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Abstract: Ongoing interests in high-speed precision actuation continuously sparks great attention on
developing fast amplified piezoelectric actuators (APAs) with compliant mechanisms. A new type of
APA with enhanced resonance frequency is herein reported based on a hybrid compliant amplifying
mechanism. A two-stage displacement flexure amplifier is proposed by synthesizing the lever-type
and semi bridge-type compliant mechanisms in a compact configuration, promising to a well tradeoff
between the displacement amplification ratio and dynamic bandwidth. The static and dynamic
performances are experimentally evaluated. The resonance frequency of 2.1 kHz, displacement
amplification ratio of 6, and step response time of around 0.4 ms are realized with a compact size of
50 mm × 44 mm × 7 mm. Another contribution of this paper is to develop a comprehensive two-port
dynamic stiffness model to predict the static and dynamic behaviors of the compliant amplifier. The
modeling approach presented here differs from previous studies in that it enables the traditional
transfer matrix method to formulate both the kinetostatics and dynamics of compliant mechanisms
including serial-parallel branches and rigid bodies.

Keywords: compliant mechanisms; piezoelectric actuator; displacement amplifier; flexure hinges;
transfer matrix method

1. Introduction

Piezoelectric actuators consisting of a stack of piezoceramic layers electrically con-
nected in parallel are characterized by fast dynamic response, nano-scale resolution, and
large blocking force. However, the stroke of many commercially available piezoelectric
stacks is limited to dozens of microns with the strain of around 0.1%. Such a drawback
should be addressed since plenty of precision actuation applications, including position-
ing [1–3], gripping [4–6], scanning [7], manufacturing [8], switching [9], manipulating [10],
etc., often require sub-millimeter or even larger strokes. Therefore, much research has
been devoted to mechanically amplifying the micro stroke of piezoelectric stacks [11–13].
Such a technique is usually termed as ‘amplified piezoelectric actuators’ (APAs) [14], as
exemplarily illustrated in Figure 1.

Recently, more and more requirements toward the high actuation speed have come of
age, such as scanning probe microscopy, high-throughout micro/nano manufacturing, high-
speed jet dispensing, and fast mechanical switches [15,16]. The motion rate of amplified
piezoelectric actuators is inherently restricted by their resonance frequencies, and the
dynamic response bandwidth of amplified piezoelectric actuators will generally be reduced
as their travel range is amplified. The amplitude of motion will become larger and larger
with the increase of working frequencies until reaching the fundamental resonance mode,
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then the dynamic response will be attenuated and become uncontrollable at the domain of
high vibration modes [17]. Moreover, when inadvertently excited, input electric signals
with high-frequency components will excite the natural motion oscillation, causing the loss
of precision and stability. Thereby, limiting the operating frequencies to below one third
of the lowest vibration mode or even smaller scopes are common in actual engineering
applications. Feedback and feedforward control strategies [18,19], such as the positive
position feedback, integral resonant, and shunt controllers, have been proposed to dampen
vibration modes enabling higher actuation rates. Nevertheless, inherently increasing the
mechanical bandwidth from the viewpoint of mechanism design is a primary concern. It
involves careful considerations of the mechanical property of flexure hinges, the synthesis
of optimal configurations as well as the interfacial treatment between piezoelectric stacks
and compliant mechanisms.
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Figure 1. Picture of piezoelectric stacks and schematic diagram of common types of mechanically
amplified piezoelectric actuators by compliant mechanisms.

A number of designs for amplifying the micro displacement of various actuators
have been demonstrated successfully in the literature, these include the early rainbow
and Moonie-type flextensional mechanisms [20], the now mainstream bridge-type [21,22],
lever-type [23], Scott-Russell [24] complaint mechanisms, and more recently composite
amplifying mechanisms with configurations of nested cellular and multi-stage ones [25–27],
to name a few. These techniques, as a whole, can successfully amplify the micro stroke of
piezoelectric stacks and other actuators with varied load capacity and dynamic bandwidth
in different sizes. Many investigations also reported designs of hybrid compliant amplifying
mechanisms to realize a large displacement amplification ratio by combining the bridge-
type and leveraged mechanisms [28,29], Scott-Russell and bridge-type mechanisms [30,31],
Scott-Russell and leveraged mechanisms [32,33], and other types of hybrid compliant
mechanisms [34]. For example, Kim et al. [35] proposed a three-dimensional amplified
piezoelectric actuator based on a two-stage bridge-type compliant mechanism with the
output displacement of 80 µm and the resonance frequency of 190 Hz. By contrast Ding
et al. [31] combined bridge-type and Scott-Russell compliant mechanisms to amplify the
micro stroke of piezoelectric actuator with the output displacement of 69 µm and the
resonance frequency of 457 Hz. Some other designs of amplified piezoelectric actuators
can be found in literature such as those with the output displacement and resonance
frequency of 30 µm and 1152 Hz in [7] as well as 200 µm and 189 Hz in [36], to name a
few. As discussed, pursuing a higher displacement amplification efficiency with a compact
configuration and importantly enhancing the dynamic bandwidth is still a challenging issue.
Attempts on equilibrating such a tradeoff are attractive for high-speed and small-space
engineering applications.

The design presented in the current study differs in that it optimally configure the
lever-type and semi bridge-type compliant mechanisms to design a hybrid two-stage
amplified piezoelectric actuator with enhanced dynamic bandwidth and displacement
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amplification efficiency in a much compact configuration. Another contribution of this
paper is to predict the static and dynamic performances of the flexure amplifier with a
comprehensive two-port dynamic stiffness model. The modeling approach presented here
differs from the previous ones in that it enables the traditional transfer matrix method to
formulate both the kinetostatics and dynamics of compliant mechanisms with complex
branches and rigid bodies in serial-parallel configurations.

The rest of this paper is organized as follows: The structural design is introduced in
Section 2. Comprehensive two-port dynamic stiffness modeling is carried out in Section 3,
followed by parameter influence analysis in Section 4. The prototype is experimentally
tested in Section 5. This paper concludes in Section 6 with a summary of results.

2. Operational Principle and Configuration

As has already been demonstrated in [37], a large ratio of output stiffness of the
former stage to the input stiffness of the next stage in multi-stage compliant amplifying
mechanisms will ensure a large composite displacement amplification ratio. This indicates
that synthesizing a flexure amplifying modular having high output stiffness with the one
having low input stiffness is beneficial to enhance the achievable output displacement
of a multi-stage compliant amplifying mechanism. Based on the above, we combine the
lever-type and semi bridge-type compliant amplifying mechanism to develop a two-stage
displacement amplification mechanism, as schematically illustrated in Figure 2. The output
ports of two mirror-symmetric levers are rigidly connected to the input ports of the semi
bridge-type amplifier. V-type flexure hinges with the merits of high bending stiffness and
small parametric motion errors are adopted to enhance the output stiffness of the leveraged
amplifier at the first amplifying stage. Micro stroke of the internal piezoelectric actuator is
mechanically amplified twice, serially by the lever principle and flextensional effect with
the loss of a certain level of blocking forces.
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Figure 2. Schematic diagram of the presented hybrid two-stage displacement amplification mecha-
nism by synthesizing lever-type and semi bridge-type compliant mechanisms.

The key features of our design lie in its compact configuration and minimized parasitic
motion errors due to the monolithic and symmetric structure. It is also easy to integrate
a displacement sensor without the requirement of additional spaces, as clearly shown in
Figure 3. The design of embedded displacement sensor also contributes to the miniatur-
ization of the whole application system. In addition, using flexure modules as few as
possible is helpful to keep a high transfer efficiency of electric–mechanical energy from
piezoelectric stacks to the output port of the compliant amplifying mechanism. The loss
of blocking force can be relieved to a certain level with a smaller number of used flexure
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modules. Importantly, the inertial motion of piezoelectric stacks is avoided in the presented
design in contrast to the traditional bridge-type compliant amplifiers [21,22]. Based on
these concerns, a refined displacement amplification efficiency and enhanced dynamic
bandwidth with a compact size can be expected.
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Figure 3. Three-dimensional view of the presented hybrid two-stage displacement amplification
mechanism with assembled piezoelectric stacks and potential displacement sensor.

Two groups of guiding flexure beams are designed on the input port of the levers.
Based on the simulated deformation nephogram in Figure 4, the parasitic rotational motion
of the two input ports are avoided by designing guiding flexure beams, which protects
piezoelectric stacks from lateral and shear forces. More importantly, the parasitic rotational
motion of the two input ports without guiding flexure beams will reduce the contact
stiffness between the compliant mechanism and piezoelectric stacks, thus attenuating
the overall output displacement. It can be clearly seen from Figure 4b that the input
ports are able to translationally move along the horizontal direction without obvious
parasitic rotational motions after adding two pairs of guiding flexure beams. Furthermore,
assembling piezoelectric stacks into the compliant mechanism with an interference fit and
preload will ensure a well interfacial contact.
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Figure 4. Parasitic motion errors with and without guiding flexure beams simulated by ANSYS
software package. (a) Without the guiding flexure beams. (b) With the guiding flexure beams. It is
noticed that the finite element simulation presented here is only for illustrating the parasitic motion
errors. The detailed settings for the numerical simulation can be found in Section 4.
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3. Parametric Formulation

In this section, a comprehensive two-port dynamic stiffness model is derived to para-
metrically characterize the kinetostatics and dynamics of the displacement amplification
mechanism. The two-port dynamic stiffness model captures the linear kinetostatics and
dynamics of a compliant mechanism from the viewpoint of input and output ports with a
pseudo-static characteristic on the frequency domain. In contrast to our previous study [38],
a comprehensive two-port dynamic stiffness model is developed here, with which the
traditional transfer matrix method is improved to be able to formulate serial-parallel
flexure-hinge mechanisms including rigid bodies.

The amplifier is discretized into flexure hinges/beams, rigid bodies, and lumped
mass shown in Figure 5. The input and output ports are concentrated as lumped masses.
The levers are denoted as rigid bodies whose rigid motion should be considered. The
flexure hinges/beams are numbered serially from elements (1) to (14) and connected with
nodes labeled as a circle in Figure 5. During the numbering, the end node of flexure
hinges/beams connected to a rigid body were shifted to the mass center of rigid body by
including the kinematic effect [39]. Input force and displacement from piezoelectric stacks
are denoted as fin and xin. A dummy force fout is exerted on the output port, and there has:
f in2 = −f in1 = [fin; 0; 0], xin2 = −xin1 = [xin; 0; 0], f out = [0; fout; 0], xout= [0; xout; 0].
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Figure 5. Geometric parameter, discretization, and numbering of the displacement amplification
mechanism. f in, f out, xin, and xout with the subscripts 1 and 2 denote the input/output forces and
displacements. Numbers from (1) to (14) denote the elements of flexure beams/hinges. m with the
subscripts 1, 2, and 3 are the mass of lumped mass and rigid bodies. Other variables denote the
geometric parameters of the displacement amplification mechanism.

As shown in Figure 6a, the kinetostatic and dynamic behaviors of notch-type flexure
hinges/beams, can be uniformly described with the concept of the dynamic stiffness matrix
in a similar form of Hook’s law but is frequency dependent [38]:

fe(ω) = De(ω) · xe(ω) =



d1 0 0 d5 0 0
d2 −d3 0 d6 d7

d4 0 −d7 d8
d1 0 0

Sym d2 d3
d4

 · xe(ω) (1)

where nodal force f e(ω) = [Nj; Qj; Mj; Nk; Qk; Mk] includes the axial force, shear force and
bending moment. Nodal displacement xe(ω) = [uj; wj; ϕj; uk; wk; ϕk] includes the axial
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deformation, bending deflection and rotation angle. ω is the dynamic frequency with the
unit of rad/s. di (i = 1, 2, . . . , 8) are the coefficients of dynamic stiffness matrix De(ω), the
constant values can be found in [38,39].
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Figure 6. Nodal force and nodal displacement of flexure hinges/beams connected or not connected
to a rigid body. (a) Nodal force and nodal displacement of the ith flexure hinge/beam in the reference
coordinate frame o-xy. (b) The j-end is connected to a rigid body. (c) The k-end is connected to a
rigid body.

The dynamic stiffness matrix of flexure hinges/beams in the local coordinate frame
should be transformed into the reference frame o-xy. For flexure beams (1), (2), (6), (7), (8),
(9), (13), and (14) in Figure 5, their dynamic stiffness matrices in the reference coordinate
frame o-xy can be expressed as:

Di(ω) =

[
Ri 0
0 Ri

]T

· De(ω) ·
[

Ri 0
0 Ri

]
, Ri =

 cos θi sin θi 0
− sin θi cos θi 0

0 0 1

 (2)

Orientation angle θi of the coordinate transformation matrix Ri with respect to the
reference coordinate frame o-xy in Equation (2) are listed in Table 1. V-type flexure hinges
(3), (4), (10), and (11) are connected to rigid bodies with their k end. As shown in Figure 6c,
their dynamic stiffness matrices in the reference frame o-xy can be obtained by shifting the
k-end nodes to the mass center of rigid body including the rigid motion [39]:

Di(ω) =

[
Ri 0
0 Rpi

]T

· De(ω) ·
[

Ri 0
0 Rpi

]
, Rpi =

 cos θi sin θi ∆yi
− sin θi cos θi −∆xi

0 0 1

 (3)

Table 1. Orientation angle of flexure hinges/beams with respect to the reference coordinate frame.

Variables Values Variables Values Variables Values

θ1 −90 θ6 θr θ11 0
θ2 90 θ7 θr θ12 180 − θr
θ3 180 θ8 −90 θ13 180 − θr
θ4 180 θ9 90 θ14 180 − θr
θ5 θr θ10 0
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Flexure beams (5) and (12) are connected to rigid bodies with their j end. Their
extended dynamic stiffness matrices can also be calculated in the reference frame o-xy:

Di(ω) =

[
Rpi 0
0 Ri

]T

· De(ω) ·
[

Rpi 0
0 Ri

]
, Rpi =

 cos θi sin θi ∆yi
− sin θi cos θi −∆xi

0 0 1

 (4)

where ∆xi and ∆yi are the mass centre position of a rigid body with respect to the j-end or
k-end of the ith flexure hinge/beam in the local coordinate frame j-xiyi (their values are
listed in Table 2). It is noticed a plus or minus sign for ∆xi and ∆yi.

Table 2. The mass center position of a rigid body with respect to the j-end or k-end of the ith
flexure element.

Variables Values Variables Values

(∆x3, ∆y3) (∆1, − ∆2) (∆x11, ∆y11) (∆1, ∆2 + l3)
(∆x4, ∆y4) (∆1, −∆2 − l3) (∆x5, ∆y5) (−∆3sinθh − ∆1cosθh, ∆1sinθh − ∆3cosθh)

(∆x10, ∆y10) (∆1, ∆2) (∆x12, ∆y12) (−∆3sinθh − ∆1cosθh, ∆3cosθh − ∆1sinθh)

Based on the above, the frequency-dependent relationship of nodal displacement and
nodal force for the ith flexure hinge/beam in the reference coordinate frame o-xy can be
correlated with the dynamic stiffness matrix Di(ω) in a similar form of Hook’s law:{

Fi,j
Fi,k

}
= Di(ω) ·

{
xi,j
xi,k

}
=

[
ki,1 ki,2
ki,3 ki,4

]
·
{

xi,j
xi,k

}
(5)

where Fi,j(ω) = [Nj; Qj; Mj], Fi,k(ω) = [Nk; Qk; Mk] and xi,j(ω) = [uj; wj; ϕj], xi,k(ω) = [uk;
wk; ϕk] are the nodal forces and nodal displacements of the ith flexure hinge/beam in the
reference coordinate frame.

The dynamic stiffness matrix in Equation (5) captures the relationship of nodal forces
and nodal displacements of the ith flexure hinge/beam in a similar form of Hook’s law.
This relationship can be easily transformed in the form of transfer matrix:{

xi,k
−Fi,k

}
= Ti ·

{
xi,j
Fi,j

}
=

[
ti,1 ti,2
ti,3 ti,4

]
·
{

xi,j
Fi,j

}
=

[
−k−1

i,2 · ki,1 k−1
i,2

ki,4 · k−1
i,2 · ki,1 − ki,3 −ki,4 · k−1

i,2

]
·
{

xi,j
Fi,j

}
(6)

where Ti is the transfer matrix of the ith flexure hinge/beam in the reference frame.
With the above preparation of flexure elements, the displacement amplification mech-

anism in Figure 5 can be further discretized as a building block configuration, as shown
in Figure 7. The detailed nodal force and nodal displacement of each building block are
illustrated in the figure. The nodal displacements between two adjacent building blocks
are equal, while an opposite reaction is legal for the two nodal forces of adjacent building
blocks. Therefore, the total transfer matrix of the two sub-chains can be directly obtained
by taking the chain path from input ports to the output port. The nodal forces and nodal
displacements between the input and output building blocks can be then related with the
total transfer matrices TI and TII:{

x7,k
−F7,k

}
= [TI ] ·

{
x3,j
F3,j

}
= [T7 · T6 · T5 · Tm3 · Q2 · T3 · Q1 · Tm1] ·

{
x3,j
F3,j

}
(7)

{
x14,k
−F14,k

}
= [TI I ] ·

{
x10,j
F10,j

}
= [T14 · T13 · T12 · Tm3 · Q4 · T10 · Q3 · Tm1] ·

{
x10,j
F10,j

}
(8)

where Tm1 and Tm3 are the transfer matrix of the input port and rigid body with respect
to the mass centre. Qi (I = 1, 2, 3, 4) are the accessional stiffness matrices of the parallel
sub-chains at the j-end and/or k-end of the flexure hinges (3) and (10). Actually, Qi indicates
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the force summation of parallel sub-chains at the joint point [38]. The expressions of Tm
and Qi are:

Tmi =

[
I3 O3

−Mi I3

]
, Mi = −ω2 ·

 mi 0 0
0 mi 0
0 0 Ji

 (i = 1, 3) (9)


Q1 =

[
I3 O3

−2(k1,4 + k2,4) I3

]
, Q2 =

[
I3 O3

−k4,4 I3

]
Q3 =

[
I3 O3

−2(k8,4 + k9,4) I3

]
, Q4 =

[
I3 O3

−k11,4 I3

] (10)

where I3 and O3 are the 3 × 3 unit and zero matrices. ki,4 (i = 1, 2, 4, 8, 9, 11) are the last
three rows and three columns of the dynamic stiffness matrix Di(ω) in Equation (5).
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Based on the condensation above, the displacement amplification mechanism in
Figure 7 can be simplified as an equivalent network shown in Figure 8. The relationship be-
tween the nodal force and nodal displacement of the two condensed links can be expressed
again in the form of the dynamic stiffness matrix:{

Fi,j
Fi,k

}
= Di(ω) ·

{
xi,j
xi,k

}
=

[
ki,1 ki,2
ki,3 ki,4

]
·
{

xi,j
xi,k

}
=

[
−t−1

i,2 · ti,1 t−1
i,2

ti,4 · t−1
i,2 · ti,1 − ti,3 −ti,4 · t−1

i,2

]
·
{

xi,j
xi,k

}
(11)

where ti,1, ti,2, ti,3, and ti,4 (i = I, II) are the block sub-matrices of TI and TII.
Taking the input and output ports in Figure 8 as the study objects, the following force

equilibrium equation sets can be directly established based on d’Alembert’s principle by
summarizing the inverse nodal force, inertial force, and external force:

fin1 = FI,j
fin2 = FI I,j
fout = FI,k + FI I,k + M2 · xout

(12)

where the mass matrix M2 can be calculated by Equation (9) with the value of m2. It is
noticed that J2 = 0 which will not significantly influence the dynamic performance.
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By substituting Equation (11) into Equation (12), and re-writing the linear equation sets
in the form of matrix, the two-port dynamic stiffness model of the presented displacement
amplification mechanism can be ultimately derived as:

fin1
fin2
fout

 = D(ω) ·


xin1
xin2
xout

 =

 kI,1 O3 kI,2
O3 kI I,1 kI I,2
kI,3 kI I,3 kI,4 + kI I,4 + M2

 ·


xin1
xin2
xout

 (13)

where kI,i and kII,i (i = 1, 2, 3, 4) are the block sub-matrices of DI and DII in Equation (11).

4. Parameter Influence Analysis

By solving Equation (13) with the dynamic frequency ω = 0, the static performances can
be calculated as: displacement amplification ratio R = xout/2xin, input stiffness Kin = fin/xin,
output stiffness Kout = fout/xout. The dynamic response spectrum can be directly obtained
starting from an initial value of frequency f = 1 Hz (ω = 2πf ) and incrementing step-by-step
with ∆f =1 Hz. In addition, the resonance frequency in the output direction can be obtained
by checking the peaks of the dynamic displacement response spectrum curve, while all the
natural frequencies can be calculated by tracking the zero roots of the determinant of the
overall dynamic stiffness matrix D(ω) in Equation (13).

The static performances, the first two-order natural frequencies and the dynamic
displacement response on the frequency domain were calculated by the theoretical model
in Equation (13) and the finite element software package ANSYS Workbench 15.0. The
geometric parameters are listed in Table 3, in which the mass m3 and mass moment of
inertial J3 were read out from CAD software. The material was selected as aluminum
alloy 7075 with the density of ρ = 2770 kg/m3, Young’s modulus of E = 71 GPa, and the
shear modulus of G = 27 GPa. During the finite element simulation, the static, modal, and
harmonic analyses with small deformation were performed. The Solid186 element was
chosen to build the model and the advanced size function of proximity and curvature was
adopted to refine the elements. An input force with the magnitude of 100 N and dynamic
frequencies from 1 Hz to 5 kHz was exerted.

Table 3. Geometric parameters of the displacement amplification mechanism.

Parameters Values Parameters Values Parameters Values

l1 5.0 mm h1 0.6 mm d 7.0 mm
l2 5.0 mm h2 1.5 mm r 0.4 mm
l3 10.0 mm h3 4.0 mm L 15.0 mm
l4 24.0 mm h4 4.0 mm m1 ρ × d × 5 mm × 7 mm
l5 5.0 mm h5 0.4 mm m2 ρ × d × 2 mm × 4 mm
le 3.0 mm he 1.5 mm m3 4.2 g
θr 8.0 deg θe 40.0 deg J3 0.4 kg·mm2

∆ 1 3.6 mm ∆ 2 6.5 mm ∆ 3 17 mm
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Figure 9 provides the numerical results of the dynamic bandwidth of the amplifier
in terms of the dynamic response spectrum of output displacement and zero roots of the
determinant of the overall dynamic stiffness matrix D(ω). The finite element results of
the first two mode shapes are also shown in Figure 9a with the first two-order natural
frequencies of 1808 and 2150 Hz. The two zero roots of the determinant of the overall
dynamic stiffness matrix D(ω) in Figure 9a exactly correspond to the first two-order mode
shapes provided by the finite element method. A sharp peak of the lightly damped
resonance emerges in the frequency response curve, as shown in Figure 9b. Assuming the
finite elemental results as the benchmark, it appears that around 0.8% and 3.4% of the two
resonance frequencies were overestimated by the theoretical model, which demonstrate
the validity of the presented method. The errors between the theoretical model and finite
element results are mainly attributed to the mismatching of geometric parameters and
the rigid body assumption during the theoretical modeling. Visualized from the dynamic
response spectrum in Figure 9b, the first-order spurious rocking vibration mode in the two
levers was not excited by the input force. It is easy to understand that the input force only
excited the movement along the output direction owing to the symmetric structure of the
compliant mechanism. This indicates the fact that there is no need to design extra guiding
flexure mechanisms at the output port to compensate this type of spurious vibration mode
from the structural compactness point of view.
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Figure 9. Dynamic bandwidth of the displacement amplification mechanism provided by the two-port
dynamic stiffness model and finite element software package ANSYS Workbench 15.0. (a) Searching
the zero roots of the determinant of the dynamic stiffness matrix D(ω) and the finite element results
of mode shapes. (b) The dynamic response spectrum of the output displacement.
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Table 4 shows the variation of the static performances and the first two-order natural
frequencies under two sets of angle θr. During the theoretical calculation, the lever arm
was respectively regarded as rigid bodies (Theory1) and as two flexure beams (Theory2)
for a comparison. The lever arm was equivalent as two flexure beams with rectangular
cross-section based on the equal area, thus the in-plane thickness of the two equivalent
beam elements are, respectively, 7.74 mm (corresponding to length l3 in Figure 5) and
6.25 mm (corresponding to length l4 in Figure 5). The modeling process for the case of
Theory2 is similar to these in Section 3. It can be clearly seen from Table 4 that Theory1
and Theory2 well predicts the natural frequencies with respect to the results of FEM.
However, the prediction accuracy of Theory1 by regarding the lever arm as rigid bodies
is reduced for the results of the displacement amplification ratio R and input stiffness Kin.
This indicates the fact that the compliance of the lever arm has a significant influence on
the static performances of the displacement amplification mechanism. Actually, the output
stiffness Kout and the first two natural frequencies fn1 and fn2 are mainly dependent on the
semi bridge-type flexure amplifier, and these metrics are slightly influenced whether the
lever arms are regarded as rigid bodies or flexure beams.

Table 4. Comparison on the static and dynamic performances of the displacement amplification
mechanism provided by the presented model and finite element method (FEM).

Angle Methods
Static Performances The First Two-Order

Natural Frequencies

R Kin (N/µm) Kout (N/µm) fn1 (Hz) fn2 (Hz)

θr = 8 deg

Theory1 10.54 20.27 0.078 1822 2224
Theory2 5.39 11.23 0.077 1790 2223

FEM 5.84 10.45 0.072 1808 2150
Error1 80.48% 93.97% 8.33% 0.77% 3.44%
Error2 7.71% 7.46% 6.94% 1.00% 3.40%

θr = 20 deg

Theory1 4.62 5.92 0.132 1803 2089
Theory2 3.88 5.28 0.126 1777 2094

FEM 3.91 4.82 0.123 1794 2073
Error1 18.20% 22.82% 7.31% 0.50% 0.77%
Error2 0.77% 9.54% 2.43% 0.95% 1.01%

Figures 10–12 theoretically show the displacement amplification ratio considering the
axial stiffness of piezoelectric stacks [R·Kp/(Kin + Kp), here Kp = 100 N/µm] and the main
resonance frequency (i.e., the second-order natural frequency) of the mechanism versus
three key geometric parameters: (a) thickness h5 of the guiding flexure beams, (b) length l2
of the semi bridge-type amplifier, and (c) minimum thickness he of the V-type flexure hinges.
The displacement amplification ratio reduces with the increase of thickness h5 and length l2,
but it is nonsensitive at the domain of small values of l2. Actually, the compliance of flexure
arm of the semi bridge-type compliant amplifier is mainly dependent on the in-plane
thickness h1 when the length l2 is small. Therefore, displacement amplification ratio is
slightly influenced by small values of l2. A suitable value of 0.4 mm can be confirmed for h5,
and the length l2 can be selected as 5 mm for the prototype. In addition, the displacement
amplification ratio increases with a larger minimum thickness he of the V-type flexure
hinges and reaches to a maximum value due to the attenuation effect of input stiffness. The
dynamic resonance frequency continuously increases with the increase of he, and a relatively
large thickness he of 1.5 mm can be optimally selected for fabricating the prototype.
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5. Prototype and Experimental Testing

A prototype of the proposed amplified piezoelectric actuator was fabricated and
experimentally tested, as shown in Figure 13. The material of the displacement amplifica-
tion mechanism is aluminum alloy 7075 with the density of ρ = 2770 kg/m3 and Young’s
modulus of E = 71 GPa. The amplifier was fabricated through the wire-electrode cutting
technique. Two through-holes on the input ports were reserved to exert a tensile force in
order to increase the distance between the two input ports for assembling piezoelectric
stacks into the displacement amplification mechanism by the interference fit with a tol-
erance of about 20 µm. The whole amplifier is sized as 50 mm × 44 mm × 7 mm, and
it was mounted on an optical table for the static and dynamic measurements with the



Actuators 2022, 11, 134 13 of 18

reduced ground vibration. Piezo-stacks (18 mm × 7 mm × 7 mm) was excited using a
power amplifier (PI Corp., E-500). The used piezoelectric stacks have the axial stiffness
of 100 N/µm and the output stroke of about 16 µm under the input voltage of 100 V. The
output displacement of the amplified piezoelectric actuator was measured using a precision
laser sensor (Keyence, LK-G10) and recorded by a data recorder (Yiheng Inc., Hangzhou,
China). Non-negative sinusoidal signals at the working frequency of 1 Hz was used for the
static displacement and hysteresis evaluation. The dynamic responses were measured by
sweeping the frequencies from 1 to 4000 Hz and step signals, respectively. All of the tests
were implemented at room temperature.
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The static output displacement at the working frequency of 1 Hz and input voltage
of 100 V is shown in Figure 14, from which steady and smooth waves can be observed.
The maximum input and output static displacements can be read out as 10 and 61 µm
with the displacement amplification ratio of 6.1. In addition, the hysteresis error of around
17% from piezoelectric material can be observed and this type of error can be further
compensated by advanced control strategies that is not the emphasis of the current study.
The parasitic motion error of the output port along the x direction was also measured, as
shown in Figure 14c. The maximum parasitic motion error is about 0.25 µm under the
output displacement of 61 µm, which corresponds to the relative error of 0.41%. The small
parasitic motion error is attributed to the symmetric and compact structure of the design.

The dynamic response of the prototype was recorded by sweeping the frequency, and
the results on both time and frequency domain are shown in Figure 15. The single peak
in the response curve corresponds to the vibration mode in the output direction, and the
measuring result is 2176 Hz. From the dynamic response curve in Figure 15b, the first-order
local spurious swing and rocking vibration mode in Figure 9a was indeed not excited and
only the main vibration mode along the output direction appear. The experimental result of
single resonance peek further indicates that there is no necessity to design guiding flexure
beams at the output port from the compactness point of view.
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Figure 14. Experimental results of the static input and output displacements of the presented
displacement amplification mechanism. (a) Input and output displacements. (b) Open-loop hysteresis
characteristic. (c) Parasitic motion error of the output port in the x direction.
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Figure 15. Experimental results of the dynamic response of the presented displacement amplification
mechanism. (a) Output on the time domain. (b) Response on the frequency domain.

The third experiment was performed to obtain the step response time in an open-loop
control. In this case, two step transient signals with the magnitude of 100 V were followed
by the amplified piezoelectric actuator. From the results in Figure 16, it can be seen that the
step response time obtained necessary to reach 90% of the targeted stroke is about 0.4 ms.
The fast step response time in a matter of sub-microseconds is superior which is attributed
to the refined design in the current study.
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To summarize, Table 5 compares the maximum output displacement and the main reso-
nance frequency of the presented amplified piezoelectric actuator with other typical ones in
literature. The findings show that very compact structure can be achieved in some previous
studies with satisfying output displacements, such as the design in [35]. The current design
has a little larger size in comparison to this one, but the presented amplified piezoelectric
actuator exhibits much higher dynamic bandwidth. In addition, some reported compliant
amplifying mechanisms in literature have a relatively large displacement amplification
ratio, but the dynamic resonance frequency and the compactness still needs to be further
improved in comparison to the current design. The tradeoff among the displacement am-
plification ratio, dynamic bandwidth and structural compactness is still a challenging issue
in the field of compliant mechanisms. The current study attempts to equilibrate the tradeoff
by combining the lever-type and semi bridge-type compliant amplifying mechanisms in
a compact configuration. The optimal structural parameters were also confirmed by the
parameter influence analyses with a comprehensive two-port dynamic stiffness model.
Further investigations on inventing better configurations and some advanced closed-loop
controller are deserved, which are expected for potential applications requiring small space,
high motion speed and high accuracy. These potential application scenarios would involve
precision positioning stages, micro-grippers, fast mechanical switches and clutches, as well
as jet dispensers, to name a few.

Table 5. Comparison on the static and dynamic performances of different amplified piezoelectric ac-
tuators.

Amplifiers Size:
Length × Width × Height

Output Stroke
(Displacement

Amplifying Ratio)

Resonance
Frequency

Ref. [7] 120 mm × 80 mm × 25 mm
(Approximate value) 30 µm (R = 10.4) 1152 Hz

Ref. [35] 30 mm × 30 mm × 15 mm 80 µm (R = 10) 190 Hz
Ref. [31] 98 mm × 52 mm × 20 mm 69 µm (R = 3.51) 457 Hz
Ref. [31]

(Traditional bridge-type) 98 mm × 52 mm × 20 mm 74 µm (R = 3.70) 355 Hz

Ref. [36] 134 mm × 50 mm × 20 mm
(Approximate value) 200 µm (R = 20) 189 Hz

Ref. [40] 92 mm × 50 mm × 18 mm 214 µm (R = 12.1) 205 Hz
Ref. [41] 65 mm × 22 mm × 10 mm 200 µm (R = 16.2) 628 Hz

The presented 50 mm × 44 mm × 7 mm 61 µm (R = 6) 2176 Hz
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6. Conclusions

In this paper, we focused on exploring the benefits of synthesizing different types of
compliant mechanisms to mechanically amplify the micro displacement of piezoelectric
stacks. The design purpose is to achieve a large displacement amplification efficiency while
guaranteeing a high dynamic bandwidth within a compact size. The following conclusions
can be reached:

(1) Combining lever-type and semi bridge-type complaint amplifying mechanisms, we
proposed a new amplified piezoelectric actuator. Although these two types of compli-
ant mechanisms might not be perfect from a practical point of view, our combination
enables an improved performance. We showcase by comparing with previous designs
such a hybrid displacement amplification mechanism can reach a resonance frequency
of 2.1 kHz and the displacement amplification ratio of 6 within a compact size of
50 mm × 44 mm × 7 mm.

(2) The benefits of using a comprehensive two-port dynamic stiffness model for the di-
mension synthesis have been validated by extensive studies of the parameter influence
analysis. The traditional transfer matrix method, which is rarely used in the presence
of serial-parallel compliant mechanisms including rigid bodies and complex branches,
now is able to successfully utilize for such a complicated application scenario in a
way of conciseness.

It is noticed that the static and dynamic behaviors of piezoelectric stacks, such as the
hysteresis and creep as well as coupling between the piezoelectric stacks and compliant
amplifying mechanism, were not involved in the current study. The future work will focus
on developing advanced control strategies for precision tracking control and compensating
the nonlinear hysteresis and creep errors of the presented amplified piezoelectric actuator.
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