
Citation: Yang, Q.; Yu, H.; Meng, X.;

Yu, W.; Yang, H. Smooth-Switching

Gain Based Adaptive Neural

Network Control of n-Joint

Manipulator with Multiple

Constraints. Actuators 2022, 11, 127.

https://doi.org/10.3390/act11050127

Academic Editors: Marco Carricato

and Edoardo Idà

Received: 1 February 2022

Accepted: 25 April 2022

Published: 29 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Smooth-Switching Gain Based Adaptive Neural Network
Control of n-Joint Manipulator with Multiple Constraints
Qing Yang 1,2 , Haisheng Yu 1,2,* , Xiangxiang Meng 1,2 , Wenqian Yu 3 and Huan Yang 4

1 College of Automation, Qingdao University, Qingdao 266071, China; 2020020573@qdu.edu.cn (Q.Y.);
2018020450@qdu.edu.cn (X.M.)

2 Shandong Province Key Laboratory of Industrial Control Technology, Qingdao University,
Qingdao 266071, China

3 State Grid Dongping Power Supply Company, State Grid, Taian 271000, China; yuwenqiandp@163.com
4 School of Mechanical and Automotive Engineering, Qingdao University of Technology,

Qingdao 271000, China; 13675327120@139.com
* Correspondence: yhsh_qd@qdu.edu.cn

Abstract: Modeling errors, external loads and output constraints will affect the tracking control of
the n-joint manipulator driven by the permanent magnet synchronous motor. To solve the above
problems, the smooth-switching for backstepping gain control strategy based on the Barrier Lyapunov
Function and adaptive neural network (BLF-ANBG) is proposed. First, the adaptive neural network
method is established to approximate modeling errors, unknown loads and unenforced inputs. Then,
the gain functions based on the error and error rate of change are designed, respectively. The two gain
functions can respectively provide faster response speed and better tracking stability. The smooth-
switching for backstepping gain strategy based on the Barrier Lyapunov Function is proposed to
combine the advantages of both gain functions. According to the above strategy, the BLF-ANBG
strategy is proposed, which not only solves the influence of multiple constraints, unknown loads and
modeling errors, but also enables the manipulator system to have better dynamic and steady-state
performances at the same time. Finally, the proposed controller is applied to a 2-DOF manipulator
and compared with other commonly used methods. The simulation results show that the BLF-ANBG
strategy has good tracking performance under multiple constraints and model errors.

Keywords: manipulator; multiple constraints; adaptive neural network; smooth-switching for gain;
Barrier Lyapunov Function

1. Introduction

The manipulator has been widely used in various scenarios such as medical treatment,
automobile production and metal processing due to its strong safety, high precision and
high efficiency [1–3]. The permanent magnet synchronous motor (PMSM) has the char-
acteristics of small size, low loss and large starting torque [4,5], which is often used as
the drive motor for the servo control of the manipulator [6,7]. The manipulator system
driven by PMSM is a multi-variable, nonlinear and strongly coupled system. Therefore, as
the production requirements increase, the rapidity, accuracy and stability of manipulator
tracking have always been a research hotspot.

For manipulator tracking control, many scholars have proposed different control
strategies. Traditional control strategies such as proportional integral derivative (PID)
control, feedback linearization control, sliding mode control (SMC), adaptive control and
backstepping control are commonly used. Intelligent control methods such as fuzzy
control and neural network control are also widely used. Shojaei, Pradhan, and Kim
respectively used self-tuning PID control, second-order PID control and PD control to
effectively improve the steady-state tracking performance of the manipulator [8–10]. Feng,
Yeh, and Huang respectively designed non-singular fast terminal SMC strategy [11], output
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feedback SMC strategy [12] and adaptive SMC strategy [13]. Each method optimizes
the traditional SMC strategy, however, the chattering phenomenon still exists. Gabriele
and Meng adopted the feedback linearization strategy [14,15], but this strategy requires
an accurate mathematical model. In literature [16–18], adaptive control was designed to
effectively estimate the uncertainty of the system. Kanellakopoulos proposed a recursion-
based backstepping control [19], which was then widely used. Cheng and Farrell applied
backstepping strategy to the control of the manipulator [20,21]. Chang, Yang and Song
designed fuzzy backstepping, fuzzy adaptive and fuzzy command filter controllers to
improve the stability of position tracking [22–24]. The neural network control has strong
approximation ability, so it is used by many scholars to approximate the modeling errors
and nonlinear terms [25–28].

The above methods have improved the dynamic and steady-state performances of
manipulator tracking, respectively, however, it is difficult to guarantee better dynamic and
steady-state performance at the same time. In addition, most of the existing strategies only
consider the manipulator system and ignore the drive motor system, along with failing
to consider the effects of multiple constraints, unknown loads and modeling errors at the
same time. These problems often affect the safe and smooth operation of the manipulator
in engineering practice. Many scholars have devised different solutions to these problems.
Singh proposed the modeling concept of fractional calculus [29,30], and systematically
described the fractional order model of the manipulator in the book [31]. The fractional
order dynamic model can describe the system model more accurately. Meng and Liu
adopted the coordination strategy of two controllers, combining the advantages of the two
controllers to improve the dynamic and steady-state characteristics at the same time, but
the use of two different controllers will increase the complexity of the control system [32,33].
Other studies [34–36] used the Barrier Lyapunov Function (BLF) to satisfy the output
constraint problem. Sung and Cheng proposed a neural network strategy to approximate
the model uncertainty [37,38]. Yang et al. designed a variable-gain backstepping strategy
to improve the rapidity and stability of the controller [39–42].

In this paper, the smooth-switching for backstepping gain control strategy based on
BLF and adaptive neural network (BLF-ANBG) is designed. Combined with the manipula-
tor and the drive motor, the overall model of the manipulator control system is obtained.
The adaptive radial basis function (RBF) neural networks are designed to approximate the
modeling errors, unknown loads and unenforced inputs of the system. The gain function
based on the error and the change rate of error is designed, and the Gaussian function is
used as the switching function to design the method of smooth-switching for backstepping
gain, which combines the advantages of the two gain functions. When the error is large, the
gain function based on the error plays a major role, and the error is proportional to the gain,
which shortens the rise time of the system. On the contrary, when the error is small, the
gain function based on the change rate of error plays a major role, and the change rate of
error is inversely proportional to the gain, which improves the stability of the steady-state
of the system. The smooth-switching for backstepping gain controller is designed based on
BLF (BLF-GSS) to realize the normal operation of the system under asymmetric or symmet-
ric time-varying output limited. The BLF-ANBG strategy is proposed by combining the
adaptive neural network strategy and the BLF-GSS strategy.

The main contents of this article are organized as follows. In Section 2, the overall
model of the manipulator control system is provided by combining the manipulator system
and the driven motor system. In Section 3, the BLF-ANBG controller based on an adaptive
neural network and BLF-GSS is designed. In Section 4, the stability of the control strategy
is proved by using the Lyapunov function [43]. In Section 5, the controller is applied to the
2-DOF manipulator, and the feasibility of the controller is verified by a simulation example.
Some conclusions are summarized in Section 6.
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2. The Overall System Model of n-Joint Manipulator Driven by PMSM
2.1. The Model of n-Joint Manipulator System

The system model of the n-joint manipulator considering the modeling error and
unknown load is

(M(q)+∆M(q))q̈+(C(q, q̇)+∆C(q, q̇))q̇+(G(q)+∆G(q))=τr−τL−τf − ∆E (1)

τL = JTF, τf = R f q̇ + Fcsgn(q̇) (2)

where q = [q1, · · · , qn]T represents the position of each joint. M(q) and C(q, q̇) ∈ Rn×n

are the positive-definite inertia matrix and Coriolis force matrix of the nominal model,
respectively. G(q) ∈ Rn is the system gravity vector of the nominal model. τr, τL ∈ Rn

and τf are respectively expressed as the output torque, load torque and friction torque
of the manipulator system. ∆M(q), ∆C(q, q̇) and ∆G(q) are the modeling error. J and F
are the Jacobian matrix and load force of the manipulator, respectively. R f and Fc are the
diagonal viscous friction and Coulomb friction matrix. ∆E is the interference signal caused
by position measurement error and velocity measurement noise.

2.2. The Model of Drive Motor System

The mathematical model of PMSM with modeling errors in the d− q rotating coordi-
nate system is described by

Lq
diq
dt = −npΦω− npBLdid − Rsiq + uq (3)

Ld
did
dt = −Rsid + npBLqiq + ud (4)

(Jm + ∆Jm)
dω
dt = τ − τmL − Rmω (5)

dθ
dt = ω (6)

τ = np[(Ld − Lq)idiq + Φiq] (7)

where θ, ω ∈ Rn indicate the rotation angle and speed of the PMSM. Ld, Lq is the diago-
nal square matrix of d− q axis inductance. B = diag{ω1, · · · , ωn}, ωi represents the ith
component of the speed. id, iq and ud, uq denote the d− q axis stator current and voltage
vector. np, Φ and Rm ∈ Rn×n are pole logarithm, magnetic flux and friction matrix of
PMSM, respectively. Jm ∈ Rn×n denote the diagonal inertia matrix of PMSM. τ, τmL ∈ Rn

are the vector of electromagnetic torque and motor load torque, respectively. ∆Jm denote
the modeling error of PMSM.

Assumption 1. The input current of PMSM is strictly three-phase symmetrical.

Assumption 2. The core saturation of PMSM can be ignored.

Property 1. The manipulator system and the drive system are connected by the transmission with
the reduction ratio of µ > 0, that is q = µθ and τr = µ−1τmL.

2.3. The Overall Model of the Manipulator Driven by PMSM

According to (1)–(7), combined with the model of the manipulator system and the
PMSM system, the dynamic model of the manipulator driven by PMSM with unknown
load and modeling errors can expressed as

M̄(q)q̈+C̄(q, q̇)q̇+Ḡ(q)=τ− µ(τf +τL+ ∆E)−µ(∆M(q)q̈+∆C(q, q̇)q̇+∆G(q))−µ−1∆Jm q̈ (8)

where M̄(q)=µM(q)+µ−1 Jm, C̄(q, q̇)=µC(q, q̇)+µ−1Rm, Ḡ(q)=µG(q)
Considering the input saturation of the drive motor in the project, the actual input of

PMSM electromagnetic torque τs(t) = [τs1(t), · · · , τsn(t)]T is defined as
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τsi(t) =


τi max , τi(t) ≥ τi max
τi(t) , τi min < τi(t) < τi max
τi min , τi(t) ≤ τi min

(9)

where the subscript i denotes the i th element of the electromagnetic torque vector. τi max,
τi min are the upper and lower limit values of the electromagnetic torque input to the drive
motor, respectively. The part of the control signal that cannot be executed by PMSM can be
expressed as

τni(t) = τi(t)− τsi(t) =


τi(t)− τi max τi(t) ≥ τi max
0 τi min < τi(t) < τi max
τi(t)− τi min τi(t) ≤ τi min

(10)

Substituting (4) and (5), Equation (3) is rewritten as

M̄(q)q̈ + C̄(q, q̇)q̇ + Ḡ(q) = τs − µτf + f (µ, τn, τL , q, q̇, q̈) (11)

where f (µ, τn, τL , q, q̇, q̈)=τn− µ(τL + ∆E)−µ(∆M(q)q̈+∆C(q, q̇)q̇ + ∆G(q))−µ−1∆Jm q̈,
represents unknown modeling error, load and unexecuted input. For the convenience of
the following application we use f instead of f (µ, τn, τL , q, q̇, q̈). Define the state vector as
x1 = q, x2 = q̇. The state equation of the manipulator system can be described as

ẋ1 = x2 (12)

ẋ2 = M̄−1(x1)[−C̄(x1, x2)x2 − Ḡ(x1) + f + τs − µτf ] (13)

y = x1 (14)

In the actual servo tracking of the robot arm, it is necessary to ensure that the output
of each joint is bounded and can normally track the desired position signal.

Assumption 3. There exist time-varying output upper and lower bounds yi max(t) and yi min(t)
( i = 1, 2, · · · , n), such that yi min(t) ≤ yi(t) ≤ yi max(t), ∀t > 0.

Assumption 4. There are functions ydi min(t) and ydi max(t) that satisfy the inequality yi min(t)
≤ ydi min(t) and ydi max(t) ≤ yi max(t), ∀t > 0, so that the desired position satisfies ydi min(t)
≤ ydi(t) ≤ ydi max(t).

Lemma 1 ([34]). For any |ς| < 1, the inequality log 1
1−ς2 < ς2

1−ς2 is satisfied.

3. Design of Controller

In this section, the structure and approximation process of the adaptive RBF neural
network are described. Then, the smooth-switching for backstepping gain method is
designed. Finally, the BLF-ANBG controller is designed.

3.1. Design of Adaptive Neural Network Approximation

To estimate modeling error, external load torque and unexecuted input, an adaptive
RBF neural network strategy composed of an input layer, middle layer and output layer is
designed. The structure of the adaptive RBF neural network is shown in Figure 1.

The middle layer is composed of five neurons, the output of each neuron is

hk = exp
(
− ‖z−ck‖2

b2
k

)
(k = 1, · · · , 5) (15)

where z = [e1, ė1]
T is the input vector. ck, bk represent the center point vector and width of

the k th neuron, respectively. The output of the adaptive RBF neural network is
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f̂ (·) = ŵTh(x) (16)

where h(x) = [h1, · · · , h5]
T. ŵ is the adaptive weight, and the adaptive law is described as

˙̂w = ψhzTPB (17)

where ψ > 0 is the constant gain. B represents the input matrix of the closed-loop system.
P is the positive definite matrix, and there exists the matrix Q ≥ 0 such that P satisfies the
stability equation PA + ATP = −Q, where A is the state matrix of the closed-loop system
and the equations are given in Section 3.3. The adaptive neural network proposed in this
paper recalculates the adaptive weights through the position error, velocity error of the
manipulator and the output of the hidden layer of the adaptive neural network in each
iteration to achieve the training of the neural network.

Property 2. Given a continuous function f (·), there is an ideal weight ŵ∗, and the adaptive neural
network approximation error γ = f (·)− f̂ ∗(·) satisfies max‖γ‖ ≤ γ0 . γ0 is the upper bound of
error, and satisfies γ0 ≤ ε, ε is a very small positive number.

Hidden layerInput layer Output layer

å

å

21
Ŵ

2

ˆ
nW

5

ˆ
nW

1
e n

1
f̂

ˆ
nf51

Ŵ

11
Ŵ

1

ˆ
nW

1
h

2
h

5
h

11
e

11
e

1ne1ne1

Figure 1. The structure of the Adaptive RBF Neural Network.

3.2. Design of Smooth-Switching for Backstepping Gain

The change in the control gain can produce the contradiction between the system
dynamics characteristics and the steady-state characteristics. The larger the gain, the faster
the response, the higher the accuracy, but the worse the stability [37,38]. The smaller the
gain, the better the stability, but the response time will be longer and the accuracy will
be lower. In addition, considering safety in engineering, the control gain is often within
a certain range. In this part, a new smooth-switching for backstepping gain strategy is
proposed, and the control gain is designed with the error surface and the change rate of the
error surface, respectively.

3.2.1. The Variable Control Gain of the Error

Define the error surface as eij, where the subscript represents the j th component of
the i th error surface. The variable control gain designed with error is expressed as

∆kij(eij) =
2αij
π arctan

( eij
βij

)2
+ δij (18)

where αij > 0 is the magnification of the gain designed with the error. βij > 0 is the scale
parameter of variable gain. δij is a positive constant, ensure that ∆kij(eij) > 0, ∀eij ∈ R.

3.2.2. The Variable Control Gain of the Change Rate of the Error

Take the derivative of the error surface eij to get ėij. The variable control gain designed
with the change rate of error can be described as

∆kij(ėij) = δij −
2ξij
π arctan

( ėij
ζij

)2
(19)
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where ξij > 0 is the magnification of the gain function designed based on the change rate
of error. ζij is the positive scale parameter. δij > ξij, ensure that ∆kij(ėij) > 0, ∀ėij ∈ R.

3.2.3. Design of Smooth-Switching for Backstepping Gain

To solve the smoothness of the gain switching transition process, a smooth-switching
function based on the error surface is designed as

f (eij) = 1− exp
(
−
( eij

σij

)2
)

(20)

where σij is the positive scale constant. The smooth-switching function curve with different
values of σij are shown in Figure 2.

(a) The curve of f (eij) (b) The curve of 1− f (eij)

Figure 2. The smooth-switching function curve.

According to (18)–(20), the smooth-switching for backstepping gain strategy is de-
signed as

∆kij = f (eij) · ∆kij(eij) + [1− f (eij)] · ∆kij(ėij) (21)

When the error is large, the control gain designed based on the error is mainly used.
The greater the error, the greater the control gain, which ensures the rapid convergence of
the system. When the error is small, the control gain designed by using the change rate of
error is mainly used. The larger the change rate of error surface, the smaller the control
gain. Thus, the jitter phenomenon caused by the large control gain of the manipulator
system in the steady-state is reduced. When the error is in the middle range, the two gain
functions transition in the form of smooth switching.

3.3. Design of BLF-ANBG Controller

To consider the time-varying asymmetric output limitation, the time-varying asym-
metric BLF and adaptive neural network are used to design the smooth-switching for the
backstepping gain controller. The block diagram of the manipulator system based on the
BLF-ANBG controller is shown in Figure 3, and the design process is as follows

Step (1) Define the first tracking error surface vector as e1 = x1−xd = [e11, · · · , e1n]
T,

xd is the desired tracking position. The time-varying barrier of output is defined as

yai(t) = xdi(t)− yi min(t) (22)

ybi(t) = yi max(t)− xdi(t) (23)

where i = 1, · · · , n, which means the ith component of the vector. Define the time-varying
asymmetric output constraints BLF as

V1 =
n
∑

i=1
V1i =

n
∑

i=1

[
λ(e1i)

2 log 1
1−ς2

i+(t)
+ 1−λ(e1i)

2 log 1
1−ς2

i−(t)

]
(24)

where
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λ(e1i) =

{
1 , i f e1i > 0
0 , i f e1i ≤ 0

(25)

ςi min(t) =
e1i

yai(t)
, ςi max(t) =

e1i
ybi(t)

(26)

Define the coordinate transformation as

ςi(t) = (1− λ(e1i))ςi min(t) + λ(e1i)ςi max(t) (27)

Substituting (25) and (27) into (24), can obtain

V1 =
n
∑

i=1
V1i =

n
∑

i=1

1
2 log 1

1−ς2
i (t)

, |ςi(t)| ≤ 1 (28)

It can be obtained from (28) that when |ςi| ≤ 1, V1 is positive definite. The differential
of V1 as

V̇1 =
n
∑

i=1
V1i =

n
∑

i=1

[
λ(e1i)ςi max(t)

ybi(t)(1−ς2
i max(t))

(e2i + x2di − ẋdi − e1i
ẏbi(t)
ybi(t)

)

+ (1−λ(e1i))ςi min(t)
yai(t)(1−ς2

i min(t))
(e2i + x2di − ẋdi − e1i

ẏai(t)
yai(t)

)

] (29)

where x2di is the ith component of the virtual control vector x2d, and the virtual control
vector x2d is designed by using the backstepping method as

x2d = −(∆k1 + k̄1(t))e1 + ẋd (30)

∆ki = diag{∆ki1, · · · , ∆kin} (31)

k̄1(t) = diag{k̄11(t), · · · , k̄1n(t)} (32)

where k̄1i(t) =

√(
ẏai(t)
yai(t)

)2
+
(

ẏbi(t)
ybi(t)

)2
+ a, a > 0 is a constant to ensure that the derivative

of x2di is bounded. Substituting (26) and (27) and (30)–(32) into (29) can be rewritten as

V̇1 =
n
∑

i=1
V̇1i ≤

n
∑

i=1

[
−∆k1iς

2
i

1−ς2
i
+

(
1−λ(e1i)

y2
ai(t)−e2

1i
+ λ(e1i)

y2
bi(t)−e2

1i

)
e1ie2i

]
(33)

PMSM 1
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PI Current 

Controler /dq ab
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* =
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*

qni
*

1st

snt

2dx

1di

1qi

dni

qni

dnu

qnu

1du

1qu
1ua

1ub

nua
nub InverterSVPWM

1ia

1ib

nia

nib

nq

1ai
1bi

1ci

ani

bni

cni

1kD

2kD

1q nq

1q1 nqn

dnq1dq

Figure 3. The Block Diagram of the Manipulator System Based on the BLF-ANBG Controller.
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Step (2) The second error surface vector is defined as e2 = x2 − x2d= [e21, · · · , e2n]
T .

Define the stability function as V2 =
n
∑

i=1
V2i =

n
∑

i=1

1
2 e2

2i. Substituting into (13), based on the

backstepping control method, the actual control signal is selected as

τs = M̄(x1)[−∆k2e2 + ẋ2d − ηe1] + C̄(x1, x2)x2 + Ḡ(x1) + µτf − f̂ (34)

where η = diag
{(

1−λ(e11)

y2
a1(t)−e2

11
+ λ(e11)

y2
b1(t)−e2

11

)
, · · · ,

(
1−λ(e1n)

y2
an(t)−e2

1n
+ λ(e1n)

y2
bn(t)−e2

1n

)}
, and f̂ is the adap-

tive RBF neural network estimate of f . Substituting (30), Equation (34) can be rewritten as

τs = M̄(x1)
[
ẍd −

(
∆k1 + ∆k2 + k̄1(t)

)
ė1 −

[
∆k2

(
∆k1 + k̄1(t)

)
+ η

]
e1
]

+C̄(x1, x2)x2 + Ḡ(x1) + µτf − f̂ (35)

Substitute (35) into (11), subtracting M̄(x1)ẋ2 + C̄(x1, x2)x2 + Ḡ(x1) from both sides,
can get

ë1+
(
∆k1+∆k2+k̄1(t)

)
ė1+

[
∆k2

(
∆k1+k̄1(t)

)
+η
]
e1= M̄−1(x1)

(
f− f̂

)
= M̄−1(x1)

(
f − f̂ ∗ + f̂ ∗ − f̂

)
= M̄−1(x1)

(
γ− w̃Th

) (36)

where w̃ = ŵ− ŵ∗. Let z = [e1, ė1]
T , the closed-loop system equation is

ż = Az + B
[
M̄−1(γ− w̃Th

)]
(37)

where A =

[
0n In

−∆k2
(
∆k1+k̄1(t)

)
−η −∆k1−∆k2−k̄1(t)

]
, B =

[
0
In

]
. 0n and In repre-

sent n dimensional zero matrix and identity matrix, respectively.

4. The Analysis of BLF-ANBG Controller

In this section, the stability of the BLF-ANBG strategy is proved. Then, the manipulator
joint output constraints are verified as not violated. Finally, the tracking error convergence
is proved.

4.1. Proof of BLF-ANBG Controller Stability

The Lyapunov function of the BLF- ANBG controller is defined as

V = V1 + V2 +
1
2 zTPz + 1

2ψ‖w̃‖
2 =

n
∑

i=1

[
λ(e1i)

2 log 1
1−ς2

i+(t)

+ 1−λ(e1i)
2 log 1

1−ς2
i−(t)

]
+

n
∑

i=1

1
2 e2

2i +
1
2 zTPz + 1

2ψ‖w̃‖
2

(38)

where ‖w̃‖ = tr(w̃Tw̃) is the Frobenius norm of w̃, and also represents the trace of matrix
w̃Tw̃. From (38), it can be known that V is positive definite. Taking the derivative of w̃ and
substituting (17) into ˙̃w can obtain

˙̃w = ˙̂w− ˙̂w∗ = ψhzTPB (39)

Taking the derivative of (38) can be known that
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V̇ ≤
n

∑
i=1

[
−

∆k1iς
2
i

1− ς2
i
+

(
1− λ(e1i)

y2
ai(t)− e2

1i
+

λ(e1i)

y2
bi(t)− e2

1i

)
e1ie2i

]

+
n

∑
i=1

[
−∆k1ie2

2i −
(

1− λ(e1i)

y2
ai(t)− e2

1i
+

λ(e1i)

y2
bi(t)− e2

1i

)
e1ie2i

]

+
1
2

[
zTPż + żTPz

]
+ tr(BTPzhTw̃)

=
n

∑
i=1

[
−

∆k1iς
2
i

1− ς2
i
− ∆k1ie2

2i

]
+

1
2

[
zTPż + żTPż

]
+ tr(BTPzhTw̃) (40)

Substituting (37) into (40), it becomes

V̇ ≤
n
∑

i=1

[
−∆k1iς

2
i

1−ς2
i
− ∆k1ie2

2i

]
+ 1

2
[
zTPAz + zTPBγ− zTPBw̃Th

+zT ATPz + γTBTPz− hTw̃BTPz
]
+ tr(BTPzhTw̃)

(41)

Noting that hTw̃BTPz = zTPBw̃Th = tr(BTPzhTw̃) and γTBTPz = zTPBγ , (41) is
rewritten as

V̇ ≤
n
∑

i=1

[
−∆k1iς

2
i

1−ς2
i
− ∆k1ie2

2i

]
− 1

2 zTQz + γTBTPz (42)

Combining Property 2 to get

V̇ ≤
n
∑
i=1

[
−∆k1iς

2
i

1−ς2
i
−∆k1ie2

2i

]
−‖z‖

[
1
2 λmin(Q)‖z‖−‖γ0‖λmax(P)

]
(43)

where λmin(·) and λmax(·) represent the upper and lower bounds of the eigenvalues,
respectively. From (43), it can be seen that all signals in the system are uniformly ultimately
bounded (UUB) [44,45]. The system is semi-global and practically stable [46].

Remark 1. To satisfy V̇ ≤ 0, choose appropriate controller parameters such that ‖z‖ ≥ 2‖γ0‖λmax(P)
λmin(Q)

.
In this paper, the appropriate eigenvalues of Q are selected to satisfy the above conditions to make the
system asymptotically converge to the small neighborhood of the origin. When the approximation
error γ tends to 0, the system asymptotically converges to the origin.

4.2. Proof That the Manipulator Joint Outputs Constraints Are Not Violated

From (27), it can be obtained that when e1i < 0, which yields ςi(t) = ςi min(t), and
because |ςi| ≤ 1 and yai(t) > 0, according to (26) can be known that −1 < ςi min(t) ≤ 0,
then −yai(t) < e1i(t) ≤ 0. Similarly, when e1i ≥ 0, 0 ≤ e1i(t) < ybi(t) can be obtained. In
conclusion, that

−yai(t) < e1i(t) < ybi(t), |ςi(t)| < 1 (44)

Adding xdi(t) to each term in the inequality, (45) can be rewritten as

−yai(t) + xdi(t) < e1i(t) + xdi(t) < ybi(t) + xdi(t), |ςi(t)| < 1 (45)

So yi min(t) < y(t) < yi max(t), each joint is within the given constraints.

4.3. Proof of Tracking Error Convergence

According to Lemma 1 and (38), V(t) ≤ V(0)e−ρt, t ≥ 0 can be obtained [34,47],
where ρ = min

{
2∆k1j, 2∆k2j

}
, j = 1, · · · , n. It can be obtained that

1
2 log 1

1−ς2
i (t)
≤ V(0)e−ρt (46)
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Hence,

ς2
i (t) ≤ 1− e−2V(0)e−ρt

(47)

When e1i ≤ 0, ςi(t)=ςi min(t)=
e1i

yai(t)
,−yai(t)

√
1−e−2V(0)e−ρt ≤ e1i ≤ 0. When e1i > 0,

ςi(t) = ςi max(t) =
e1i

ybi(t)
, 0 < e1i ≤ ybi(t)

√
1− e−2V(0)e−ρt . Combining both cases, can con-

clude that

−yai(t)
√

1− e−2V(0)e−ρt ≤ e1i ≤ ybi(t)
√

1− e−2V(0)e−ρt (48)

where

lim
t→∞

(
−yai(t)

√
1− e−2V(0)e−ρt

)
= 0 (49)

lim
t→∞

(
ybi(t)

√
1− e−2V(0)e−ρt

)
= 0 (50)

From (49) and (50), the upper and lower bounds of e1i converge to 0, so e1i converges
to 0.

5. Simulink Results and Analysis

In this section, the BLF-ANBG control strategy is applied to a 2-DOF manipulator for
simulation experiments to verify the feasibility of the strategy. The simulation experiment
is divided into three parts. First, to verify the effectiveness of the smooth-switching for
the backstepping control method, it is compared with the two variable gains functions
without the smooth-switching strategy. Second, the BLF-ANBG strategy is used to control
the manipulator to track the unit-step and periodic signals without modeling error and
unknown load, and compare with other commonly used control strategies. Finally, the
BLF-ANBG strategy is compared with the commonly used strategies in the presence of
modeling errors and unknown loads. The parameters of the manipulator system in all
simulation experiments in this section are shown in Table 1.

Table 1. The parameters of the manipulator system.

Parameters Values Parameters Values

Weight (m1, m2) 0.5 kg Length (l1, l2) 1 m
R f diag{5, 5} N Rs diag{2.875, 2.875}Ω
np diag{4, 4} Ld, Lq diag{0.0085, 0.0085} H
Φ diag{0.175, 0.175}Wb Jm diag{0.0025, 0.0025}kg ·m2

η diag{0.01 , 0.01} Rm diag{6 , 6} N
Fc diag{3, 3} N Sampling Period 0.0001 s

The dynamics model of the 2-DOF manipulator system can be described as (8), where
the inertia matrix M(q), Coriolis force matrix C(q, q̇) and gravity matrix G(q) can be
defined as

M(q) =
[

M11 M12
M21 M22

]
, C(q, q̇) =

[
C11 C12
C21 C22

]
, G(q) =

[
G1
G2

]
where
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M11 = m1l2
1 + m2l2

1 + m2l2
2 + 2m2l1l2 cos q2

M12 = M21 = m2l2
2 + m2l1l2 cos q2

M22 = m2l2
2

C11 = −m2l1l2q̇2 sin q2
C12 = −m2l1l2q̇1 sin q2 −−m2l1l2q̇2 sin q2
C21 = m2l1l2q̇1 sin q2
C22 = 0
G1 = m1l1g cos q1 + m2l1g cos q1 + m2l2g cos(q1 + q2)
G2 = m2l2g cos(q1 + q2)

(51)

The parameters of the BLF-ANBG controller are described in Table 2.

Table 2. The parameters of controller.

Parameters Values Parameters Values Parameters Values

β11, β12 0.5 ζ11, ζ12 0.5 β21, β22 0.05
ζ21, ζ22 0.05 σ11, σ12 0.5 σ21, σ22 10
δ11, δ12 2000 δ21, δ22 270 α11, α12 1000
α21, α22 5 ξ11, ξ12 1800 ξ21, ξ22 250

ε 0.1 ψ 10 Q diag{60, 60, 60, 60}

From Table 2, 0 < βij < 1, 0 < ζij < 1, the values of βij and ζij are obtained by trial
and error within an appropriate range. When βij and ζij are larger, the dynamic response
of the system is faster, and when βij and ζij are smaller, the transition process is smoother.
If αij is larger, the upper bound of the variable gain function of the error is larger, and the
systems response is faster, which can be appropriately increased on the premise of ensuring
the safety of the system. δij is the lower and upper bounds of the two gain functions, and
δij > ξij ensures that the system is stable. Q can be appropriately increased to enhance the
system convergence effect.

5.1. Simulation Comparison Results of Smooth-Switching for Backstepping Gain Strategy

In this part, the manipulator system uses the smooth-switching for backstepping gain
strategy to track the unit-step signal, and compares it with two variable gain functions
without the smooth-switching strategy. The initial position of each joint of the manipulator
system is q(0) = [0, 0]T, the execution saturation is ±20 N·m, and the output constraints of
each joint are yi min = −0.3 + 0.1 sin(0.8t + π

3 ), yi max = 1.3 + 0.2 sin(0.5t + π
2 ). The track-

ing and error curves for the unit-step signal are provided in Figure 4.
As can be seen from Figure 4, using only the gain function based on the error has a

faster response speed and can reach the steady-state faster, but there will be overshoot, and
large jitter will occur after reaching the steady state. Using only the gain function based on
the change rate of error can improve steady-state performance but has a long response time.
The smooth-switching for backstepping gain strategy combines the advantages of two gain
functions and can have good dynamic and steady-state performances at the same time.



Actuators 2022, 11, 127 12 of 19

0 2 4 6 8 10

Time (s)

-0.5

0

0.5

1

1.5

q
1
 a

n
d

 q
d
1
 (

ra
d

)

qd1
BLF-ANBG

Gain of eij
Gain of ėij
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Figure 4. The unit-step tracking curves compared to two variable gain functions.

5.2. Without Modeling Error and Unknown Load

In this part, the manipulator tracks the unit-step signal and the expected periodic
signal qd =

[
0.8sin(0.5t + π

2 ), 0.9sin(0.8t + π
3 )
]T without modeling error and load, respec-

tively. The input torque saturation of each joint is ±20 N·m. The joint constraints that track
the unit-step signal are yi min = −0.3+0.1 sin(0.8t+ π

3 ), yi max = 1.3+0.2 sin(0.5t+ π
2 ). The

joint constraints that track the periodic signal signal are yi min = −1.1 + 0.1 sin(0.6t+ π
3 ),

yi max = 1.2 + 0.2 sin(0.5t). The proposed BLF-ANBG strategy is compared with the con-
ventional backstepping strategy under large gain and small gain. The tracking and error
curves for the unit-step signal and periodic signal are as shown in Figures 5 and 6. The
dynamic performance and steady-state performance of the tracking two signals are as
shown in Table 3.
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Figure 5. The unit-step tracking curves compared to traditional backstepping.
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Figure 6. The periodic signal tracking curves compared to traditional backstepping.

Table 3. The rise time and error range compared to traditional backstepping.

Signal Joint Description BLF-ANGB Big Gain Small Gain

Unit-step

joint 1
Rise Times (s) 0.1865 0.1525 0.6653

Tracking Error (rad) ±0.0013 ±0.0095 ±0.0059
Jitter Range (rad) 0.0005 0.032 0.0002

joint 2
Rise Times (s) 0.1894 0.1503 0.6712

Tracking Error (rad) ±0.0011 ±0.0065 ±0.0004
Jitter Range (rad) 0.00054 0.0035 0.0001

Period

joint 1
Rise Times (s) 0.1255 0.1244 0.2312

Tracking Error (rad) ±0.0013 ±0.0342 ±0.0011
Jitter Range (rad) 0.0007 0.0022 0.0001

joint 2
Rise Times (s) 0.1269 0.1255 0.2716

Tracking Error (rad) ±0.0009 ±0.0296 ±0.0005
Jitter Range (rad) 0.00011 0.00025 0.00001

From these figures and tables, it is easy to see that the joint outputs are all within
the given constraints. The fixed gain of the traditional backstepping strategy without
smooth-switching for gain can affect the performance of the system tracking. When the
gain is large, although the system reaches the steady state in 0.1525 s and the accuracy
is high, the system has a large jitter in the steady state, and the jitter range is 0.032 rad.
When the gain is small, the jitter range is 0.0002 rad, which is smaller than that when
the gain is large, but the system reaches the steady state at 0.6712 s and the accuracy is
low. Therefore, the value of the backstepping gain will cause the contradiction between
the dynamic characteristics and the steady-state characteristics of the system. When the
BLF- ANBG strategy is applied, this contradiction can be effectively solved, the system can
quickly reach the steady state and have better steady-state performance.

Secondly, the feasibility of this strategy is verified by comparing two commonly
used SMC strategies and PD gravity compensation strategies. The tracking and error
curves of the unit-step signal and periodic signal of the three strategies are presented in
Figures 7 and 8, respectively. The tracking performances are shown in Table 4.
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Figure 7. The unit-step signal tracking and error curves of the three strategies.
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Figure 8. The expected periodic signal tracking and error curves of the three strategies.

Table 4. The rise time and error range without modeling error and load.

Signal Joint Description BLF-ANGB SMC PD

Unit-step
joint 1

Rise Times (s) 0.1865 0.267 0.5041
Tracking Error (rad) ±0.0013 ±0.002 ±0.0021

joint 2
Rise Times (s) 0.1894 0.296 0.6201

Tracking Error (rad) ±0.0011 ±0.002 ±0.0011

Period
joint 1

Rise Times (s) 0.1255 0.1956 0.3913
Tracking Error (rad) ±0.0013 ±0.0023 ±0.0067

joint 2
Rise Times (s) 0.1269 0.2154 0.4541

Tracking Error (rad) ±0.0009 ±0.0021 ±0.0024
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It can be seen from Figures 7 and 8 and Table 4 that the SMC can quickly reach the
steady-state when tracking the unit-step signal and the periodic signal, but the chattering
phenomenon occurs, and the jitter range of each joint is 0.004 rad and 0.0046 rad. The jitter
of the PD gravity compensation strategy is obviously reduced, yet the tracking accuracy
is poor, and the tracking error is ±0.0067 rad. Compared with these two strategies, BLF-
ANBG has better tracking accuracy and stability, and can reach steady state faster.

5.3. With Modeling Error and Unknown Load

In this part, time-varying modeling errors and time-varying unknown loads are added
to simulate the tracking effect of the manipulator in practical engineering applications. The
controller parameters are the same as in Table 2. The parameters of modeling error and
unknown load are described in Table 5.

Table 5. The parameters of modeling error and unknown load.

Parameters Values Parameters Values

∆M(q) 0.15M(q) ∆C(q, q̇) 0.25C(q, q̇)
∆G(q) 0.2M(q) ∆Jm 0.1Jm

τL

[
10 sin(0.5t + π/2)
10 sin(0.5t + π/2)

]
∆E

[
0.1 cos 0.5t
0.1 cos 0.5t

]

To verify the performance of the BLF-ANBG strategy, the BLF-GSS strategy, the SMC
strategy and the PD gravity compensation strategy are used for comparison. The initial
position of the joint is 0. The approximation curves of the adaptive neural network strategy
are shown in Figure 9.

0 2 4 6 8 10

Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

f
a
n
d
f̂

Joint 1

Joint 1 approximation

Joint 2

Joint 2 approximation

(a) Approximation when unit-step signal

0 2 4 6 8 10

Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

f
a
n
d
f̂

Joint 1

Joint 1 approximation

Joint 2

Joint 2 approximation

(b) Approximation when periodic signal

Figure 9. The approximation curves for the unit-step signal and expected periodic signal.

Figure 9 clearly shows that although the adaptive neural network has large approx-
imation error in the initial stage, it can effectively approximate the modeling error and
unknown load within 2 s. The tracking result and error curves of the unit-step signal are
given in Figure 10, the tracking result and error curves of the expected periodic signal are
provided in Figure 11. The controller performance is shown in Table 6.

According to Figures 10 and 11 and Table 6, it can be known that modeling errors and
unknown loads have an impact on the tracking accuracy of the manipulator. In the absence
of adaptive neural network compensation, the BLF-GSS strategy, the SMC strategy and the
PD gravity compensation strategy all generate large tracking errors; the maximum tracking
errors of the three strategies are ±0.0007 rad, ±0.0022 rad, ±0.0054 rad. The BLF-ANBG
strategy can effectively reduce the modeling error and the influence of unknown loads, and
can cause each joint to reach the steady-state within 0.156 s; the steady-state accuracy is
also high. At the same time, the joints are all within the given constraints.
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Figure 10. The unit-step signal tracking and error curves of the four strategies.
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Figure 11. The expected periodic signal tracking and error curves of the four strategies.

Table 6. The tracking performance with modeling error and load.

Signal Joint Description BLF-ANGB BLF-GSS SMC PD

Unit-step
joint 1

Rise Times (s) 0.1562 0.1506 0.2817 0.4634
Tracking Error (rad) ±0.0005 ±0.0006 ±0.0016 ±0.0014

joint 2
Rise Times (s) 0.1552 0.1496 0.2142 0.5652

Tracking Error (rad) ±0.0005 ±0.0007 ±0.002 ±0.0012

Period
joint 1

Rise Times (s) 0.1247 0.1235 0.2721 0.4254
Tracking Error (rad) ±0.0002 ±0.0004 ±0.0017 ±0.0054

joint 2
Rise Times (s) 0.1223 0.1269 0.3256 0.4481

Tracking Error (rad) ±0.0003 ±0.0006 ±0.0022 ±0.0047
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Summarizing the above results, the strategy proposed in this article can track the
desired position signal quickly and stably in the presence of modeling errors and unknown
loads. The contradiction between dynamic and steady-state caused by backstepping
method gain is significantly improved.

6. Conclusions

This article presents a new tracking control strategy to solve the contradiction between
the dynamic and steady-state characteristic caused by the control gain of the manipulator
when there are uncertain interference terms. In this work, an overall model of the manipu-
lator driven by PMSM with multiple constraints, modeling errors, and unknown loads is
established. The proposed BLF-ANBG control strategy is applied to the 2-DOF manipula-
tor. The simulation comparison shows that the proposed control strategy can effectively
improve the contradiction between the dynamic and the steady-state performances of the
system, and make the system take into account both excellent dynamic and steady-state
characteristics. Additionally, the strategy effectively compensates for model errors, external
disturbances and actuator saturation, while limiting the output of the system within the
time-varying asymmetric constraint, which is more suitable for practical engineering needs.
In actual engineering, the state of the speed and acceleration of the manipulator will also
be constrained. In the future work, we will work hard to solve the problem of the full-state
constraints of the manipulator system.
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GSS smooth-switching for backstepping gain
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