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Abstract: A growing interest in Electromechanical Brakes (EMBs) is discernible in the automotive
industry. Nevertheless, no EMBs have ever been deployed for series production, although countless
publications have been made, and patents have been filed. One reason for this is the need for the
optimization of functional safety. Due to the missing mechanical/hydraulic link between the driver
and the actuator, sophisticated concepts need to be elaborated upon. This paper presents the current
state of the art of safety concepts for EMB systems (only publicly available publications are reviewed).
An analysis of current regulatory and safety requirements is conducted to provide a base for design
options. These design options are explored on the basis of an extensive patent and literature research.
The various discovered designs are summarized and analyzed according to their (a) EMB actuators;
(b) control topology; (c) energy supply; and (d) communication architecture. This paper concludes by
revealing the weak points of the current systems.
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1. Introduction

The automobile industry is currently facing two simultaneous challenges. The first
challenge is the progression of automated driving. The newly promoted Mercedes-Benz
S-Class can be cited in this context, supporting automated driving (SAE Level 3) up to a
speed of 60 km/h in specific contexts [1]. The second major challenge is decarbonization:
the shift from internal combustion engines (ICE) towards electric driving. Both challenges
are driving factors for the introduction of Electromechanical Service Brakes (EMBs) into
series production [2].

In 2015, the presentation of the Audi R8 e-tron equipped with two EMBs at the rear axle
for the 24 h in Le Mans race can be highlighted as a milestone towards series production [3].
However, to date, no programs towards series production have been announced to the
public by any OEM, leaving the state of EMBs as being ‘under research’.

The introduction of EMBs is linked to Brake-by-Wire (BBW) systems, which are
characterized by the capability of controlling the brake actuators electronically, and which
promise diverse possible advantages:

• Reduced weight [4,5];
• Easy assembly [4,6];
• Modularization [6];
• Lower power consumption [5];
• Enhanced vehicle stability (dynamic brake force distribution, faster brake response,

etc.) [4,7,8];
• Easier cooperative regenerative braking [8].

BBW systems currently on the market typically consist of a pedal simulator, a control
unit, electrically actuated brake actuators, and a mechanical/hydraulic backup actuated
directly by pedal [8,9].
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EMB systems are systems that usually have neither mechanical nor hydraulic links
between driver and brake actuator. However, this raises significant reliability and security
concerns for the E/E architecture that need to be addressed [9].

However, today’s E/E architectures are the result of continuous evolution and the
permanent appending of functions and electronic control units (ECUs). This evolution has
led to complex topologies with over 100 distributed ECUs (at the vehicle level). Another
topic of concern is the processing and exchange of potentially safety-critical and redundant
signals between those ECUs [10–14]. The issues concerning safety and the E/E architectures
of EMBs are well known to the scientific community. Many different and concurrent
approaches have been presented trying to resolve the aforementioned problems, and these
are reviewed in this paper.

The scope of this paper is to give a brief overview of relevant topics concerning future
EMB systems, concentrating on the functional E/E architecture and disregarding the precise
mechanical attributes. First, general requirements for braking systems are presented in
Section 2. Section 3 highlights the current state of the art (SoA) of EMB actuators and
explains their sub-components, as well. The foreseen future concepts for E/E architectures
concerning EMB systems are addressed in Section 4. This paper concludes by pointing out
current inadequacies that are not appropriately addressed and that might be researched
in future.

2. Safety
2.1. Regulations for Braking Systems
2.1.1. Introduction to Regulations

The European Union, the United States of America, China, and India accounted for
71% of worldwide car sales in 2020 [15]. Regulations in these four regions are considered
in this paper [16–20]. Additionally, the regulations of Canada [21] were analyzed, because
they explicitly address electrically actuated brakes (in addition to hydraulic ones). The
aim is rather to give a holistic set of requirements that must be met than to analyze the
regulations in their detail.

An organization to be noted in the context of vehicle regulation is the United Nations
Economic Commission for Europe (UNECE), which includes 56 member states in Europe,
North America, and Asia. One of its purposes is the development of regulation and norms,
resulting in UNECE-R13H, which is implemented in the European Union and similarly in
the United States as the certification specification for braking systems [22]. China and India
do not take part in the UNECE. Nevertheless, they have implemented specifications that
are comparable albeit on a lower performance level.

2.1.2. Common Subsets of Legislation

The most relevant requirements for certifying an EMB service braking system are
summarized in the following tables, specifying only the most performant requirements
with respect to various performances requested in different regions. A distinction is drawn
between design (see Table 1), performance (see Table 2), performance of the degraded
system (see Table 3), and degradation of the design (see Table 4), while noting the specific
paragraph that requests a given feature. The numbers listed in the right columns beneath
the requirements refer to the paragraphs of the legislative documents. If the letter ‘A’
precedes a number, the relevant requirement can be found in the Annex.
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Table 1. Sections of the standard documents related to the design requirements for intact EMB service
braking systems.

ID Requirement EU + UK USA China India Canada

D.01 Two independent energy reserves 5.2.2
5.2.4 - 4.2.2 4.2.1 -

D.02 Two independent energy transmissions 5.2.2
5.2.4 - 4.2.2 4.2.1 -

D.03 Each energy reserve must be connected to two or
more wheels 5.2.2 - 4.2.2 4.2.1 -

D.04 Each energy transmission must be connected to
two or more wheels 5.2.2 - 4.2.2 4.2.1 -

D.05 All 4 wheels shall be actuated by brakes 5.2.6 14.24 4.2.7 4.2.1 5.1

D.06 Regenerative braking is allowed to be
applied alone 5.2.7 - - - -

D.08 ESC (Electronic Stability Program) shall apply
braking torque to the wheels individually

UN ECE
R140 FMVSS 126 - - TSD

126

D.09 Brake shall return to OFF position when released 5.2.2 - - - -

Table 2. Sections of the standard documents related to the performance requirements for intact EMB
service braking systems.

ID Requirement EU + UK USA China India Canada

P.01 Provide more than 6.43 m/s2 deceleration with
the engine disconnected

A3.2 14.7 5.2.1 4.1.1 5.1.1

P.02 Provide more than 5.67 m/s2 deceleration with
the engine connected

A3.2 14.8 5.2.1 4.1.1 5.1.1

P.03 Energy reserve must be dimensioned to halt
vehicle 10 times from 100 km/h

5.2.4
5.2.20 14.18 - 4.2.1 5.1.2.2

P.04 Energy supply must be dimensioned to halt
vehicle according to P.11 5.2.4 - 4.2.5

4.2.14 4.2.1 -

P.05 Transmission delay must be less than 0.6 s A3.3 - 5.4.1 4.3.1 -

Table 3. Sections of the standard documents related to the performance requirements for degraded
EMB service braking systems.

ID Failure Requirement EU + UK USA China India Canada

P.11 1st Circuit Provide more than 2.6 m/s2 deceleration A3.2 14.14 5.2.1 4.1.2 5.1.2.1

P.12 ASS Provide more than 5.15 m/s2 deceleration A6.4 14.12 - 9.5.4 5.5.2

P.13 Brake Distr. Provide more than 3.86 m/s2 deceleration
with the engine disconnected

A5.4 14.13
14.17 A6 - -

P.14 Power Brake Unit Performance of P.11 - 14.18 - - 5.1.3.1

P.15 Booster Performance of P.11 - 14.21 5.2.3 - 5.1.3.1

P.16 Any 1st E/E Performance of P.01 must still be available - - - - 5.1.3.5
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Table 4. Sections of the standard documents related to the design requirements concerning failure
tolerance of EMB service braking systems.

ID Failure Requirement EU + UK USA China India Canada

D.11 any No unintended application 5.2.9 - - - -

D.12 E-Supply E-reserves must tolerate it 5.2.15 - - - -

D.13 Transmission No unintended application of parking brake 5.2.19 - - - -

D.14 Any 1st Application still possible 5.2.20 - - - -

P.15 Booster Performance of P.11 - 14.21 5.2.3 - 5.1.3.5

The following summary shows that certain design principles are to be followed, as the
braking system must actuate all four wheels of a vehicle (D.05), and certain redundancies
are to be implemented (D.14). However, a degree of degradation is allowed, reducing the
required mean deceleration from 6.63 m/2 (P.01) to a minimum of 2.6 m/s2 (P.11) resulting
from single failure [22]. It needs to be highlighted that Canada explicitly addresses that
electrically actuated brakes are to decelerate according to nominal required performance in
the case of any 1st E/E failure.

2.2. Functional Safety for Braking

In general, every braking system can be regarded as being safety-critical. The state-
of-the-art means of compliance for safety-critical E/E architectures of road vehicles is ISO
26262. Detailed information on how items and safety concepts are defined, as well as how
safety assessments are conducted, is explained in [23]. The following paragraphs focus on
the consequences for service braking systems and their actuators analyzed in the literature
after showing how ASILs (Automotive Safety Integrity Level) are determined in general.

2.2.1. ASIL Determination in General

ASIL is an indicator of the safety impact of the malfunction of a certain system. The
highest ASIL (D) reflects a major impact, where the lowest ASIL (A) reflects a minor impact
on the safety of the vehicle. It is to be determined by the superposition of the following
three factors [23]:

• Exposure: refers to the probability of occurring in a driving scenario [24].
• Severity: refers to the potential harm to passengers and other road users based on the

Abbreviated Injury Scale (AIS).
• Controllability: refers to the share of drivers who could handle the situation while

avoiding hazards.

It is important to note that a malfunction of the vehicle resulting in an event that is
uncontrollable by any driver (C3) and fatal to all occupants (S3) might be classified as either
ASIL A or D only on the basis of whether the related driving situation might happen more
or less frequently. The determined ASIL of an item informs the development process that is
to be followed and certain random hardware fault metrics that must be tolerated by the
allocated systems [25,26].

After the ASIL determination, an ASIL decomposition might be conducted, follow-
ing the rules of [27]. ASIL decomposition is the allocation of one item to several ele-
ments, resulting in a lower ASIL for each element. However, the hurdle that the elements
must be ‘sufficiently independent’ is to be ensured. Ref. [28] describes common faults in
ASIL decomposition.

2.2.2. Applied ASIL Determination

The ASIL of an item is independent of the architecture of the linked systems. Further-
more, it can be seen as the starting point for deriving architectural concepts that comply
with the required safety (Sections 3 and 4).
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In the literature, ASIL assessments are rarely given, because they are the know-how of
the OEMs. However, a few reviews have been published. Table 5 provides an overview of
the ASILs for various malfunctions of braking functionality, as generalized by [29], that
have been published in literature. Table 5 illustrates that with increasing degradation of the
braking system, the increase in uncommanded deceleration or yaw motion of the vehicle
could result in rising ASIL ratings for the braking system. However, it has also been shown
that the same degree of degradation might result in different ASIL ratings as a result of the
source or the context [2,9,30].

Table 5. ASIL classifications of malfunctions of service braking systems.

Malfunction
Range [m/s2 or ◦] ASIL

from to D C B A

Alarm to Drive

Degradation of deceleration 10 6.5 [2]
Degradation of deceleration 6.5 2.44 [30] [2]
Degradation of deceleration 2.44 0 [2,9,29,30] [9] [9]

Unintended activation 0 2.44 [31]
Unintended activation 2.44 6.5 [31] [2]
Unintended activation 6.5 10 [31] [2]

No Alarm
Degradation of deceleration 10 6.5 [2]
Degradation of deceleration 6.5 2.44 [2,30]
Degradation of deceleration 2.44 0 [2,9,29,30] [9] [9]

Unintended yaw 15 180 [2]
Unintended yaw 0 15 [2]

Incorrect brake torque - - [30]
Unintended activation of actuator - - [31]

Passivation of one actuator - - [31]

Two classes of reliability requirements can be derived from Table 5. The first class is
the availability of the function ‘deceleration’ in several degradation levels. The second class
is the integrity, which is, at least in a fail-silent manner, required by the regulation (D.11),
as well [31]. Whereas fail-silent behavior must be ensured for every single wheel, it is still
possible to decompose the availability requirement between the different wheels or axles,
possibly resulting in an adjusted brake force distribution [9,32].

2.3. Principles of Reliability Engineering

The requirements listed in the preceding sections can often only be met by applying
reliability engineering. Therefore, that topic shall be highlighted briefly.

Reliability, itself, can be defined as “the ability of a product or system to perform
as intended (i.e., without failure and within specified performance limits) for a specified
time in its life cycle conditions” [33]. For certain applications, such as braking systems, for
instance, adequate reliability can be achieved by introducing redundancy.

In general, redundancy can be distinguished between active redundancy and standby
redundancy. The pivotal difference between these two concepts is that a standby-redundant
system incorporates a switch that changes the command from one unit (failed) to another
unit that then takes over control, either from idling (hot standby) or from a non-operative
(cold standby) state. In contrast, active-redundant systems incporporate several entities
that work simultaneously in parallel. If a failure in one of the units occurs, the same
functionality is still available without any switching elements. One important concept in
this context is the so-called (majority) voting, where a failed unit is simply overruled by the
intact entities [34].

3. Electro-Mechanical Brake Actuators

This section provides a brief overview of the components that comprise an EMB
actuator. Additionally, redundancy concepts for the actuators are presented. One basis
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for this section is an extensive patent research (all relevant patents are listed below the
References) related to electromechanical brake actuation.

3.1. Components of EMB Actuators

In general, an EMB actuator or at least the EMB actuation function, comprises at a
minimum one sensor, one control unit, and one electric motor with rotation-to-translation
gear, in accordance with the input–process–output (IPO) model. Figure 1 shows schemati-
cally an EMB actuator for a parking brake. The (sub-)components that are discussed in this
section are marked in bold and red.
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3.1.1. Sensors

Sensors can be implemented in the actuator to (a) measure the drive dynamic behavior
of the vehicle and to (b) monitor the actuator itself (i.e., uncommanded actuation). While
this paper focuses on the measurands themselves, descriptions of the physical measuring
principles and possible sensor types are reviewed in [36–38].

The patent research showed that the most common measurands required by the
actuators are:

• Brake force or pressure;
• Wheel speed;
• Rotational angle of motor (of EMB).

It should benoted that a brake force sensor can correspond to costs of up to USD 15 in
mass production, considering the sensor, the amplifier, and connections [39]. As a result,
it could be profitable to avoid the force sensor by using the model-based estimated force,
also referred to as analytical redundancy. Model-based estimation takes advantage of the
fact that the measurements of different physical attributes of a single process are correlated
with one another. Therefore, it is possible to derive one measurement from another [35].

Schwarz et al. [40] first proposed measuring the brake pad position by measuring
motor rotor position and motor current. Many others followed, showing that a force sensor
can be saved by measuring the electric attributes of the motor and its position [39,41–44].

3.1.2. Control Unit

The purpose of an ECU, in the context of an EMB system, consists in the conversion of
a brake request to an explicit actuation of the brake motor.

Following a specific braking request by the driver or an automated driving function,
various applications such as ASS (Anti-Skid System) or ESC (Electronic Stability Control) are
executed to ensure vehicle stability, determining the braking force required at each wheel.

The controller allocated to the ECU finally compares the estimated and the required
braking force at each wheel and drives the motor using a closed control loop [8]. The
described function of the control unit may be accomplished by different control entities
connected by communication links. In general, a control unit consists of a central power
unit (CPU), a memory unit, a power supply unit, and a communication interface [45].
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3.2. Redundancy Concepts for EMB Actuators

As mentioned in the introduction, EMB systems usually have neither mechanical nor
hydraulic links between the driver and the brake actuator. This means that the driver is no
longer—as in conventional BBW systems—the backup solution if the EMB system does
not work as desired. A suitable and optimal redundancy concept is one of the biggest
challenges presented in EMB development.

Redundancy concepts concern the E/E architecture considering E-Supply, ECU topol-
ogy, or sensor concepts. This contribution focuses on redundancy concepts for the elec-
tromechanical components of a single EMB actuator.

Section 2 shows that certain reliability requirements for EMB actuators exist, starting
from ASIL B items that need to achieve failure rates of λ ≤ 10−7 1/h [25]. With reference
to [46] citing [47], an electric motor by itself possesses a failure rate of approximately
λ = 9 ×10−6 1/h, disregarding its periphery as there are gears (λ = 4.7 × 10−6 1/h) and
related wiring (λ = 10−6 1/h). Eventually, it is obvious that a certain redundancy could be
necessary to comply with the required failure rate. Table 6 shows four different redundancy
concepts found in the studied patents, exemplarily shown as disk brake configurations.

Table 6. EMB actuator redundancy concepts exemplarily shown as disk brake configurations.
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connection [50] of the motors. Our research showed that this approach is often mentioned 
in inventions and patent applications [52–58]. 
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half. An uncommanded activation failure of a single motor eventually results in a low 
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A failure of one motor leads to a performance degradation of the actuator if the mo-
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connection [50] of the motors. Our research showed that this approach is often mentioned 
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3.2.4. Parking Brake for Integrity

The functionality of the parking brake is to lock the wheel while the vehicle is in
standstill and to provide a certain deceleration in case of an emergency at low vehicle
velocity [15]. However, the locking functionality can be used to lock the service brake
against uncommanded movement. This locking functionality can provide integrity to
the service brake. Some inventions are designed to be able to take advantage of this
effect [57,59–65].

3.3. Thermal Safety

The actuation of an EMB is produced by an electric motor. This motor requires certain
temperature conditions in order to be able operate well. Depending on the motor insulation
class, the maximum allowable temperature of commonly available electric motors can
range from 105 ◦C (Tolerance Class A) to 180 ◦C (Tolerance Class H) [66]. If the motor is
operated outside these conditions, it will be derated, leading to a degradation of available
brake performance and a decrease in component lifetime.

On the other hand, the EMB is situated in a very harsh environment, where disc brakes
may easily reach temperatures of approximately 400 ◦C during strong braking [67,68].
This heat might be radiated, dissipated, or conducted to the EMB motor during braking
maneuvers. A potential threat would exist if the temperature of the motor rose above its
limitations due to heat transfer.

No publications could be found that address this topic explicitly. However, several
publications investigate the decrease of brake disk temperature due the introduction of
venting holes [67–69]. Another approach is to tolerate the failure of one stator assembly due
to overheating by applying a 2 × 3 phase electric motor, as presented in Section 3.2.1 [70].

4. EMB Systems

This section discusses current developments in EMB systems on a topological level.
Both architectures the explored in Section 3 as well as the requirements investigated in
Section 2 will be considered for the system. Figure 2 shows a schematic diagram of the X
circuit topology of an EMB system. The topics addressed in this sections are highlighted in
color, and are: control topology, E-supply (-) and communication (
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4.1. Power Supply

The power supply generally has the task of storing the energy (from the recuperation
or public charging network) and safely delivering the energy (the focus of this paper) to
consumers if necessary [71].



Actuators 2022, 11, 214 9 of 16

4.1.1. Reliable Power Supply

Due to the availability requirements, a redundant power supply is necessary [31,72–75].
This is already in place for electric and hybrid cars, which possess a higher voltage network
(up to 400 V) for propulsion and a low-voltage (12 V or 48 V) supply for standard con-
sumers [31,76]. Providing a highly available power supply realized within a single network
can be ensured by implementing decentralized backup power storage where necessary [77].

4.1.2. Power Supply in the EMB Context

Conventional hydraulic brake systems use two brake circuits in an X or H arrangement.
Many EMB system inventions have been presented that revert to this design by replacing the
hydraulic lines with power lines of an equivalent voltage [46,72,78–84]. Alternatives have
also been proposed. Bosch [82], Audi [85], and Kipping et al. [73] provided full redundancy
by connecting every EMB to two equivalent supplies. Full redundancy as described in these
references is advantageous if a redundant actuator is in place where a single power supply
represents the threat of a single point failure. Continental [86] and BYD [87] developed this
full redundancy further by using the conventional X or H arrangement for the low-voltage
network and taking advantage of a high-voltage network that was additionally connected
to every EMB. In contrast, [56] described an EMB system with a simplex power supply,
adding local power storage to every EMB actuator, as proposed in [77]. A similar approach
is to use the kinetic energy of the wheel to power a generator that can act as a backup
power supply for the EMB [88]. Table 7 gives an overview of the described topologies.

Table 7. Overview of power supply topologies.
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4.2. Communication

The communication system has the purpose of providing a means to exchange data
between differently located control entities [89,90]. It must satisfy very high standards
of availability and reliability, as well as possess real-time properties for safety-critical
functions [14].

4.2.1. Ethernet as the Future

Intelligent driving requires the processing and exchange of high amounts of data,
resulting in a rising demand for bandwidth. The demand for bandwidth is added on top of
the aforementioned general requirements [91,92]. Automotive Ethernet complies with all
of these requirements [91,93], while also being low cost [13,94]. As a result, it is forecast to
be the next automotive standard technology [13,14,91,93].

4.2.2. Topologies

Ethernet, as it is expected to be the future communication standard, only allows for
point-to-point connections. Eventually, star-and-ring topologies could be implemented in
future EMB communication systems. The advantage of a bidirectional ring topology is the
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per se failure tolerance of a failed wire or communication entity by using the ‘other direction’
of the ring to exchange data [73,95]. A star configuration, in contrast, is axiomatically not
failure tolerant, considering the central switch as a potential single point failure [10].
However, the physical redundancy of the switch, resulting in alternate network routing,
exists in the case of a failure [89]. The aviation industry has deployed AFDX (Avionics
Full-Duplex Switched Ethernet), applying this principle [72].

4.3. Control

As mentioned in the Introduction, the control architecture of cars has undergone a
steady growth in terms of functions and the number of ECUs, leading to an amount of
over 100 ECUs, nowadays. Therefore, it is necessary to discuss strategies to counteract that
development while nonetheless achieving safety.

4.3.1. Integration Concepts

The key to the reduction of ECUs and, eventually, complexity is the integration of
different functions on a single controller [95]. The real-time operating system (RTOS) is the
enabler for this development. In this sense, the main requirements for RTOS are [96]:

• Resource management (e.g., CPU, memory, disc drives);
• Service execution and provision for application software;
• Timing.

Partitioning refers to the prevention of interference between different applications
related to timing (temporal partitioning) or resources (spatial partitioning) [96]. This
enables the integration of applications with mixed criticality on a single controller [95]. The
aviation industry has already implemented this function integration with the rollout of
the A380 in 2005, incorporating ‘IMA’ (Integrated Modular Avionics) [97]. IMA is based
on the ARINC 653 standard, which defines its interfaces [96]. AUTOSAR reflects a similar
approach in the automobile industry [98].

4.3.2. Fault-Tolerant Control Strategies

The commonly known fault-tolerance strategies include duplex, triplex and quadru-
plex redundancy [99].

The duplex topology consists of two (=duo) entities. The first entity is responsible
for the command of the actuators, whereas the second entity is only responsible for the
monitoring of the command entity. If the monitor detects a discrepancy, it shuts the whole
duplex module down, and thus cares for the integrity and the fail-silent behavior of the
module (see EGAS) [31,72]. Another implementation of a duplex behavior is the so-called
‘lockstep controller’, which incorporates both command and monitoring, which are run on
two separated cores [75,100]. Duplex redundancy might be used for systems with a safety
level up to ASIL C [75]. The disadvantage of this topology is that a fail-operational behavior
(see Requirement D.14) cannot be provided [99,100]. Nevertheless, it is of course possible
to implement several duplex modules in parallel, providing fail-operational behavior [100].

The other topologies consist of three (triplex) or four (quadruplex) entities. If one
entity fails, the other modules can detect this and eventually shut the affected entity down
in order to realize fail-operational behavior, representing a permutated system.

4.4. Embedding EMB Actuators into the System

A strong minority of systems can be found that surrender the use of controllers in
the EMB actuator itself, reducing the complete control to a centralized duplex module.
If the entities of the duplex modules have no capacity for self-monitoring, these systems
reflect fail-silent systems [87,101]. Mando [102] considered this challenge when stating
that if the monitoring entity detected a failure in the command entity, it would take over
control by itself. More common are systems that use so-called ‘smart’ actuators, which
incorporate their own control unit, as presented in Section 3. This section focuses on
this implementation.
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A design pattern that can be found repeatedly is the use of the conventional two brake
circuits (cf. Section 4.1), with each brake circuit having its own central control unit that
commands the responding EMB actuators [48,82,83,103,104]. The fault tolerance consists
of the fact that if one control unit fails, the second brake circuit can still operate properly.
However, a degradation in total braking performance needs to be tolerated.

In contrast, [80,86,105] describe a triplex topology for the centralized control modules
that can withstand at least a first failure. Eventually, full braking capability will be available
even after this first failure.

Refs. [106,107] add another control unit to improve the failure tolerance further, imple-
menting a quadruplex system. The fact that the vehicle operates four wheels is capitalized
on by simply using the smart actuators mutually as a quadruplex system. Centralized func-
tions such as ESC are simply deployed on every single actuator, so that each calculates the
command for every wheel [31,73]. In addition to its strong failure tolerance, this topology
might be very cost-efficient [73].

Finally, Refs. [79,99,108] went one step further in merging the presented wheel-node
quadruplex system with a central module (duplex or simplex). The central module incorpo-
rates the higher control functions, such as ESC and ASS. If this module fails, however, the
smart actuators receive their braking commands directly from the driver pedal. Although
a degradation can be noticed due to the missing higher functions, the braking system is
still capable of deploying the full braking force in the case of degradation. Table 8 gives an
overview of the discussed control topologies.
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5. Summary and Outlook

A review of EMB systems related to safety concepts (requirements, E/E architecture,
redundancy, degradation strategies) was provided in this contribution. Although there is
existing literature related to this topic, not much research has been published investigating
the safety criticality of different malfunctions of the braking system. Furthermore, no
distinct evaluation exists on that specific topic. Therefore, attention needs to be devoted to
this specific topic, with represents the starting point for EMB systems.

Additionally, only a small number of publications have been found that harmonize
the design of the EMB actuator with the complete EMB system. This volume is minimized
again when considering the challenges posed by electric, automated driving vehicles for
such a system. Synergies thereof need to be taken in account, as well.

Finally, a universal set of Key Performance Indicators must be found to be able to
evaluate different options and to find superior design solutions.
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Abbreviation
AFDX Avionics Full-Duplex Switched Ethernet
ESC Electronic Stability Program
AIS Abbreviated Injury Scale
ICE Internal Combustion Engine
ASIL Automotive Safety and Integrity Level
IMA Integrated Modular Avionics
ASS Anti-Skid System
IPO Input–Process–Output
BBW Brake-by-Wire
OEM Original Equipment Manufacture
CPU Central Processing Unit
RTOS Real-Time Operating System
E/E Electric and Electronic
UNECE United Nations Economic Commission for Europe
EMB Electromechanical Brake
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