSMRLODT effectively solves the chattering problem. The curves of yaw
rate and sideslip angle are smoother and have suitable performance, which shows that the
proposed control strategy can significantly improve yaw stability.

The simulation comparison results between NSMRLADT and NSMRLODT are shown
in Figure 10. Note that the NSMRLODT introduced here is still effective in improving sta-
bility in extreme J-turn maneuvers. Based on the analysis of the above results, NSMRLODT
is more suitable for the ideal state than NSMLRLADT.
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6. Conclusions

The innovation of this paper is that new algorithms are proposed for the upper and
lower controllers. In SMC, a more realistic 7DOF model is adopted, which contains two state
variables, yaw rate and sideslip angle. NSMRL aims to reduce chattering and make sliding
mode surface state variables converge faster. The lower controller adopts the utilization
rate of four tires and its standard deviation coefficient as the objective function and prevents
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the stability margin gap between tires from being too large. The simulation results compare
three hierarchical control strategies, CSMRLADT, NSMRLADT, and NSMRLODT, under
single lane change and J-turn conditions. The comparison results show the NSMRLODT
algorithm provides better trajectory tracking, and the torque of each wheel is reasonably
distributed. The results show that the DYC control strategy designed in this paper can
improve the system’s dynamic performance and tracking accuracy. At the same time, the
stability and security of the system are considerably improved.
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