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Abstract: The direct-current (DC) motor has been widely utilized in many industrial applications,
such as a multi-motor system, due to its excellent speed control features regardless of its greater
maintenance costs. A synchronous regulator is utilized to verify the response of the speed control.
The motor speed can be improved utilizing artificial intelligence techniques, for example fuzzy neural
networks (FNNs). These networks can be learned and predicted, and they are useful when dealing
with nonlinear systems or when severe turbulence occurs. This work aims to design an FNN based
on a model reference controller for separately excited DC motor drive systems, which will be applied
in a multi-machine system with two DC motors. The MATLAB/Simulink software package has been
used to implement the FNMR and investigate the performance of the multi-DC motor. moreover, the
online training based on the backpropagation algorithm has been utilized. The obtained results were
good for improving the speed response, synchronizing the motors, and applying load during the
work of the motors compared to the traditional PI control method. Finally, the multi-motor system
that was controlled by the proposed method has been improved where its speed was not affected by
the disturbance.

Keywords: backpropagation algorithm; fuzzy neural network; speed control; model reference control;
multi-motor system; separately excited DC motor (SEDCM)

1. Introduction

Today, several industrial companies use different Direct-Current (DC) or Alternating-
Current (AC) motors for robots, hot rolling mills, and paper mills, which involve several
multi-machine systems [1]. The control strategies of DC motors with drives for speed
control are simpler, less expensive, and have a higher dynamic response than those of the
AC motors [2]. The separately excited DC motor (SEDCM) is regarded as one of the best
types in terms of flexibility because it provides two distinct control methods: armature
control and field control [3]. A chopper (DC–DC converter) or a controlled rectifier is
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utilized for the armature control. However, the traditional controllers, such as PID that
are utilized for controlling the speed of DC motors, have certain drawbacks, such as load
disturbance and sensitivity to a variety of motor parameters [4–10]. Furthermore, the
parameters of the traditional controllers to prevent overshoot and reduce load disturbance
are difficult to manually set. Meanwhile, the limitations of traditional controllers may be
circumvented by employing intelligent ways for speed control of a SE DC motor to obtain
excellent response of speed and insensitivity of the parameters [11].

Recently, the utilization of a fuzzy logic controller in control systems has gained great
interest. However, the system designers faced challenges to acquire the optimum rules
of the fuzzy controller because these are most likely to be affected by the intuition of the
system designers and operators [12]. The incorporation of neural networks with the fuzzy
logic system has been proposed as an approach for a novel representation system known
as the neural-fuzzy network, the fuzzy-neural network, or the neural-network-based fuzzy
system, which will own the merits of both kinds of systems of the fuzzy system and neural
network and overcome the obstacles for each system [12,13]. The fuzzy neural network
(FNN) is a combination network that roles as a fuzzy system with a neural network learning
(processing) mechanism.

However, a multi-motor system with identical rotation speeds is the most commonly
used in different applications. Speed control is applied to these motors to synchronize
their speed in a multi-motor system. The two methods utilized are as follows: the master–
slave and the set point coordinated methods. The most important drawback of these
synchronization methods is that they are affected by the inner and outer disturbance
during work and operation that occurs in the closed control system and its unpredictability
in the change of parameters for the system that may occur in the future. Thus, it affects the
required accuracy and precision in the synchronization process or motion control [13–17].

In latest years, fuzzy and neural networks systems have been proposed to control and
recognize nonlinear dynamics of the multi-motor system because they can converge to any
needed degree of precision on a wide range of nonlinear functions [8,9]. Goal of the FNN
controller with the backpropagation algorithm is to control the speed of the multi-motor
system [3,11,13]. Some researchers stated that the FNN control techniques are commonly
utilized in a multi-motor control [13,17–19]. Furthermore, the model reference adaptive
control system is an adaptive servomechanism scheme in which the required performance
is expressed in relation to the reference model, which provides the desired response to the
reference signal. It provides closed-loop performance feedback for tuning and synthesizing
controller parameters [20,21]. Because of its simplicity, model reference adaptive control
(MRAC) is extensively used in fuzzy neural controllers.

In this paper, a fuzzy-neural-based model reference (FNMR) controller is proposed to
accurately synchronize the speed of a multi-motor system while eliminating the influence
of turbulence on speed synchronization. Moreover, the proposed system is validated by
simulation under different load conditions.

The structure of the proposed research is as follows. Section 2 presents the SEDCM
motor. Section 3 introduces the conventional fuzzy-neural control. Section 4 highlights
the proposed FNMR control method. Section 5 offers the Simulink model, results and
discussion. Section 6 offers the study conclusion.

2. Separately Excited DC Motor
2.1. Mathematical Model

The mathematical model of the SEDCM is realized by the relationship between the
electrical and mechanical circuits. The SEDCM has armature and field windings, which
are separately excited by two DC sources. When the voltage from the two DC sources is
applied, the armature current and field current flow through the circuits. To develop a back
EMF and torque at a certain speed [3,13,14]. Figure 1 illustrates the equivalent circuit of the
SEDCM with armature windings, field windings, and the mechanical system.
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Figure 1. Equivalent circuit of an SEDCM.

The SEDCM model contains electrical and mechanical equations, which can be ex-
pressed as follows [4,13,15,18]:

vt = ea + La
dia
dt

+ Raia (1)

ea = Kmω (2)

Km = Lafif (3)

vf = Rfif + Lf

(
dif
dt

)
(4)

Te = Kmia = J
dω
dt

+ Bω+ TL (5)

where vf and vt are the voltages to the field and armature, respectively; The induced
emf in the armature winding is denoted by ea (volt); are the field and armature currents
are denoted by ia and if, respectively; Lf, La, and Laf are the armature, field, and mutual
inductances, respectively; Ra and Rf are the armature and field resistances, respectively;
Km is the constant of the motor; Te and TL are internal and load torques, respectively;
J is the rotational inertia (kg/m2); ω is the motor speed (rad/s); and the viscous friction of
motor is denoted by B (Nm/rad/s).

2.2. Speed Control Method

The armature voltage control method may be used to regulate the speed of a SEDCM,
which allows the speed to be varied from zero to the rated at constant torque according to
the speed–torque characteristics. The speed can exceed the rated speed if the magnetic field
flux is decreased [14]. In this section, only the armature voltage control has been utilized.
Figure 2 depicts the general block of the SEDCM drive system [14,15].
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This approach consists of two control loops: an outer loop representing the speed
controller and an inner loop representing the current controller. A controller is utilized to
obtain the control signal by comparing the motor speed to the intended speed to establish
the motor’s desired reference armature current. The armature current sought by the motor
will influence any change in motor speed. Hysteresis current controller (HCC) is utilized
in the inner loop to control the current by comparing the motor current with the desired
current and generating the switching control signal for the DC–DC converter (chopper).
The armature current in an HCC is forced to stay within the hysteresis band defined by
the upper and lower hysteresis limits [14]. The achievement of this method is shown in
Figure 3. The pulse width modulation controller depends on the chopping frequency,
which can be variable or constant [18].
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3. Fuzzy-Neural Control Scheme

The fuzzy inference system (FIS) has been extensively utilized in recent years due to
its excellent performance, particularly when the system is complex, and the traditional
technique cannot effectively work. Furthermore, the fuzzy control system systematically
evolves human knowledge and integrates it into engineering systems. However, there is
a challenge with a fuzzy control system, which is the procedure of tuning its parameters
and the time it takes, which is dependent on human understanding through trial and error.
Accordingly, there has been great attention recently in combining the FIS and the neural
network system [20,21]. The major aim of this incorporation is to bring the features of
fuzzy control systems and neural networks together to resolve the individual problems of
each type before the integration between them. The combination system will possess the
benefits of both systems, namely, human-like if–then rule thinking and optimization and
learning abilities [22].

3.1. Architecture of FNN

The structural design of the four-layer FNN is depicted in Figure 4. Every node and
layer have its real significance due to the configuration of the FNN, which depends on the
fuzzy inference [23–25]. Every layer in Figure 4 can be defined as follows:

First layer—input layer: This layer is responsible for transferring the input linguistic
variables xn to the output without change.

Second layer—membership layer: the membership layer symbolizes the input values
with the Gaussian membership function as follows:

µi
j = exp

(
−1

2

(
xj − cij

)
2

s2
ij

)
(6)

The mean and standard deviation of the Gaussian function are denoted by cij and sij
(i = 1, 2, . . . , n; j = 1, 2, . . . , m) in the jth term of the ith input linguistic variable xj to the
node of this layer, respectively.
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Third layer—rule layer: the rule layer executes the mechanism of the fuzzy inference.
Every node in this layer multiplies the incoming signals and outputs the product. This
layer’s output may be expressed as follows:

hi = ∏n
j µ

i
j (7)

where hi represents the ith, the output of the rule layer.
Fourth layer—output layer: This layer’s nodes reflect the output linguistic variables.

Each node yo (o = 1, . . . , No) computes the following output:

yo = ∑m
i wo

i hi (8)

where wo
i represents the ith the rule layer ‘s output weight.
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3.2. Learning Algorithm for FNN

The FNN has three types of parameters that can be adapted: the prime part—the
centre values cij and width values sij of the Gaussian functions; and the consequence part—
the output weight values wi. The gradient descent algorithm provides the equations for
learning the parameters [25,26]:

wi(t + 1) = wi(t)− ηw
∂E
∂wi

(9)

cij(t + 1) = cij(t)− ηc
∂E
∂cij

(10)

sij(t + 1) = sij(t)− ηs
∂E
∂sij

(11)

the least mean square error is denoted by E, η is the learning rate for all parameters in this
system, i = 1, 2,3, . . . , n and j = 1, 2, 3, . . . , m.
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4. Proposed FNMR Control Method
4.1. Model Reference Control

MR control was primarily suggested to resolve an issue that has provided the condition
in relations of an orientation model that reports exactly how the development output must
typically react to the reference signal. Figure 5 depicts a model reference adaptive control
(MRAC) block diagram. In this situation, the reference model is connected in parallel with
the plant. The regulator is held on two loops. The regulator and the plant form the first
inner loop, which is the normal feedback. The second adaptation outer loop tunes the
regulator settings to guarantee that the error e between the process output y and the model
output ym becomes acceptable [27].
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4.2. Mathematical Analysis of FNMRC

In nonlinear systems, the control parameters should be tuned and adapted to obtain
excellent performance [19]. Several algorithms are applied using a reference model to
achieve good performance for the closed-loop controller [27,28]. The controller is designed
in such a way that the measured output of the plant corresponds to the desired output
of the reference model. Figure 6 displays a block schematic of the SEDCM speed control
utilizing the proposed FNMR with online tuning. Accordingly, The suggested controller’s
parameters are tuned using a gradient descent-based back-propagation technique.
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The reference model is characterized as a typical second-order term [20,29,30]:

Gmod(s) =
ω2

n
s2 + 2ζωn +ω2

n
(12)

where ζ is a damping ratio, andωn is a resonant frequency.
The FNMR controller parameters have been adjusted based on Equations (9)–(11). The

learning procedure’s goal is to reduce the difference between the reference model’s actual
and desired outputs. The least mean square function is used in this study to suggest a
standard for error E.

E(t) =
1
2

e2 (13)

e = N(t)− Nm(t) (14)

where N(k) is the motor model output, Nm(k) is the reference output, while the error is
denoted by e. The new values of wi, cij, and sij after adaptation are equal to:

wi(t + 1) = wi(t)− ηw e hi (15)

cij(t + 1) = cij(t)− ηc e hi wi

(
xj − cij

)
s2

ij
(16)

sij(t + 1) = sij(t)− ηs e hi wi

(
xj − cij

)2

s3
ij

(17)

4.3. Multi-Motor System

A multi-motor system is the linkage of different motors in such a way that their
synchronization is maintained. However, in the traditional master–slave method, the first
motor is selected as the master motor that achieves the chosen trajectories, while the slave
motor tracks the motion of the master motor [31–34]. Figure 7 describes the structure of
the master-slave. The performance of path tracking can be reasonably limited because of
the certainty that the real trajectory of the master motor acts as the controlled path of the
slave motor.
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However, the two motors in the system receive the same set point are designed in the
set point coordinated control method. This notion means that the slave motor does not
become dependent on the master motor. Figure 8 depicts the block diagram of the set-point
coordinated regulator structure. The main issue with this method of control is that the load
disturbances of the motors or their dynamic parameter change. Given that FNNs have
the ability to avoid changes in loads and high efficiency, using them in the multiple-motor
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system will contribute to the elimination of all disadvantages in the above-mentioned
methods [31,35,36].
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5. Simulation Results and Discussion

The proposed models in Matlab/Simulink for the FNMRC controller of the SEDCM
and its model are depicted in Figure 9. The proposed program is written in Matlab software
using the S-function tool to simulate the FNMR controller, as depict in Figure 10. The
inputs to the controller have been represented by the error and its change. The error em
between the output and the model reference of this motor is utilized as a path in the
adaptive mechanism. Every input of this controller contains five membership functions.
Accordingly, the number of weights in the outcome part is also five. In addition, each
parameter has the learning rates of ηw = 0.6, ηc = 0.4, and ηs = 0.2. The parameters of the
motors are listed in Table 1. Good parameter values have been obtained from the reference
model of ζ = 0.97 andωn = 10 by utilizing the trial-and-error method.
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Table 1. Parameters of the DC motors.

Parameter Value

N 1750 rpm
va 230 V
vf 120 V
ia 46 A
if 1.6 A
La 0.767 H
Lf 0.008 H
Ra 0.1 Ω
Rf 75 Ω
B 0.314 Nm·S/rad
J 2.2 kg/m2

The proposed system has been tested at 10 and 100 epochs. The result presents that the
motor speed follows the reference speed by increasing the number of epochs. Accordingly,
the error is near zero. If the reference speed input has a sinusoidal shape, then the rotor
speed response at 10 epochs is well tracked by the reference model, as demonstrated in
Figure 11. Figure 12 shows the rotor speed at 100 epochs. Therefore, the rotor speeds are
matched together, and this is the goal of the proposed controller.

The square function is used to test the system performance. The system responses for
10 and 100 epochs are depict in Figures 13 and 14, respectively. Figure 15 reports the error
values between the model reference and the speed of the motor at 100 epochs. A small
error between the speeds is obtained, and this explains the aim of the proposed controller.
Figure 16 reports the speed of the motor at 1500 rpm for the load torque of 25 N·m at t = 2 s.
Figure 17 show the relationship between the cost function and epochs.
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Figure 18 depicts the armature current for the applied load at a time of 2 s. The
response of the two motors connected in the master–slave scheme when applying an
FNMRC controller is depicts in Figure 19. As seen in this figure, the slave has been
synchronized with the master according to the reference trajectory. Figure 20 shows the
error between the master motor speed and the slave motor speed when applying an
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FNMRC controller. The error is considerably small, indicating the synchronization between
the two speeds. When the load disturbances (25 N·m) at 1400 rpm speed is applied to the
motors at 2 s, the sequential and synchronization of the two motors is not affected by this
disturbance, as seen in Figure 21.
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The response of the two motors connected in the master–slave scheme when applying
a PI controller is depicts in Figure 22. Figure 23 depits the speed error between the master
and the slave motor during the change of reference speed when applying a PI controller-
based master–slave method. This error indicates no synchronization in speed between
these motors in some regions of the operation.
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6. Conclusions

This work presents the FNMR to control and stabilize the speed of the multi-DC motor
system. The presented control has been used in the online training to control the speed of
SEDCMs depending on the fitness function. The fitness function is the error between the
actual speed motor and the model desired output to learn the internal parameters of the
FNN, where the error can be minimized to zero. The master–slave scheme has been used
to structure interconnections of two motors and keep the synchronization between them.
The results depict that the proposed controller has been improved the speed response
regardless of the load disturbances and accomplished good performance based on a flexible
and adapted approach. The most important advantage of the proposed method is the ability
to learn and adapt to the internal and external disturbances of any system to be controlled.
There is also the possibility to implement this method in real time with the presence of a
basic limitation, which is that this method needs a microprocessor with a suitable speed for
the purpose of conducting the adaptation process online. It can be said here that the current
development in the performance of microcontrollers can easily implement this method in
real time.

The proposed FNMR controller can be used in multi-AC motors such as hot rolling
mill and cold rolling mill systems.
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