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Abstract: This study investigated the effect of electromagnetic shunt dampers on the resonance
amplitude reduction in a superconducting magnetic levitation system. There are two types of
electromagnetic shunt dampers, series type and parallel type, depending on the configuration of the
electric circuit, and their damping characteristics may differ depending on the external resistance
value in the circuit. In this study, after discussing the vibration-suppression effects of both types
according to the governing equations, vibration experiments were conducted using both dampers
with different resistance values. As a result, it was confirmed that, for the larger resistance value,
the amplitude reduction effect is smaller in the series-type damper, while it remained high in the
parallel type. We also performed numerical integrations, including the nonlinearity of magnetic force
in the superconducting magnetic levitation system. As a result, it was numerically confirmed that the
parallel-type damper can also be expected to reduce amplitude at a resonance caused by nonlinearity.

Keywords: amplitude reduction; electromagnetic shunt damper; electromechanical coupling;
superconducting magnetic levitation; nonlinear resonance

1. Introduction

The superconducting magnetic levitation system, which consists of a superconductor
and permanent magnets, is capable of stable levitation without control [1–3]. Therefore,
compared to levitation systems that require a control system, there are possible advan-
tages, such as the simplification of the system and improvement in maintainability. It
is also characterized by a high energy efficiency due to non-contact. Taking advantage
of these features, it is expected to be applied to formation flight in space and flywheel
systems for power storage [4,5]. However, since the damping is small in this non-contact
system, the levitated body can vibrate greatly due to disturbance. Further, since the elec-
tromagnetic force generated from the superconductor is nonlinear, complicated vibration
can occur [6–13]. Therefore, when developing these applications, it is important to study
methods of suppressing vibration [14].

An electromagnetic shunt damper is a promising method of suppressing the vibration
of the levitated body by converting the vibration energy of the target into the electrical
energy of an electric circuit [15]. Since this damper can work without contact, it is suit-
able for non-contact superconducting magnetic levitation systems [16]. Moreover, this
damper is a kind of dynamic absorber that does not require control, making it suitable
for superconducting magnetic levitation systems that do not require control. Its electric
circuit consists of a coil, capacitors, and resistors. There are two types of electromagnetic
shunt damper, series type and parallel type, depending on how the electrical elements are
assembled [17,18].

In our previous study [18], it was confirmed by numerical calculations and experiments
that, when a series-type electromagnetic shunt damper is applied to the superconducting
magnetic levitation system, the optimum resistance value is minute and even a small
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deviation of the resistance from its optimum value reduces the vibration damping effect.
However, it was also confirmed by numerical calculations that the damping effect is
maintained even for a larger resistance value in the case of parallel-type shunt dampers.
The latter finding has not yet been experimentally verified.

Therefore, this study experimentally verified whether the parallel-type electromagnetic
shunt damper could reduce the primary resonance amplitude of the superconducting
magnetic levitation system, while discussing the results and comparing them with those of
the series type in terms of their vibration reduction effects. It also numerically investigated
the effectiveness of those two types of dampers in reducing the amplitude of nonlinear
resonance caused by nonlinearity in the magnetic force.

2. Theoretical Studies
2.1. Modeling, Mechanism, and Governing Equations

Figure 1 shows our analysis model of a levitation system consisting of a superconduc-
tor, a permanent magnet, and an electromagnetic shunt damper. The system is subjected
to periodic vertical vibrations of a0 = Acosωt on a shaking table, where A and w are the
amplitude and the angular frequency of excitation, respectively. As the superconductor
is cooled with liquid nitrogen, the magnet is held at a height z0 from the surface of the
superconductor, and the magnet, after being released, is balanced with its own weight at
the initial levitation height zst. Let z be the vertical displacement of the magnet from that
initial levitation position, and x be its relative displacement, as seen from the shaking table.
k1 denotes the spring constant obtained from a linear approximation of the electromagnetic
force acting on the magnet. The mass and the magnetic moment of the magnet are denoted
by m and Mm, respectively, and the magnetic permeability of the vacuum is denoted by µ0.
φ is an important parameter in this study, denoting the electromechanical coupling coeffi-
cient between the magnet and the electric circuit of the shunt damper. Figure 2 shows two
types of LCR shunt circuits, series and parallel. i denotes the current flowing in the circuit;
Vemf is the electromotive force induced in the coil. L, RL, and C denote the inductance of
the coil, the internal resistance, and the electric capacity of the capacitor, respectively. The
external resistance is denoted by R0. In the optimum design of these circuit constants, the
existence of this external resistance cannot be ignored in an actual system and can have a
great influence.
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Figure 2. Two types of LCR shunt circuit. (a) series type; (b) parallel type.

The mechanism for suppressing vibration with a shunt damper is as follows. First,
the electromotive force is induced in the coil by the time change in the magnetic flux
penetrating through the coil due to the vibration of the magnet and the current flows in
the circuit. As a result, the external magnetic field generated by the coil current causes the
magnet to receive a force that suppresses its vibration, and its amplitude decreases.

The variables of time t, displacement x, and current i are nondimensionalized below
by (m/k1)1/2, A, and A(k1/L)1/2, respectively. The dimensionless governing equations for x
and the current i can be written as follows for the series-type and parallel-type dampers [6].
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where dimensionless parameters are given as

v = ω/
√

k1/m, γx = cM/2
√

mk1, γi = R
√

m/k1/2L,

γ0 = RL
√

m/k1/2L, γ1 = L
√

k1/m/2RL,

α = L
√

k1/m/RL, β =
√

RL/Ro,

λ =
√

m/LCk1, ψ = φ/
√

k1L.

where cM denotes the coefficient of magnetic damping. It should be noted that the motion
of the magnet and the current are coupled through the term including the dimensionless
coupling coefficient ψ. The current in the series-type circuit is coupled with the acceleration
of the magnet, while the current in the parallel-type circuit is coupled with the velocity as
well as the acceleration of the magnet. ν denotes the nondimensional excitation frequency.
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2.2. Numerical Integrations

The dynamical behaviors of the magnet under vertical excitation and the current
flowing in the shunt circuit were investigated by numerically integrating (1) and (2) for the
series type and (1) and (3) for the parallel type, using the 4th-order Runge–Kutta method.
The parameters used in the numerical calculation correspond to the parameters used in the
experiment. As reported previously [17,18], it was numerically confirmed that the parallel
type also has the same damping effect as the series type.

In this study, we further examined the dependence of the damping effect of the
two types of dampers on the external resistance value. Figure 3 shows the relationship
between the external resistance value and the maximum amplitude of the magnet. It can
be found that as the external resistance value increases, the damping effect of the series
type decreases, while the damping effect of the parallel type is robustly maintained. This
tendency does not change even if Ro = 10 Ω or much greater. In the case of the parallel
type, the dimensionless amplitude remains almost unchanged at about 2, while in the case
of the series type, it continues to gradually increase, reaching a dimensionless amplitude of
about 10 at 100 Ω. As the resistance further increases, it tends to approach a value of just
under 12 without the damper.
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without damper.

2.3. Some Discussions

In general, the fixed-point theory is often used in the design of dynamic absorbers
to optimally adjust the stiffness and damping coefficient parameters. This theory uses
two fixed points on the frequency response curve that are independent of these parameters
to find the optimal values of the parameters and suppress the amplitude in the frequency
band near the resonance point of the main system. It consists of two conditions: the optimal
tuning condition and the optimal damping condition. The optimum tuning condition
provides the natural frequency of the subsystem so that the amplitudes of the two fixed
points of the frequency response curve are the same. The optimum damping condition is
the one that provides a resistance value such that the amplitude is the maximum at the fixed
point. Since these two fixed points also exist in the case of a series-type shunt damper, the
circuit parameters can be selected using this theory. According to this result, when applied
to the superconducting magnetic levitation system in our laboratory, the optimal external
resistance is a small value of sub ohms [16,18]. In reality, it is quite difficult to achieve
this condition at this optimum value, considering the internal resistance of the circuit and
the increase in resistance due to the heat generated during use. Figure 3, shown earlier,
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illustrates the change in the amplitude reduction effect when the resistance value is higher
than the optimal value. In the case of the series type, this effect is sensitive to the resistance
value, resulting in a decrease in damping performance as the resistance value increases.

Considering only the circuit system without the levitation system, a larger circuit
resistance value results in a greater dissipation of electrical energy, leading to the suppres-
sion of electrical vibration. On the other hand, to suppress the vibration of the levitation
system, a sufficient current must flow through the coil of the circuit system to produce a
large electromagnetic force acting on the levitation magnet and, from this perspective, the
smaller the electrical resistance, the better. Considering the equations, the last term, ψi, on
the left-hand side in the equation of motion in Equation (1) represents the electromagnetic
force acting on the levitation magnet due to the coil current, and this force suppresses the
vibration of the magnet. On the other hand, the last term −ψ

..
x on the left-hand side of the

circuit equation for a series-type shunt damper in Equation (2) corresponds to the periodic
fluctuations in the induced voltage caused by the time variation in the coil flux due to
the oscillation of the levitation magnet, and the current oscillation caused by this voltage
fluctuation is attenuated by the second term on the left-hand side, corresponding to the
voltage drop across the resistance. The coefficient γi in this second term is a dimensionless
parameter that is proportional to the resistance, which is the sum of the external resistance
and the internal resistance of the circuit. Therefore, if the resistance is too large, the current
amplitude in Equation (2) will be small. Thus, the electromagnetic force term in Equation (1)
will also be small, lowering the damping effect. Furthermore, if the goal is to balance the
vibration-suppression effect in a certain frequency band, as per the guidelines for optimal
design based on the fixed-point theory, an appropriate resistance value should be set for
the system as a whole. However, in the case of series-type shunt dampers, the tolerance for
deviation from the optimum value of the resistance is quite small.

On the other hand, in the case of the parallel-type shunt damper shown in Figure 2,
even if the external resistance is so large that the current flowing through it is small, the
magnitude of the displacement current flowing through the capacitor connected in parallel
with the resistance is maintained without a decrease. Thus, unlike the series type, the
magnitude of the current flowing through the coil is also maintained without decreasing
for large external resistance, leading to there being no reduction in vibration suppression.
The larger selectable range of the external resistance, Ro, is considered advantageous for
the parallel type in terms of vibration-suppression design.

3. Experimental Verification of Primary Resonance Suppression
3.1. Experimental Setup and Measurement Method

Figure 4 shows a schematic diagram of the experimental setup. An Nd-based, cylindri-
cal permanent magnet with a mass of 33.5 g, a diameter of 19.0 mm and a height of 14.0 mm
was stably levitated above a GdBCO-type cylindrical superconducting bulk material with
a diameter of 67.4 mm and a height of 15.6 mm after field-cooling. The initial levitation
height was 9.45 mm from the surface of the superconductor. The shaking table was op-
erated at various frequencies to vertically vibrate the superconducting bulk, resulting in
the vibration of the magnet. The damper coil consisted of 234 turns of 1.4-mm diameter
wire, with an inner diameter of 25.0 mm, an outer diameter of 55.0 mm, and a height
of 26.0 mm. Its inductance was 1.50 mH and its resistance was 0.50 Ω. The capacitance
of the capacitor was 20.8 mF. Two values, 0.15 Ω and 99.4 Ω, were used as the external
resistance. In order to check whether the vibration suppression was achieved, the value
of 0.15 Ω was adopted as the value obtained by the optimization based on the fixed-point
theory described in Section 2.3, when a series-type electromagnetic shunt damper was used.
Furthermore, in order to verify whether the amplitude reduction effect was maintained,
unlike the series type, compared to deviations from that value, the value of 99.4 Ω was
adopted as an extreme value at which both types of differences in the effect described in
Section 2.2 are likely to appear in experiments. The parameter values of the experiment are
listed in Table 1.
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Figure 4. Schematic diagram of the experimental setup.

Table 1. Parameter values used in experiments.

m [kg] cM [N·s/m] Mm [Wb·m] A [mm]

0.0335 0.423 1.01× 10−6 0.1

z0 [mm] zst [mm] L [H] RL [Ω]

10.0 9.45 1.50× 10−3 0.500

C [mF] µ0 [H/m] φ [V·s/m]

20.8 1.26× 10−6 1.18

The displacements of the magnet and the base were measured with laser displacement
meters. The current flowing through the circuit was evaluated by measuring the voltage
across the coil.

3.2. Experimental Results

Figures 5 and 6 show the dimensionless frequency responses of the amplitude of
the magnet obtained in the experiment with the series-type and parallel-type dampers,
respectively. They plot the amplitude of the vibration component at excitation frequency.
Each figure shows a comparison of the results obtained when the external resistance is
Ro = 0.15 Ω and Ro = 99.4 Ω and when there is no damper. According to Figure 5, the
reduction rate of the maximum amplitude with the use of the series-type damper compared
to that without the damper is 74.3% with Ro = 0.15 Ω, but the amplitude does not decrease
with Ro = 99.4 Ω. On the other hand, Figure 6 shows that the reduction rate of the maximum
amplitude with the use of the parallel-type damper is 69.6% with Ro = 0.15 Ω, and 80%
even with Ro = 99.4 Ω.
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4. Numerical Prediction of Nonlinear Resonance Suppression

In the above experiments, the excitation amplitude A was 0.1 mm. We further in-
vestigated the effects of increasing the excitation amplitude by carrying out a numerical
calculation with a larger excitation amplitude, A = 1.0 mm. Figures 7 and 8 show the
numerical results of the motion of the magnet under the series-type and parallel-type
dampers with Ro = 0.15 Ω, respectively. In both figures, (a) and (b) show the time history of
the motion and its frequency analysis results, respectively. There is a marked difference be-
tween the time histories of the series type shown in Figure 7a and the parallel type shown in
Figure 8a. According to the frequency analysis results in (b) of both figures, the latter shows
a vibration waveform with a single frequency of 1.6, which is the excitation frequency,
while the former consists of two vibration components, one with an excitation frequency of
1.6 and the other with a frequency of 8, which is half of the excitation frequency of 1.6. The
vibration component at one half of the excitation frequency is caused by the nonlinearity of
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the electromagnetic force due to superconductivity. This is a type of nonlinear resonance
called a subharmonic resonance. Thus, with a larger excitation amplitude, the nonlinear
resonance can be confirmed near ν = 1.6 with the series-type damper. However, these
nonlinear resonances of the subharmonic component were not found with the parallel-type
damper. These numerical predictions imply a possible amplitude reduction in nonlinear
resonance with the parallel-type damper.
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The mechanism of subharmonic resonance generation can be explained as follows,
based on Equation (1). The electromagnetic force acting from the superconductor to the
is levitation magnet, described by the third term on the left side of Equation (1), has a
nonlinear term of the second order of the magnet displacement x. This displacement
generally has a vibration component at excitation frequency ν and a vibration component
at natural frequency Ω. The second-order nonlinear term described above produces a
vibration component at frequency sin(ν−Ω)t, which is obtained by multiplying these
two components, sin νt × sin Ωt. This frequency ν − Ω takes the value of the natural
frequency when the excitation frequency is near twice the natural frequency component,
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and if this is viewed as the excitation term, resonance can occur at this time. This is a
resonance at half the excitation frequency and is called subharmonic resonance. When a
shunt damper is added to our original levitation system to make it a 2-DOF system, the
smaller natural frequency is about 0.8 in the dimensionless value, which means that this
nonlinear resonance can occur at a non-dimensional excitation frequency ν of around 1.6,
which is twice that value.
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Figure 8. Numerical results of the motion of the magnet above the superconductor excited with the
amplitude A = 1.0 mm and frequency ν = 1.6 using the parallel-type shunt damper, showing no
subharmonic resonance. (a) Time history; (b) FFT.

Furthermore, numerical calculations were carried out when the resistance value Ro
was increased to investigate the damping effect of the series and parallel types on the
subharmonic resonance. Figure 9 plots the maximum value of the vibration component at
half the excitation frequency against an increase in resistance Ro for the series and parallel
types, respectively. It can be seen that, as the resistance value Ro increases, the damping
effect of the series type decreases for the harmonic resonance, while the damping effect of
the parallel type is maintained.
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5. Conclusions

This study investigated whether series-type and parallel-type electromagnetic shunt
dampers can reduce the primary resonance amplitude of the superconducting magnetic
levitation system. The difference in the reduction effect depending on the value of the
external resistance of the circuit was discussed based on equations and experimentally
verified. Furthermore, the effectiveness of those two types of dampers in reducing the
amplitude of the nonlinear resonance caused by the nonlinearity of the magnetic force was
also numerically investigated. The conclusions are summarized as follows.

(1) With the series-type damper, the reduction rate of the resonance amplitude reached
74.3% with an external resistance Ro = 0.15 Ω, while the reduction effect was not
obtained with Ro = 99.4 Ω.

(2) With the parallel-type damper, the reduction rate of the resonance amplitude reached
69.6% with an external resistance value Ro = 0.15 Ω, and a reduction rate of up to 80%
was obtained even with Ro = 99.4 Ω. Unlike the series-type damper, the experiments
confirmed that the parallel-type damper can maintain the effect of reducing the
resonance amplitude even if the external resistance of the circuit is larger.

(3) It was confirmed by numerical calculation that the parallel-type shunt damper can
also be expected to reduce amplitude at resonances caused by the nonlinearity of the
magnetic force. It was also confirmed by numerical calculations that the damping
effect on subharmonic resonance when the external resistance Ro is increased is
reduced in the series type but maintained in the parallel type.

Future work will include a parameter optimization of the parallel-type shunt damper.
To this end, it is necessary to find guidelines for suppressing the vibration of the mechanical
system by finding the natural vibration modes of the problem, in which the velocity term
contributes to the coupling of the mechanical and electrical systems. Another possible
approach is the analysis of equations with frequency-dependent parameters obtained by
Laplace transform. These methods are currently under investigation.
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