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Abstract: Rail transit plays a significant role in the operation of an efficient and effective urban
public transportation system. Safety and capacity are some of the most crucial objectives in railway
operations. The communication-based train control (CBTC) system is a continuous and automatic
train control system that realizes constant and high-capacity train ground two-way communication.
In this study, a dynamic headway model of the ‘softwall’ moving-block approach is proposed for
CBTC to increase the track capacity and improve dispatching efficiency based on the train trajectory
prediction. For this precise trajectory prediction task, we introduce a hybrid trajectory prediction
model to combine Long Short-term memory (LSTM) and Kalman Filter (KF) to extract the train’s
local data features and learn the long-term dependencies, respectively. Then we present a dynamic
headway model to maximize the train headway and reduce the track distance. The leading trains’
information is used to construct the iterative learning control strategy, and the predicted trajectory
is input into the algorithm of the headway model. We use a simulation model of the rail network
in Chengdu to demonstrate the effectiveness of our proposed approach. The results show the
Mean Absolute Error (MAE) of the predicted trajectory retreated to 93.97 cm and reductions in
operation headway of at least 64.33% under the dynamic headway model versus the traditional
moving-block model.

Keywords: LSTM-KF model; relative moving block; dynamic headway

1. Introduction

The urban railway has been developed in recent decades with outstanding achieve-
ments worldwide. However, the existing operating capacity has dramatically hindered
the transportation efficiency and development of urban rail transit. The limited operating
capacity has led to traffic congestion, especially during the peak hours of the metropo-
lis. The increasing demand for railway transportation has brought tremendous pressure
to the existing railway transportation system, which is expected to alleviate frequent
traffic jams. Efficiency implies shorter travel times, higher track capacity, and reduced
congestion delays.

The two primary ways to improve the efficiency of railway transportation are to in-
crease the speed and the operation density, while the train operation speed has encountered
a bottleneck. The minimum track headway, the optimum distance that the next train can
achieve while following the lead train, is considered one of the major factors restricting
operational capability.

Therefore, transportation efficiency can be improved by increasing the operation den-
sity under the condition of the original railway network, which is achieved by shortening
the tracking interval of the train.

The two-way communication technology with a more significant amount of informa-
tion transmission and fast transmission speed enables the increase of CBTC from a fixed-
block system to a moving-block system. As shown in Figure 1, the CBTC is a “moving-block”
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signaling system, which is based on the “concrete wall” principle, and trains are allowed
to be separated by an absolute-braking distance (where it is assumed that a massive rock
falls in front of the leading train). However, as the trajectory prediction is only determined
by the absolute position of the front train, in order to guarantee safety, the minimum train
separation is decided by the absolute-braking distance, which limits the improvement of
the traffic density.

Figure 1. Concrete and soft wall of CBTC system.

Active communications in the CBTC system cause frequent information exchange
between the control center and trains, including train dynamics and characteristics. This
detailed information can lead to more modest but safe progress, considering train operation,
speed, deceleration capabilities, etc. Therefore, we introduce trajectory prediction into the
soft wall mode, enabling the more advanced calculation that considers that the leading
train is running instead of stationary in the hard wall mode [1].

Most trajectory prediction research focuses on pedestrians, aircraft, automobiles,
and other fields, but the train is a sizeable inertial body and cannot stop as quickly as
it detects danger. Moreover, the CBTC system is designed to be unable to release once
emergency braking is applied under safety considerations, and we should avoid these
situations as much as possible. Hence, one crucial task of our approach is to predict the
accurate and long-term trajectories of the train, which covers the emergency braking time
window of the following train to achieve safe and robust driving.

Another task is to design a dynamic headway system for CBTC based on the predicted
trajectory. It uses the future information to calculate its optimal safe distance relative to
the lead train. Since such a headway is constantly updated, it is considered a dynamic
headway. The dynamic track approach should also consider possible communication
disruptions due to inclement weather or other failures and return gracefully and safely to a
more conservative track without putting any trains at risk [2]. The distinct features of the
proposed system are:

(1) The trajectory prediction part can accurately predict the leading train’s trajectory over
the following one’s emergency braking time.

(2) A dynamic headway policy based on vehicle-to-vehicle and vehicle-to-center commu-
nications results in much smaller distances than existing ones based on fixed-block
and moving-block policies.

(3) A backup switching policy increases gracefully to the new situation without sacrificing
security, such as lost communications.

In summary, the main contributions of this work are as follows:

1. Aiming at the trajectory prediction problem for trains, a data-processing method and a
hybrid prediction model which enable an accurate prediction even when the horizons
are increased to 15 s is established for the first time.
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2. We used the concept of trajectory prediction and moving block and developed a soft
wall control system that substantially reduces the distance between trains

3. In contrast to the traditional moving block, our proposed dynamic headway system
shows reductions in train headway of at least 64% .

The remainder of this paper is structured as follows. Section 2 summarizes the re-
search of headway policy and trajectory prediction in deep learning and the dynamic
headway compared with these headway policies. Section 3 introduces our proposed
dynamic headway policy. Section 4 presents the impact of headway selection on track
capacity. The demonstration experiment of the proposed method is based on the estab-
lished Chengdu Urban Railway simulation track network, and the results and analysis are
presented. Finally, Section 5 includes the conclusions of this work.

2. Related Work

Here, we first present an overview of the dynamic headway policy and optimization
methods in Section 2.1. Much research has been developed on the dynamic headway
optimization of rail transit. We present a review of the trajectory prediction model in
Sectoin 2.2.

2.1. Dynamic Headway Policy and Optimization Methods

Train schedule optimization and operating frequency settings are the directions of
most of the literature. Typically, a regular ride schedule can reduce the total passenger wait
time if the passenger arrivals fit a specific probability distribution model such as a uniform
or Poisson distribution [3]. Khoshniyat and Peterson propose the idea of maintaining a
minimum travel interval concerning travel time, in which the arrival time of the train is not
a fixed size period but leaves a triangular period [4]. A real-time headway control system
for maintaining headway regularity in railway networks is presented by Xun et al. [5].
Xin yang et al. [6] proposed a train scheduling optimization method to reduce energy
consumption and running time. The test on the Beijing subway line shows that their
method can reduce travel time by 3.26%.

When the design of the controller can directly lead to the change of train headway,
the introduction of controlled optimization is practical. Therefore, the controller design
has always been a research hotspot in the train operation control system under moving-
block mode. Li et al. [7] adopted a linear quadratic regular with Gaussian distribution to
design a state feedback control method for metro. Sanchez-Martinez et al. [8] proposed
a mathematical model for holding control optimization to regulate the train following
headway, which takes the dynamic running time of trains into account. Some researchers
put forward the viewpoint of cooperative train control. Dong et al. [9] present cooperative
control methods and corresponding stability criteria for multiple trains under moving-
block signaling systems and proposed corresponding control algorithms established using
Lyapunov and invariant-set theorems. References [10–12] introduced the multi-agent
system control theory into train-coordinated operation. An adaptive coordinated control
algorithm based on the LaSalles invariance principle is adopted in [10] to keep the headway
distances of each train with its neighboring trains stabilized at safe stationary distances.

Given the limited effect of most headway optimization based on the existing moving-
block mode, recent research usually focuses on the control policy of headway. In refer-
ence [2], a dynamic headway regulation framework for a positive train control (PTC) system
was proposed to improve track capacity and safety in railway operation by integrating a
dynamic dispatching model. H Ye et al. [13,14] reported optimal train speed controls of
multiple trains under both fixed-block and moving-block systems. F shi et al. [15] present a
model to minimize the number of train trips and design a heuristic algorithm to maximize
the train headway. Consequently, improved studies considering flexible headways were
proposed in [16,17]. Sangphong and Ratanavaraha proposed a method to determine the
minimum train headway through the train speed and the maximum block length in the
fixed-block system to improve the line capacity as much as possible [18]. Research [19]
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shows a study on the optimization of the train headway in the planning phase under the
planned transportation mode. Xiang Li et al. [20] developed a headway optimization model
based on the proposed concept of measuring the uniformity of headway distribution.

It is worth mentioning that the current information of adjacent vehicles is used for
processing, which is received by the rear train after the communication delay in most of
the literature mentioned above. The optimization effect of headway can be significantly
improved considering more information containing future status and characteristics of
trains. Therefore, we introduce a hybrid trajectory prediction model into our dynamic
headway policy.

2.2. Trajectory Prediction

As an effective tool for mining large amounts of data, neural networks have been
widely used in data-driven trajectory prediction. With advances in artificial intelligence,
various Deep Neural Networks (DNN) have been implemented on trajectory prediction.
Among these, Recurrent Neural Networks (RNNs) have been designed to deal with time
sequence data based on the recurrent architecture in the network. Because of the dynamic
nature of the traffic system, RNN is particularly well-suited to capture the temporal and
spatial evolution of traffic flow, capacity, and speed, and has certain advantages when
learning the nonlinear properties of time sequences.

Kong et al. [21] present an innovative approach by utilizing the deep-stacking network
method for hazardous risk based on multisource data monitored by the Internet of Things.
Liu et al. [22] proposed the spatial temporal-RNN (ST-RNN) algorithm, which uses the
historical spatiotemporal data of moving objects to train the RNN network to predict the
location of the user at a certain point in time. Al-Molegi et al. [23] improved the algorithm,
and their proposed Space Time Features-based-RNN (STF-RNN) algorithm achieved better
prediction accuracy. Research [24,25] used an LSTM-based structure with time serial states
of the target vehicle and ego vehicle.

Berenguer et al. [26] extend the Social-LSTM model with a context-pooling layer. Li
Z et al. [27] developed a long short-term memory network to build the train dynamic
model in a nonparametric way. The Soial GAN model was proposed in [28] by combining
tools from sequence prediction and generative adversarial networks: a recurrent sequence-
to-sequence model observes motion histories and predicts future behavior. Jin et al. [29]
propose a novel planar flow-based variational auto-encoder prediction model (PFVAE),
which uses the LSTM as the auto-encoder and designs the variational auto-encoder (VAE) as
a time series data predictor to overcome the noise effects. Chen et al. [30] propose a stacked
Bidirectional Gated Recurrent Unit neural network model to predict the traffic speed of
the expressway over different estimation time intervals. Zhao, T. et al. [31] model the
interactions and constraints jointly within a Multi-Agent Tensor Fusion (MATF) network
that from the scene context and the stochasticity network decodes recurrently to multiple
agents’ future trajectories. Deo, N. et al. [32] proposed an LSTM encoder–decoder model
that uses convolutional social pooling as an improvement to social pooling layers for
robustly learning interdependencies in vehicle motion.

3. Train Dynamic Headway Policy

In this section, the dynamic headway policy architecture is proposed. The framework
comprises three parts, as shown in Figure 2, which are the trajectory prediction, headway
calculation, and headway policy switch. The details of the system architecture and functions
are described as follows.
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Figure 2. Headway control loop.

3.1. Trajectory Prediction of Leading Train

Traditional deep-learning algorithms, such as RNN, are calculated sequentially, which
means the relevant algorithms can only be calculated according to the order of the internal
structure of the model. In such algorithms, the results of time t depend on the value of
the previous time, which limits the parallel ability of the model with the information loss
in the calculation process. We propose a hybrid LSTM model with a KF filter based on
our previous work [33]. LSTM is a particular RNN network used to solve the problems
of gradient disappearance and gradient explosion in long sequence training. At the same
time, the Kalman Filter (KF) is a prediction method based on linear regression, which is
commonly used in the field of mobile robots. Our main idea is to integrate both advantages
of KF and LSTM in exploring the train’s trajectory prediction, in which the KF model is
used to extract the train’s local data features, whereas the LSTM model is applied to process
time-series data and learn the long-term dependencies of train trajectory data. The structure
of the trajectory predictor is shown in Figure 3.
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Figure 3. The process of trajectory prediction.

In the LSTM structure, the input gate control updates and stores information, the forget
gate control deletes information, and the output gate controls the final unit output.

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)

it = σ(Wi · [ht−1, xt] + bi) (2)

ot = σ(Wo[ht−1, xt] + bo) (3)

The value C̃t is the candidate cell state which can be represented as:

C̃t = tanh(WC · [ht−1, xt] + bC) (4)

Ct is the new state combined with the previous Ct−1 and the candidate states C̃t.

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

Finally, the output gate decides the final output from the cell state:

ht = ot ∗ tanh(Ct) (6)

where ∗ denotes the Hadamard product, and σ denotes the standard logistics sigmoid
function, ft, it, ot are the output of different gates, Ct is the new state of memory cell,
C̃t is the final state of the memory cell and ht is the final output of the memory unit.
W f , Wi, Wc, Wo denote the weight matrices in each layer.

Kalman filtering is a linear optimal filtering algorithm suitable for linear Gaussian
systems and does not need to save past measurement data. It uses the current, previous data,
and system state equation estimation to correct and predict the new state estimation value.

It is assumed that the state of the train’s navigation track at time t is:
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We use the state variable matrix xk(t)] to represent the state of the train k at time t.
After δt, the current position and velocity are:

xk(t) =
[

sk(t)
vk(t)

]
(7)

sk(t) = sk(t− 1) + vk(t− 1)× ∆t + uk(t)×
∆t2

2
(8)

vk(t) = vk(t− 1) + ut × ∆t (9)

The model state equation and measurement equation are:

X̂−k (t) = Fk(t)X̂k(t− 1) + Bk(t)uk(t) (10)

Zk(t) = HkXk(t) + w (11)

where Fk(t) denotes state transition matrix; Bk(t) denotes the control matrix; uk(t) repre-
sents the influence of the control quantity; ∆τk means the sampling interval for train k;
X̂−k (t) represents the state at time t based on the prediction of the estimated state at time
t− 1.

The correction steps of the Kalman filter are as follows:

P−k (t) = Fk(t)Pk(t− 1)Fk(t)T + Q (12)

Zk(t) = HkXk(t) + w (13)

X̂k(t) = X̂−k (t) + Kk(t)
(
Zk(t)− HkX̂−t (t)

)
(14)

Kk(t) = P−k (t)HT
k

(
HkP−k (t)HT

k + R
)−1

(15)

Pk(t) = (I − Kt(t)Hk)P−k (t) (16)

where Pk is the covariance matrix, Zk(t) is the train position we collected from Automatic
Train Operation (ATO), H represents the observation matrix, w is the observation noise.
X̂k(t) is the non-best estimate, X̂k(t) is denoted as the best estimate.

In this hybrid prediction model, the trajectory sequence generated by LSTM’s prelimi-
nary trajectory prediction is considered to be the observations in the KF model. This part
of data will replace the original Xk(t) of the KF model and integrate with the estimated
value of KF. Then, the Kalman filter will filter the predicted trajectory sequence to produce
a more accurate and optimal estimation of Spre.

3.2. Dynamic Headway Model

We calculate the minimum distance between two trains that are believed to avoid
collision. In our calculation, the leading train i and the subsequent train j are on the same
track segment K with v1 and vk running in the same direction. Suppose that in the current
train-to-train communication, the time the leading train finally sends information to the
following train is t = 0. The following train receives the information and applies the service
deceleration brake ajmax after the communication delay of tjb. The braking of the following
train is considered conventional service braking. The braking command is issued from the
control system and reaches after a delay jbrake starts to act on the train, and train j starts to
slow down at time tjd. Time tjstop is the time from the complete braking of the following
train to its stop.
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Based on the above description, we can obtain the deceleration rate of the following
train tj(T) in this worst case, as follows:

aj(t) = ak +


aj(0) if t ≤ tjc
aj(0) + jerk j ×

(
t− tja

)
if tjc < t ≤ tjd

aj max if t > tjd

(17)

Kk(t) = P−k (t)HT
k

(
HkP−k (t)HT

k + R
)−1

(18)

ak = 32.2 sin Gk +
67.2
Rk

(19)

tjb = tja + tjdriver = tcomm + tjdriver (20)

tjc = tjb + tjbrake = tcomm + tjdriver + tjbrake (21)

tjd = tjc +
ajmax − aj(0)

jerk j
(22)

where ak in (19) is used to compensate for the impact of track conditions of segment k;
the track grade is Gk and curvature radius Rk on braking rates; jerk j is defined as the
derivatives of accelerations of the following train; tjbrake is the response time of the brake
system of the following; tcomm is the delay of the active communication system; tjdriver is
the driver reaction time for the following train.

During train operation, the headway between the following train and the leading train
shall always be more significant than the length of the leading train. Therefore, we add this
constraint to the minimum headway and convert the calculation of the above headway into
the following optimization problem. The minimum headway between the above trains can
be generated by solving the following optimization problem:

min x(0)
s.t. x(t) = x(0) + Di(t)− Dj(t) ≥ Li

Di(t) = Spre

Dj(t) =

{∫ t
0

(
Vj +

∫ τ
0 aj(ξ)dξ

)
dτ if t ≤ tj stop

Dj
(
tistop

)
if t > tj stop

(23)

where Di(t) and Dj(t) are the predicted distance of the leading train and the following
train, respectively; Li is the length of the leading train. The problem can also be written as:

min x(0) = max
{

Dj(t)− Di(t), 0
}
+ Li (24)

for all t >= 0. An explicit expression for minx(0) can also be derived from the above integrals.
It is worth noting that since the trajectory prediction has errors, we need to add a

safety margin Sm according to the result of trajectory prediction or compensate for the
influence of other unknown factors, such as train positioning error and non-time-varying
track friction.

The above scenario calculation is based on the normal condition of train communi-
cation. This method may lead to an inevitable collision in the case of communication
interruption or failure. Following the fault-oriented safety policy, we consider that if the
train stops receiving communication information or the system fails, the dynamic headway
will be degraded to the conservative moving-block mode of the concrete wall. Algorithm 1
shows the calculation and iteration process of numerical headway.
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Algorithm 1 Dynamic Headway model.

Input: observed trajectory data of trains: Lobs =
[
(

xTobs−M, vTobs−M, uTobs−M
)
, . . . ,

(
xTobs , vTobs , uTobs

)
], where M is the historical time

steps.
Output: The headway x0.
1: Initialization: Set the state the previous time t = 0 and Di,j,k = 0
2: for i ≤ Len(Lobs)−M do // Len is the function to get the length of the input
3: Vi = {(xi, vi, ui), . . . , (xi+M, vi+M, ui+M)}
4: for i ≤ Len(Vi) do
5: Y1i = LSTM(Vi) by Formula (1)–(6)
6: for i ≤ Len(Vi) do
7: Y2i = KF(Y1i) by Formula (7)–(16)
8: while vj(t) > 0 do
9: Update the deceleration rates by Formula (17) and travel distances of the two trains

at time t;
10: Compute Dj(t)− Di(t)
11: if Dj(t)− Di(t) > 0 and Dj(t)− Di(t) + Li > Di,j,k then
12: Set Di,j,k = Dj(t)− Di(t) + Li

13: Update t = t + Ts

14: Return Di,j,k

4. Experiment and Discussions

We conduct a comprehensive experiment and analysis, including the effect analysis
of four different models of trajectory prediction, as well as the comparative study of the
proposed dynamic headway strategy and the moving-block mode with the concrete wall.
Firstly, we introduce the train track data set used in the experiment and the data processing,
and give the influence of this data-processing method on the track prediction results. Next,
we compare and evaluate the trajectory prediction results of our LSTM-KF model and other
models based on a set of evaluation metrics. Finally, we combine the trajectory prediction
model with the dynamic headway model to compare the soft wall moving-block mode and
concrete wall moving-block mode based on trajectory prediction.

4.1. Data Processing

This study uses Chengdu Metro Line 6 data to generate our model. In order to
accurately record the potential patterns of train operation, train data are collected at
different times on the same track. The minimum and maximum velocities for the raw data
sampling at 200 ms are 0 and 22.15 m/s, respectively. Therefore, we set the time of track
prediction as when the train can cover the service breaking from the maximum speed in
the next 15 s.

In our previous work, we made a preliminary data mutual promotion that the position
data is processed within walking distance within the time interval. In order to test the
generalization ability of the trajectory prediction model, these data sets are divided into
two parts: the training set and the test set, and there is no data intersection. For example,
80% of the initial data of one dataset are used for training purposes, and the remaining
20% of the data are organized in the test set. Although we can get an accurate prediction
when the future step size is less than 20 (the prediction time is less than 4 s), the prediction
time of 15 s requires that the prediction step size be set to 75. In the simulation test in our
debugging stage, we find that the prediction result in step 75 deviated significantly from
the actual data, as shown in Figure 4a. Therefore, we preprocess the data to convert the
original data set, as shown in Figure 5.
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Figure 4. The prediction error for 15 s. (a) The prediction error of 75 steps for 15 s. (b) The prediction
error of 15 steps for 15 s.

Figure 5. Data pre-processing procedure.

As shown in Figure 5, we detect the abnormal data (such as the speed suddenly
dropping to 0) and interpolate the abnormal data points based on the nearby data. Then,
these data are processed by data standardization because the difference in single-column
data is a large gap. We normalized the data to reduce the impact of numerically large
data on model learning. Finally, we convert five 200 ms data into one 1 s data, which
means that our prediction of the future can be shortened from 75-time steps to 15-time
steps. The prediction error for these processed data is shown in Figure 4b. The MAE value
is calculated, detailed data as shown in Table1; the proposed data process method achieved
a more accurate and more minor error.

Table 1. Prediction error for the processed data.

Error Maxmum (cm) Minimum (cm) Mean Error (cm)

75 steps—15 s 1718 −682.12 51.00
15 steps—15 s 165.31 −150.83 9.38

4.2. Comparative Analysis of Experimental Results

In our model parameter setting, we input 50 steps of historical data information to
predict the position of N time steps in the future, where N changes from 1 to 15. We use three
evaluation indicators to evaluate the accuracy of the four model prediction trajectories,
as shown in Table 2. All the models in our experiment were set to the same network
structure except the LSTM model. Each model includes an input layer, standardization
layer, full connection layer, and output layer. RNN, GRU, and LSTM models are all set as
three hidden layers, each layer contains 128 cells. In order to improve the generalization
ability of the prediction model, a drop layer is added between the hidden layers.
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Table 2. Trajectory prediction.

Indicators RMSE MAE MAPE

Model RNN GRU LSTM LSTM-KF RNN GRU LSTM LSTM-KF RNN GRU LSTM LSTM-KF

1 26.5 22.2 34.5 24.3 16.0 16.8 28.0 19.9 1.9 2.0 3.4 2.4
2 27.5 16.2 23.7 25.3 21.8 13.7 18.0 19.9 2.7 1.7 2.2 2.4
3 27.1 19.4 27.0 27.2 23.6 17.4 21.0 21.2 2.9 2.1 2.6 2.6
4 41.0 23.6 29.8 29.8 35.6 21.2 25.2 24.2 4.3 2.6 3.1 3.0
5 50.4 29.7 37.0 35.1 44.1 27.2 32.0 29.4 5.4 3.3 3.9 3.6
6 55.0 33.6 34.5 37.4 43.3 30.6 29.2 31.7 5.3 3.7 3.6 3.9
7 62.8 40.0 36.7 40.0 54.4 34.5 30.8 34.0 6.6 4.2 3.8 4.2
8 72.8 51.9 44.6 44.9 59.0 47.3 37.7 38.2 7.2 5.8 4.6 4.7
9 83.1 59.7 49.8 50.1 65.0 54.6 41.3 42.0 7.9 6.7 5.0 5.1

10 93.2 66.5 57.3 56.3 76.2 59.4 47.8 47.0 9.3 7.2 5.8 5.7
11 101.6 73.5 67.3 63.7 82.6 64.8 57.5 53.6 10.1 7.9 7.0 6.5
12 112.0 83.9 67.0 69.2 92.1 73.3 55.0 57.9 11.2 8.9 6.7 7.1
13 119.4 89.0 76.6 75.8 95.7 77.1 64.1 63.3 11.7 9.4 7.8 7.7
14 122.1 99.5 80.4 81.8 100.3 86.8 66.4 68.1 12.2 10.6 8.1 8.3
15 137.6 106.0 95.2 89.7 112.9 90.7 80.8 74.7 13.8 11.1 9.9 9.1

Given 50 historical points, we report the Root Mean Square Error (RMSE), MAE,
and Mean Absolute Percentage Error (MAPE) for the future 15 steps (15 s). The results in
Table 2 demonstrate the superior performance of the LSTM-KF model in capturing long-
range dependencies. In our previous work, we compared our proposed model with several
standard deep learning models, such as RNN, GRU, and LSTM. When the prediction time
step is increased to 15 steps, the MAPE of the lstm-kf model is 9.1%, while that of RNN
and LSTM are 13.8% and 11.1%, respectively. It can be observed that the lstm-kf model has
improved in MAE, RMSE, and MAPE compared with the LSTM model. Our model has
apparent advantages in dealing with the long-time problem of train trajectory prediction.

According to the approach proposed in Section 3, We use real data to simulate the
motion process of the pilot train and establish a dynamic model to control the operation
of the rear vehicle. The simulation runs under the dynamic headway model and the
traditional moving-block model, respectively, and the results are shown in Table 3.

Table 3. Performance comparsion.

Case Case 1 Case 2

Performance Indicator Traditional Moving Block Dynamic Headway Traditional Moving Block Dynamic Headway

Track distance (m) 184.64 74.66 319.22 113.85
Min Track distance (m) 99.69 27.52 106.17 59.75

Mean Headway (m) 146.15 149.99 220.34 221.18
Max Headway (m) 300.00 306.53 415.49 696.43
Min Headway (m) 99.68 98.48 102.20 78.60

Mean Velocity (m/s) 6.16 6.66 11.84 10.51
Max Velocity (m/s) 12.99 13.19 17.79 21.93
Min Velocity (m/s) 0.00 0.00 1.00 1.00

In order to show the change of train headway in Table 3 clearly, the headways between
two train trips in the optimized dynamic headway model and traditional moving block
are calculated in Figure 6, where each time unit represents the operation time (s) in the
experiment, and the track distance represents the distance (m) from the leading train minus
the length of the body of the leading train. Comparing the dynamic headway mode and
the traditional moving-block mode in the two cases, we find evidence to demonstrate the
advantages and improvements of our proposed model. The train track distance of the
proposed model could reach 27.5 m, while the minimum track distance of the traditional
moving block is 100 m.
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(a) (b)

Figure 6. The comparison of dynamic headway model and the traditional moving block. (a) The
track distance between trains. (b) The track distance between trains.

In case 1, the mean headway, max headway, and mean velocity of the proposed
dynamic headway model are slightly higher than the traditional moving-block mode, while
the actual distances between two trains of the dynamic headway model are much lower
than the traditional moving-block mode.

A more detailed observation can be obtained from Figure 7; the following train runs
faster under the dynamic headway policy than in the traditional moving-block mode.

Figure 7. Illustration of comparison between the dynamic headway and the traditional moving block.

Figure 6a shows that the real-time interval between the train and the leading train
under the dynamic headway model is smaller than the traditional moving block, which
proves that our method reduces the train-tracking distance and achieves higher density
security tracking. In this case, case 2, the headway of our proposed model is 67% higher
than the traditional moving-block model, and the actual distance of the dynamic headway
model is 64.33% less than the traditional method. As shown in Figure 6, the actual dis-
tance between the trains under the dynamic headway model is presented with a trend of
monotonous decline and rise as the increasing and decreasing of the interval between the
gap between these two methods. The effect of the model in the case 1 experiment is not
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as prominent as case 2. The main possible reason is that the leading train in case 2 has a
higher velocity, and the trajectory prediction can better compensate for the position and
movement within the prediction time. In other words, our model is more efficient under
higher-speed operating conditions.

The results indicate that the dynamic headway model based on the LSTM-KF trajectory
prediction can improve the headway and reduce the track distance. The model achieved
consistent and better results than the traditional moving-block mode. The results show that
integrating long-time accurate trajectory prediction into headway calculation can generate
a more advanced dynamic headway model.

5. Conclusions

In this study, a dynamic headway model based on the LSTM-KF trajectory prediction
model is proposed for moving-block mode in the CBTC system. The future trajectory
prediction of the train can be improved by the hybrid model that combined the LSTM of a
deep learing model and the KF of a model-based method. Moreover, a dynamic headway
policy for CBTC is proposed. We showed how to incorporate dynamic headway into the
moving-block mode of trains to shorten train spacing and minimize running time.

Since the dynamic headway relies on communications, we also address the situation
of temporary or permanent communication or permanent communication loss. We use
the simulation model of Chengdu Metro Line 6 to demonstrate our proposed method.
The results show that the running distance between trains is significantly shortened due to
the use of our dynamic headway model. The track distance between two trains achieved
a reduction of 69% on average. The dynamic headway model is believed to be also
effective when considering emergencies due to the combination of deep learning and model-
based methods for trajectory prediction and the security-oriented headway algorithm.
Future works will concentrate on the security verification of the proposed model and some
simulation-based test and algorithm optimization methods.
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