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Abstract: A novel fluidic thrust-vectoring (FTV) control method based on dual synthetic jets actuator
(DSJA) is proposed and evaluated. Numerical simulations are governed by the compressible Unsteady
Reynolds-Averaged Navier–Stokes (URANS) equations. According to the results, DSJA is capable of
deflecting a primary jet with a velocity of 100 m/s and a height of 50 mm by approximately 18 degrees
with a momentum coefficient of 1.96%. It produces comparatively linear control characteristics in
almost all deflection angles evaluated (0~23 degrees). The low pressure generated by DSJA, the
ejecting enhanced by DSJA, and the co-flow effect produced by the accelerated secondary jet all play
roles in the deflection of the primary jet. Since the primary jet is strong enough, the potential of DSJA
to provide thrust vector control is revealed.

Keywords: fluidic thrust vectoring; dual synthetic jets actuator; active flow control

1. Introduction

Fluidic thrust-vectoring (FTV) technology is a kind of thrust-vectoring technology
developed to control the direction of thrust without using the conventional moving surfaces,
so as to reduce the structural complexity, weight, and volume, and maintaining the cost of
the thrust vector control nozzle. Numerous researchers have investigated the use of FTV
systems for aircraft control, and many FTV methods have been developed.

Until now, the most researched idea is to change the flow state in nozzles through the
proper set of high-speed secondary jets (or suction) with designed nozzle shape, such as
the shock-vector control method [1], throat-shifting method [2], dual-throat method [3]
and counterflow method [4]. The co-flow method has been investigated and verified by
experiments to control the subsonic and supersonic primary jets [5,6]. The co-flow method
has been proven capable of realizing flight control by the flight test of MAGMA aircraft [7].
However, this method requires a high-pressure air source. Carrying an air supply would
result in the massive occupation of fuselage space and weight. A high-pressure air source
could also be supplied from power plant bleeding, leading to an impact on the condition
of the engine. The mass of MAGMA aircraft’s flow control module occupies 40% of the
total system [7] (providing circle control and FTV control). The pressure supply and the
supporting pipeline system cause a large space and weight burden for aircraft.

Wen [8] strengthened the co-flow FTV control method by upgrading the secondary
co-flow from a conventional steady jet to a sweeping jet. The sweeping jet was found to
be more capable of enhancing the flow mixing than the steady jet, which leads to a higher
efficiency in co-flow vectoring control. Using a sweeping jet greatly reduces the mass flow
rate of the secondary jet to provide thrust vector control, and hopefully will alleviate the
burden brought by a high-pressure gas source to a certain extent.
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A bypass dual-throat nozzle [9] is developed from conventional dual-throat methods.
This introduces secondary flows from a bypass set between the upstream minimum area
and the upstream convergent section instead of air supply. This improvement reduces the
layout difficulty of using a dual-throat vectoring nozzle and achieves an equivalent or even
better performance than the conventional dual-throat vectoring nozzle. In this study, the
realizable k− ε turbulent model with the standard wall function is selected.

Meanwhile, predecessors have developed some FTV methods with no dependence
on air source, called passive FTV methods. Using an ejecting-mixing fluidic vectoring
nozzle [10,11] takes advantage of the entrainment effect of the primary jet on the surround-
ing air. In detail, the deflection angle of the primary jet could be controlled by adjusting
the mass rate of the entrainment secondary jet through the control valves. The results
of a supersonic primary jet numerical simulation [10], a flight test powered by electric
duct fan [12], and a 6 kg turbojet engine ground experiment [13] show that this method is
suitable to control the direction of subsonic and supersonic primary jets.

As one of the lightest active-flow control means, synthetic jet (SJ) actuators have been
widely applied in many fields, such as separation control [14], vortex-induced vibration
control [15], and flight control [16]. Researchers have found that with the help of zero-
mass-flux synthetic jets, the direction of the primary jet can be deflected even without any
moving components. SJ actuators can be driven by piezoelectric (PZT) diaphragms or
electrodes fixed in a cavity, capable of switching work state rapidly in response to different
electrical signals.

Smith [17,18] found that a synthetic jet actuator installed close to the primary jet outlet
could deflect the primary jet with a low momentum coefficient. However, the deflection
becomes undetectable when the velocity of the primary jet increases to 30 m/s. Pack [19]
carried out an experimental study with a diffuser attached to the jet exit, and the excitation
was introduced at the junction between the jet exit and the diffuser inlet, demonstrating that
the presence of the wide-angle diffuser increases the effectiveness of the added periodic
momentum caused by a favorable interaction among the excitation, the jet shear layer, and
the diffuser wall. However, Pack [19] and Chiekh [20] found that the direct deployment
of the diffuser wall will lead to no-control primary flow into a bistable situation, which is
intolerable in an FTV system as it will result in an unstable control moment.

The PZT diaphragm on the conventional SJ actuators is set between different pressure
conditions of basic flow (the flow field to be controlled) and environment flow (usually
the equipment cabin), which indicates that half of the radiation energy of the vibrating
diaphragm is injected into somewhere unwanted. It also means that the PZT must over-
come the pressure difference on two sides of the diaphragm to vibrate. When the pressure
differential is large, the driving vibration will be difficult or even unachievable. In short, the
structural design of conventional PZT-driven SJ actuators limits their energy efficiency and
environmental adaptability. Subsequently, Luo [21] invented a new-generation synthetic
jet actuator, known as a dual synthetic jet actuator (DSJA). Different from conventional
SJ actuators, DSJ actuators have two cavities on both sides of the PZT diaphragm. Both
cavities are connected to the controlled flow field, which guarantees that the pressure
difference between the two sides of the PZT diaphragm will not be too large. Therefore, the
energy efficiency and environmental adaptability of DSJ actuators are improved. Moreover,
DSJ actuators have greater flexibility and stronger control ability. For example, DSJ could
perform both functions of “push” and “pull” to vector a primary jet [22]. However, accord-
ing to the latest explorations, DSJ actuators or SJ actuators are only capable of deflecting a
primary jet with low velocity and small height.

To sum up, plenty of significant studies have investigated the feasibility of synthetic
jet application to FTV. As a control method without introducing an air source, FTV by DSJ
is a technology worthy of further in-depth research and development. However, existing
studies have shown that the simple deployment of DSJ is insufficient to provide effective
FTV control. This work explores the potential of dual synthetic jets for thrust vector control
by proposing a novel method and its configuration.
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2. Materials and Methods
2.1. Method and Configuration

The configuration of this novel FTV method is shown in Figure 1. The new method
was created from the reference and improvement of existing DSJ actuators jet-deflecting
method and co-flow FTV nozzle. The height of the primary jet inlet is 50 mm. Avoiding
the problems of pressure loading and energy inefficiency, DSJ actuators were selected
(comparing to SJ actuators) as the provider of zero-mass jet to adapt to the changing
external environment in flight. In this configuration, the DSJ actuators are installed on
the edge of the primary nozzle outlet, with a total thickness of 10 mm. To prevent the
unexpected deflection from damaging the practicability of the nozzle, passive secondary
jet inlets are arranged as gaps between the primary jet inlet wall and the nozzle wall. The
gaps are connected to the outside atmosphere and are approximately 8 mm high at the
downstream edge. The exits of DSJ actuators are arranged at the two downstream corners
of the edge and are set 45 degrees up and down from the mainstream direction, respectively.
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2.2. Simulation Setup

To explore flow details in nozzles and the control mechanism, 2D-simulations were
applied by ANSYS Fluent. The flow is governed by the compressible Unsteady Reynolds-
Averaged Navier–Stokes equations (URANS):
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where the density ρ is defined by the ideal gas equation:

P = ρRT (3)

and the molecular viscosity µ is assumed to be constant. In addition, the gravity effect
is neglected.

Considering the complex flow conditions such as separation, attachment, and vortex,
the realizable k− ε turbulent model (RKE) is selected to model the Reynolds stresses−ρu′iu

′
j.

This model is also applied in the studies conducted by Gu [9], in which the turbulent
viscosity is calculated by using an improved method. The exact transport equation of the
fluctuating component vorticity is used to derive the dissipation rate equation.

Non-Equilibrium Wall Function is used to compute complex flows such as separation,
reattachment, and impact near the wall. It further extends the applicability of the wall
function approach by including the effects of pressure gradient and is found to accurately
predict the reattachment length, skin friction, and static pressure coefficient with the RKE
model [23].

Semi-Implicit Method for Pressure-Linked Equation (SIMPLE) is used in the coupling
of velocity and pressure. The spatial discretization is second order for pressure and second
order upwind for density, momentum, and energy.

The configuration of mesh and boundary conditions are shown in Figure 1. Wall y+ is
approximately 1. No slip wall is applied for the nozzle and actuators’ wall, pressure inlet
for the primary jet, or passive secondary jet. As to environment, pressure inlet is applied
for upstream boundaries, and pressure outlet for the side and downstream boundaries.

The initial condition is the transient simulation result of the baseline condition (where
the primary jet is present alone and dual synthetic jets are off). All the flow field results
shown were captured at the time when dual synthetic jets present for 0.1 s on the baseline
of the initial condition. Applied first-order implicit time-integration schemes were used
for temporal discretization. A timestep of 5 × 10−5 s (1/40 of the DSJ driving cycle) was
applied for all transient simulations. The maximum iteration of each timestep is 50 and the
convergence criterion is 1 × 10−6 for continuity and energy. In addition, DSJ exits were set
as velocity inlet boundaries to simulate the periodic jets. Referring to the driven model of
synthetic jets [24], the velocity is defined by the UDF formula shown as follows:

V(t) = Vj × sin(2πt/T) (4)

where Vj is the peak velocity of synethtic jets and T denotes the cycle of DSJ.
Time averaging is used to make the concerned controlled-flow field more intuitive.

The specific process is to average the data of the flow field of 40 time-steps (corresponding
to flow time of 0.002 s, single actuators cycle).

Three sets of meshes with grid quantities from 0.13 million to 0.21 million were
evaluated for grid independence verification, with the deflection angle selected as the
judgment index. As shown in Figure 2, the mesh with grid quantities of 0.18 million is
competent for this simulation with sufficient accuracy.
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To validate the accuracy of the numerical method, simulations and experiments were
conducted and compared. Limited to the experimental conditions, the primary jet velocity
Vp is 34 m/s. The nozzle time-average pressure coefficient Cp distributed along the upper
nozzle wall is selected as the judgment index when the deflection angle is 13 degrees. As
shown in Figure 3, the maximum difference between the experiment and simulation result
is less than 0.02. It indicates that the numerical method applied can accurately predict the
actual flow situation.
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2.3. Relevant Definitions

The method applied to determine the deflection angle δ is the same as all evaluated
simulation cases in this work. In detail, we selected the point with the maximum velocity
on the section of x = 0.4 m based on time-average flow field, and marked it as point A.
The included angle between velocity direction at point A and x direction is defined as the
deflection angle. Thus, the deflection angle δ can be defined as:

δ = tan−1(
VAx
VAy

) (5)

where VAx denotes x velocity component at point A and VAy denotes the y velocity component.
Momentum coefficient Cµ is an important dimensionless parameter to evaluate the

efficiency of active control means. For zero-mass periodic jets with sinusoidal variation
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(including DSJ), considering air as an incompressible gas, the momentum coefficient can be
defined as:

Cµ =
n×Vj

2hj

Vp2hp
(6)

where Vj is the peak velocity of synthetic jets, hj is the height of dual synthetic jet exits,
Vp is the velocity of the primary jet and hp denotes the height of the primary jet outlet. n
denotes the number of zero-mass synthetic jets activated for control and n = 2 for a single
DSJ actuator.

3. Results
3.1. Control Characteristics of Thrust Vectoring

To illustrate the effectiveness of DSJ in this configuration, Figure 4 shows the velocity
contours of the flow field under different conditions. The primary jet velocity Vp is 100 m/s
(based on the height of primary jet inlet, corresponding to Re = 3.9 × 104). The DSJ peak
velocity Vj in Figure 5b is set as 70 m/s and its frequency f is 500 Hz (based on the height
of primary jet inlet, corresponding to St = 0.25).
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Figure 4. Velocity contours of flow field with no control (a), co-flow effect (b) and DSJ control
(c) (Vp = 100 m/s).

The activation of DSJ makes the primary jet deflect upward; meanwhile, the secondary
jet is accelerated. The primary jet finally gets a stable vector downstream. The primary jet is
vectored upside with an eventual mean angle of approximately 18 degrees. The secondary
jet will attain a mass flow of 0.541 kg/s by the ejection of the vectored primary jet and DSJ.
As a contrast, injecting a secondary jet with the same mass flow can lead to a deflection
of 4 degrees alone by the co-flow effect, as shown in Figure 4b. In this configuration, the
properties of DSJ are critical in the deflection of the primary jet. Meanwhile, through the
ejection effect enhanced by DSJ, the deflected primary jet activates the secondary jet to be a
co-flow, offering an improvement in deflection performance.

To investigate the control characteristics of this configuration, simulations are imple-
mented with different DSJ peak velocities (10 m/s, 20 m/s, . . . , 100 m/s). The velocity
distribution, deflection angles, and velocity distribution, are shown and analyzed as follows.

Figure 5 shows the time-average velocity distribution of controlled flow with different
DSJ peak velocities. The DSJ frequency f is maintained at 500 Hz in this work. As shown
in the velocity contours, the vectoring becomes observable when peak velocity increases to
30 m/s and increases as DSJ peak velocity increases.
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Figure 6 shows the variation of the deflection angle with DSJ peak velocity and the
momentum coefficient. To most FTV means, the changing law between the deflection angle
and DSJ peak velocity was supposed to be characterized by a dead zone, a linear control
region, and saturation (according to Mason [5]). In this configuration, the establishment of
deflection occurs when DSJ peak velocity is less than 20 m/s, and the control characteristic
remains linear with peak velocity until the deflection angle reaches 23 degrees. Considering
that the geometric exit angle of the nozzle is 28 degrees (which limits the maximum of the
deflection angle), it shows a comparatively linear control characteristics in almost all control
ranges. The highest efficiency occurs at Cµ, ranging from 0 to 0.5%, and the deflection angle
reaches 18 degrees at Cµ of 1.96%. This indicates that this configuration has good efficiency
performance in FTV control.
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3.2. Pressure Characteristics of Flow Field

This section investigates the controlled flow in pressure characteristics. The time-
average pressure distributions of the controlled flow with different DSJ peak velocities are
shown in Figure 7.
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70 m/s ( Cµ =1.96%), (e) Vj = 90 m/s (Cµ =3.24%), (f) Vj = 100 m/s ( Cµ =4.00%).

Based on time-average pressure, the iconic flow field structure is the low-pressure zone
formed by DSJ. There are two cores of the low-pressure zone, one near the DSJ actuator
exits and the other located at the wall of the throat. The greater the DSJ peak velocity, the
larger the low-pressure zone. In addition, DSJ also reduces the pressure in the primary jet
outlet. In Figure 8, the upper surface and outlet section are selected to visually compare the
pressure change under different peak velocities.

Corresponding to two low-pressure core areas, two peaks of low-pressure zones along
the nozzle wall are shown in Figure 7. Peak 1 is close to the exits of DSJ, directly caused by
DSJ. With the augmentation of DSJ peak velocity, the growth rate of the low pressure in
peak 1 decreases gradually, and the position of peak 1 moves downstream slightly. Peak 2
of the low-pressure zone appears on the wall of the throat, further downstream of peak 1.

With small DSJ velocity (below 50 m/s), the augmentation of peak 1 is significant, while
the primary jet is far from the wall and peak 2 is not yet established. When the DSJ peak
velocity is above 60 m/s, peak 2 begins to be established with an obvious augmentation
while the augmentation of peak 1 is descending. This shows the significant effect of the wall
on deflection when the primary jet is close enough to the wall. Eventually, the establishment
of a low-pressure zone maintains a relatively stable level in all deflection angles. This
indicates that the direct effects of DSJ (corresponding to peak 1) and the evolution of flow
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of the controlled primary jet (corresponding to peak 2) provide comparable contributions
in deflection.
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Figure 8. Time-average pressure coefficient Cp distributed along the upper wall.

3.3. Periodic Evolution of Flow Field

To investigate the evolution of controlled flow, the characteristics of flow field in a DSJ
cycle are explored. Figure 9 shows the velocity and pressure distribution of the flow field
near the outlet at four typical moments (0T, T/4, T/2, 3T/4) of the DSJ cycle, starting from
0.1 s. To control flow, at the T/4 moment, the upper exit of DSJ is blowing at peak velocity,
while the lower exit is sucking at peak velocity. Parts of the primary jet are absorbed in
the DSJ cavity, and a strong low-pressure zone is formed downstream, which causes a
substantial deflection of the primary jet. The blowing at the upper exit does not have a
significant impact at this stage. At the T/2 moment, the upper exit finishes blowing and is
going to absorb, while the lower exit is in the opposite situation, and the velocity of both
exit inlets is almost zero. The primary jet is deflected at the previous moment develop to
attach to the wall and the low-pressure zone generated at previous moment extends in
the primary jet tunnel. At the 3T/4 moment, the upper exit of DSJ is absorbing at peak
velocity, while the lower exit is blowing at peak velocity. The primary jet deflected at the
moment of T/4 begins to attach to the wall. The pressure rises at the attachment area as
the wall blocks the y-direction velocity of the primary jet, indicating that the primary jet is
continuously deflecting when passing through the low-pressure zone. The low-pressure
zone extends and moves downstream. The secondary jet is accelerated by the ejecting of
the attached primary jet and the absorbing of the upper exit. An adverse pressure gradient
occurs between the low-pressure zone and high-pressure attachment, and a separation
vortex occurs at the throat. At the 0T moment, the upper exit finishes absorbing and is
going to blow, while the lower exit is in the opposite situation. The separation vortex moves
downstream. Throughout the cycle of flow-field evolution, the low-pressure generated
by DSJ, the ejecting enhanced by DSJ, and the co-flow effect produced by the accelerated
secondary jet all seem to play roles in the deflection of the primary jet.
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4. Conclusions

A novel method of thrust vectoring based on DSJ and its configuration are proposed
and evaluated by simulations. Different from previous schemes, it has two passive sec-
ondary flow outlets to stabilize the primary jet, and a finely designed nozzle wall geometric
shape to optimize deflection capability. Numerical results reveal that this configuration
has a high efficiency in deflecting a primary jet with a velocity of 100 m/s and a height of
50 mm and shows comparatively linear control characteristics in almost all control ranges.

For the momentum coefficient Cµ, the highest efficiency occurs at Cµ, ranging from 0
to 0.5%, and the deflection angle reaches approximate 18 degrees at a Cµ of 1.96%. The low
pressure generated by DSJ, the ejecting enhanced by DSJ, and the co-flow effect produced
by accelerated secondary jet all seem to play roles in the deflection of the primary jet.

Since the primary jet is strong enough to drive a small aircraft, the potential of dual
synthetic jets to provide FTV control is initially revealed. The demonstrated control capa-
bility of DSJ makes it possible to provide thrust vector control without any moving parts or
air supply. The detailed structure of flow field and the mechanism of this method need to
be further studied.

In the future, relative experimental observations will be conducted to further investi-
gate this mechanism, and flight tests will be implemented to further verify its effectiveness
and control characteristics.
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