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Abstract: This paper presents a control strategy with a linear extended state observer (LESO) and
Kalman filter to achieve a high performance of the motion control system. The moment of inertia
of the system, which is variable with the robotic joint motion, is estimated in the established model.
A LESO with variable gain is designed, which could estimate the states and the total disturbance
of the plant without a precision mathematical model. The disturbance caused by variable load
and unknown dynamics can be compensated based on the LESO, while the moment of inertia is
variable. In order to restrain the process noise and measure the noise of the system, the Kalman
filter was applied. Tracking differentiator was utilized to avoid the overshoot of the system for
the step signal. The designed control strategy with the LESO and the Kalman filter could improve
the tracking performance for the servo system with parametric uncertainties, unknown dynamics,
and disturbances. The effectiveness of the proposed method is implemented and validated in the
experiment of the robotic joint, for which desired servo tracking performance is achieved with the
conditions of load variation and sudden disturbance.

Keywords: servomechanism; motion control; linear extended state observer; disturbance compensa-
tion; inertia estimation

1. Introduction

With the increasing demands for the high performance of motion control systems,
advanced control strategies have been applied to the motor drives. For parametric uncer-
tainties, model uncertainties, unknown dynamics, and disturbances, the unknown elements
of the dynamics and disturbances need to be estimated and compensated to improve accu-
racy. During the past several decades, disturbance/uncertainty estimation and attenuation
techniques have received considerable attention in mechanical drives [1], including the
disturbance observer (DOB) [2,3], unknown input observer (UIO) [4], equivalent input
disturbance (EID)-based estimator [5], extended state observer (ESO), etc. [6–10]. The
mathematical model of the servo system is not accurate with unknown dynamics and
uncertainties, but the disturbance observer methods need a precise model of the plant.
Among the previously listed approaches, ESO does not require precise information of
the plant; the internal dynamics and external disturbance are treated as total disturbance
which could be estimated by ESO and compensated for the plant in real time by an active
disturbance rejection controller (ADRC) [11]. ESO is the key part of ADRC, which has been
applied in solving a number of industry problems [12–17]. This control strategy draws the
information needed to control the plant from ESO, instead of depending on the accurate
model of the plant. For system uncertainties, variant load and noise, the disturbance must
be estimated and compensated to improve system performance.

The load torque and moment of inertia are variable with the motion of robotic joint;
however, the moment of inertia parameter in the nominal model of the servo system is
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constant. In this paper, the moment of inertia and load torque are variable in the model
to approach the practical plant in which the total disturbance is estimated and rejected
by ADRC to improve system performance. ADRC is an unconventional design strategy,
which can actively estimate and compensate for the effects of unknown dynamics and
uncertainties in real time. As some of the advantages of ADRC include not requiring a
precise model, rejecting disturbance actively, etc., this control method is widely applied in
motor servomechanisms [18,19], two-mass actuator systems [20], robotic manipulators [21],
etc. Texas Instruments have developed motion control chips based on ADRC technol-
ogy [22]. The existing research has indicated that the linear extended state observer (LESO)
is extremely simple and practical for system control when tuning only one parameter
observer bandwidth [23]. LESO has been applied in mechatronic systems with improving
the system performance [20].

The Kalman filter (KF) is the minimum-variance linear state estimator for linear
dynamic systems with Gaussian noise [24]. In a practical system, there are random noises
in sensor measurement and plant running processes. In order to reduce noise, the Kalman
filter and various modifications of the Kalman filter are important methods to restrain noise
disturbance. The modifications include the extended Kalman filter, the unscented Kalman
filter, and the particle filter, which are widely used in target tracking, robotics, navigation,
state estimation of the servo system, and others [25]. Since the error of the position sensor
can be regarded as Gaussian white noise, the optimal estimation of the speed can be
obtained by the Kalman the Filter from a series of position signals with noise [26], so that
the Kalman filter could improve system performance by reducing measurement noise.

The objective of this paper was to design a controller based on ADRC and the Kalman
filter to improve performance of a servo system of which the moment of inertia is variable.
The designed controller was based on variable gain obtained by the estimated inertia and
the LESO with the measurement noise reduced by KF. The model was constructed with
variable load torque and moment of inertia in real time. Due to the common controller
PID causing the large overshoot of output, a tracking differentiator (TD) was used to
approximate the system position and speed for reducing output overshoot. This paper
is organized as follows. The dynamics of the servomechanism with variable moment of
inertia is described in Section 2. In Section 3, the proposed controller based on the LESO
and the Kalman filter is presented. The experiment verification is presented in Section 4.
Finally, some concluding remarks are given in Section 5.

2. Dynamic Model of the Servomechanism

The dynamics of servomechanism is considered as:
[ .

x1.
x2

]
=

[
0 1
0 − Bm

Jm(t)

][
x1
x2

]
+

[
0
Kt

Jm(t)i

]
u +

[
0

− dm(x,t)
Jm(t)i

]
y = x1 + n(t)

(1)

where x1 is the angular position of load, x2 is the angular velocity of load, x = [x1, x2]T, y is
the measured position of load, u is the control input, Bm is the viscous friction coefficient of
motor side, Jm(t) is the variable moment of inertia of the system, which has been converted
to the motor side, Kt is the torque coefficient, i is the reduction ratio, dm(x, t) includes the
uncertain dynamics and external disturbance viewed as total disturbance converted to
motor side, and n(t) is the measurement noise.

Bm and Kt are treated as constant in the model while the moment of inertia Jm(t) is
variable during the servomechanism motion. Variable feature of Jm(t) is considered as
similar to the variance of cosine function according to the rotation characteristic of the
robotic joint inertia. Load toque is also variable, which is set as a similar cosine function.

As we know, reference signals are often given as a step function causing the control
signal step, and making the output largely overshoot. In order to reduce the output
overshoot, tracking differentiator is applied to approximate to input position signal and
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velocity. Consider x1d as the input signal of angular position, the tracking differentiator [11]
is written as 

e0 = v1 − x1d.
v1 = v2.
v2 = f han(e0, v2, r0, h)

(2)

where v1 is the output position of the tracking differentiator and v2 is its derivative, e0 is the
tracking error, h is the time step, r0 is the parameter related to tracking speed, and function
fhan (e0, v2, r0, h) is 

d = r0h, d0 = hd
k = e0 + hv2, a0 =

√
d2 + 8r0|k|

a =

{
v2 +

a0−d
2 sign(k), |k| > d0

v2 +
k
h , |k| ≤ d0

f han = −
{

r0sign(a), a > d
r0

a
d , a ≤ d

(3)

Function fhan makes (2) be a time-optimal solution that guarantees fastest convergence
from v1 to x1d without any overshoot.

The block diagram of the motion control system is illustrated in Figure 1. As shown
in the Figure 1, the LESO is the designed observer, KF is the designed Kalman filter used
to reduce measurement noise, x1d is the reference signal, u0 is the control law without
disturbance compensation, u is the control strategy, z3 is the estimation of the extended
state variable obtained by the LESO, representing the effect of the total disturbance, and x̂1
is the angular position with noise suppression by KF. The moment of inertia of the system
Jm(t) is variable, v1 is tracking x1d, and e is the error of system.

Figure 1. The block diagram of motion control system based on ADRC and KF.

For motion control system-like robots, the moment of inertia Jm(t) is not a constant,
varying with the robotic joint motion in real time. Consequently, we need to estimate Jm(t).
As x1 is the angular position of load, x2 is the angular velocity of load, and TL is the load
torque converted to the motor side; neglecting unknown disturbance, from system (1) we
can obtain:

i Jm
.
x2 + iBmx2 = Ktu− TL (4)

and define Iτ =
∫ t

0 (Ktu− TL)dt.
From (4), we obtain:{

i Jmx2 + iBmx1 = Iτ

Iτ(k + 1) = Iτ(k) + [Ktu(k + 1)− TL(k + 1)]T
(5)

where T is the sample time, k = 0, 1, 2 . . .
Define α = [i Jm iBm]T, f = [x2 x1], substituting into (5), and its discrete form is:

Iτ(k) = f(k)α (6)
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The estimation error is:
ε(k) = Iτ(k)− f(k)α̂ (7)

where α̂ is the estimation of α.
Define Iτ = [Iτ(1), Iτ(2), · · · Iτ(m)]T, F = [f(1), f(2), · · · f(m)]T.
where m is the amount of sample period.
The error evaluation function J(α̂) is:

J(α̂) = (Iτ − Fα̂)TWm(Iτ − Fα̂) (8)

where Wm is the weight matrix, Wm = diag(w1, w2, · · · , wm), wi ∈ (0, 1], i = 1, 2, . . . m,
and wi is the confidence weight of testing value in ith order.

Minimum of J(α̂) is:

∂J(α̂)
∂α

∣∣∣
α=α̂

= −2FTWm(Iτ − Fα̂) = 0

⇒ α̂ = (FTWmF)−1FTWmIτ

(9)

The recursive least square method is:

α̂(m + 1) = α̂(m) + K(m + 1)[Iτ(m + 1)− f(m + 1)α̂(m)]
P(m + 1) = P(m)−K(m + 1)f(m + 1)P(m)

K(m + 1) = P(m)fT(m + 1)[w−1
m+1 + f(m + 1)P(m)fT(m + 1)]

−1
(10)

where α̂(m) is the estimation value at time mT; Iτ(m + 1) is the testing value at time
(m + 1)T, which could be obtained by (5); Iτ(m + 1)− f(m + 1)α̂(m) is the estimation error;
K(m + 1) is the gain matrix update; P(m) = [FTWmF]−1; wm+1 is the (m + 1)th order weight
of Wm, m = 0, 1, 2 . . .

So, we can obtain Ĵm(t) which is the estimation value of Jm(t) from (10), for Jm(t) is
varying with the robotic joint motion.

3. Controller Design Based on LESO and KF
3.1. Kalman Filter

Considering the process noise and measurement noise, and in order to obtain precise
state values of the system, the Kalman filter is applied to filter the system noise. System (1)
can be written as: .

x = A+x + B+u + Eh′

y = Cx + n(t)
(11)

where A+ =

[
0 1
0 − Bm

Jm(t)

]
, B+ =

[
0
Kt

Jm(t)i

]
, E =

[
0
1

]
, C =

[
1 0

]
, x = [x1, x2]T,

h′ = − dm(x,t)
Jm(t)i .

System (11) is written as following discrete form:{
xk+1 = xk + T(A+xk + B+uk) = (I + A+T)xk + B+Tuk
yk = Cxk

(12)

where xk, xk+1 is the state vector at time tk, and tk+1, respectively, uk is the input control
variable at time tk, I is the identity matrix, and yk is the measurement.

Define Φ = I + A+T, G = B+T, the discrete equation of the system (11) is:{
xk+1 = Φxk + Guk + wk
yk = Cxk + vk

(13)
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where wk is the system noise with covariance Q, vk is measurement noise with covariance
R, and the Kalman filter equations are given as:

x̂k+1/k = Φx̂k + Guk (14)

Pk+1/k = ΦPkΦT + Q (15)

Kk+1 = Pk+1/kCT(CPk+1/kCT + R)
−1

(16)

Pk+1 = (I−Kk+1C)Pk+1/k (17)

x̂k+1 = x̂k+1/k + Kk+1(yk − Cx̂k+1/k) (18)

for k = 1, 2, . . . , where x̂k+1/k is the a priori estimate of the state xk, x̂k+1 is the a posteriori
estimate of the state xk, Kk+1 is the Kalman gain, Pk+1/k is the covariance of the a priori
estimation error xk+1 − x̂k+1/k, and Pk+1 is the covariance of posteriori estimation error
xk+1 − x̂k+1. The Kalman filter is initialized with:

x̂0 = E(x0) (19)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T] (20)

where E(·) is the expectation operator.

3.2. LESO Design

The linear extended state observer (LESO) is widely used to estimate states of the
system and the extended state could represent the total disturbance [23]. The extended
state form of the motion control system (1) is:

.
x1 = x2
.
x2 = x3 +

Kt
Jm(t)i u.

x3 = h(x, t)
y = x1 + n(t)

(21)

where x3 = − dm(x,t)
Jm(t)i −

Bm
Jm(t)i x2 is the extended state, which is also the effect of the total

disturbance, and x3 is differentiable.
The LESO of the system (21) is designed as:

.
z1 = z2 + l1(x1 − z1)
.
z2 = z3 + l2(x1 − z1) +

Kt
Ĵm(t)i

u
.
z3 = l3(x1 − z1)

(22)

where z = [z1, z2, z3]T is the estimation of the system extended states x = [x1, x2, x3]T, which
is obtained by LESO, and li, i = 1, 2, 3, are the observer gain parameters to be designed.

The characteristic polynomial of (22) is s3 + l1s2 + l2s + l3, li, i = 1, 2, 3, are selected to
make (22) be Hurwitz. For simplicity, let:

s3 + l1s2 + l2s + l3 = (s + ωo)
3 = s3 + 3ωos2 + 3ω2

o s + ω3
o (23)

From (23), we obtain l1 = 3ωo, l2 = 3ω2
o , l3 = ω3

o . Here, ωo is the observer bandwidth,
which is the only tuning parameter of LESO, ωo > 0.

Theorem 1. Assuming h(x,t) is bounded, there exists M > 0, ωo > 0 such that |x̃i| =
|xi − zi| ≤ M, i = 1, 2, 3.
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Proof. Since h(x,t) is bounded, there exists positive constant D such that |h(x, t)| ≤ D.
Define estimation error x̃i = xi − zi, i = 1, 2, 3. From (21) and (22), the observer estimation
error is: 

.
x̃1 = x̃2 − 3ωo x̃1.
x̃2 = x̃3 − 3ω2

o x̃1.
x̃3 = h(x, t)−ω3

o x̃1

(24)

(24) can be written as:
.
x̃ = Ax̃ + Bh(x, t) (25)

where x̃ = [x̃1, x̃2, x̃3], A =

 −3ωo 1 0
−3ω2

o 0 1
−ω3

o 0 0

, B =

 0
0
1

.

Solving (25), we can obtain:

x̃ = exp(At)x̃(0) +
∫ t

0
exp(A(t− τ)Bh(x, t)dτ. (26)

Note that:

‖̃x‖∞ = ‖exp(At)̃x(0)‖∞ +
∥∥∥∫ t

0
exp(A(t− τ))Bh(x, t)dτ

∥∥∥
∞
≤ ‖exp(At)‖∞‖̃x(0)‖∞ + D

∫ t

0
‖exp(A(t− τ))‖∞‖B‖∞dτ. (27)

From (25), matrix A has three same eigenvalues −ωo, then there exists constant K > 0,
such that:

‖exp(At)‖∞ ≤ K exp(−ωot), t > 0. (28)

‖exp(A(t− τ))‖∞ ≤ K exp(−ωo(t− τ)), t > τ. (29)

Combining (27), (28) and (29) yields:

‖x̃‖∞ ≤ K exp(−ωot)‖x̃(0)‖∞ +
KD
ωo

(1− exp(−ωot)) ≤ K‖x̃(0)‖∞ +
KD
ωo

= M, M > 0. (30)

So, there exists constant M > 0, such that |x̃i| = |xi − zi| ≤ M, i = 1, 2, 3. �
From (30), we can obtain that the larger the observer bandwidth ωo is, the more accu-

rate the states estimation will be. If ωo is chosen as the suitable value, zi will approximate
to xi, i = 1, 2, 3.

3.3. Controller Design

Due to the large overshoot of the system output when the input signal is the step
function, a tracking differentiator is used to reduce the overshoot, as mentioned before.
The system error is the tracking differentiator output v1, subtracting the system angular
position.

The control law is designed as:

u =
u0 − z3

Kt
Ĵm(t)i

=
Ĵm(t)i(u0 − z3)

Kt
. (31)

Substituting (31) into (21), the system is described as a cascade integral form:
.
x1 = x2.
x2 = u0
y = x1 + n(t)

(32)

where u0 is designed as the linear controller.
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Define x̂1 as the position estimation of y by the Kalman filter, i.e., system output
reducing the measurement noise by filtering.

Let:
u0 = kp(v1 − x̂1) + kd(v2 − x̂2) +

.
v2 (33)

where kp and kd are the controller gain parameters.
Define e = v1 − x̂1.
Combining (33) with (32) yields:

kpe + kd
.
e +

..
e = 0. (34)

kp and kd are selected to make s2 + kds + kp Hurwitz, then e→ 0 . For simplicity, let:

s2 + kds + kp = (s + ωc)
2 = s2 + 2ωcs + ω2

c (35)

so kp = ω2
c , kd = 2ωc, where ωc is the controller bandwidth, which is the only tuning pa-

rameter of the controller. ωc should be adjusted based on the requirements of performance
and stability margin.

Substituting (33) into (31), ADRC control law is given by:

u =
Ĵm(t)i(kpe + kd

.
e +

.
v2 − z3)

Kt
(36)

4. Experiment Verification

In this section, the robotic joint servo system is investigated to verify the effectiveness
of the proposed control strategy. We developed an experimental platform with variable
load, which consisted of a slider and a whirling arm. The inertia of the load varied when
the slider moved, changing the distance between the slider and the center of the whirling
arm. The verification platform for the motion control system was set up in Figure 2. The
gyroscope sensor was used to measure the actual position of the whirling arm with the
slider. The torque sensor was applied to measure load torque, which was used to estimate
the inertia of the load. The permanent magnet synchronous motor (PMSM) was selected as
the actuator. The DSP-TMS320F28335 were the core part to control the servomechanism
with control strategies. DSP-TMS320F28335 was used to produce the control law, which
was the position controller output to track the position signals.

Figure 2. Experimental platform of servomechanism with variable load.
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In the experiments, we take the following two controllers to compare:

(1) C1: The proposed controller based on LESO and estimated inertia with KF in this
paper. The control parameters were set as: kp = 25, kd = 10, ωo = 100. Tracking
differentiator parameters were given as: h = 0.001, r0 = 15. Kalman filter parameters
were: Q = diag(0.05, 0.05), R = 0.01, P0 = diag(0.1, 0.1). The parameter of the inertia
estimation was set as: W10 = diag(0.2, 0.2, · · · , 0.2).

(2) C2: PID controller was used in C2 with the controller parameters kp = 30, ki = 20,
kd = 20.

The parameters of the experimental platform are shown in Table 1.

Table 1. Parameters of the experimental platform.

Parameters Value

Rated speed n 3000 rpm
Torque coefficient Kt 0.112 N·m/A

Motor Inertia J 1.75 × 10−5 kg·m2

Reduction ratio i 100:1

In the first case, the sinusoidal-like input signal x1d(t) = 60− 60 sin (0.3πt + π/2)
◦

was utilized. In order to analyze the tracking performance of the two controllers, the
maximum, average, and standard deviation of the tracking errors marked as M, µ and σ

were utilized.
The experimental results are presented in Figures 3–6. Specifically, as shown in

Figure 3, the actual position tracked the input signal well with the proposed controller C1,
and C1 had the better performance compared with C2. The position tracking errors of the
two controllers in Figure 4 illustrate that the tracking error of C1 was smaller than that of
C2, which means C1 had the better tracking performance than C2. The performance indices
are exhibited in Table 2, demonstrating that C1 can achieve higher tracking accuracy than
C2. The states estimation by LESO is shown in Figure 5. As seen, x1 and x2 can be well
tracked by x̂1 and x̂2, which were estimated by the LESO. The tracking errors of x1 and x2
tended to zero quickly, which means the LESO had good convergence rate and stability. The
RMSE of x1 estimation error and x2 estimation error were 0.00901◦ and 1.087◦, respectively.
The system uncertainties and disturbances were compensated by the LESO, so that C1
had a better control performance than that of C2, with a relative poor robustness against
the unknown dynamics. Control input voltage of the proposed controller is exhibited in
Figure 6. As shown, it was bounded.

Figure 3. Position tracking performance of C1 and C2.
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Figure 4. Position tracking errors of C1 and C2.

Figure 5. States estimation and estimation error of x1 and x2.

In order to further verify the control performance of the proposed strategy, the input
signal x1d, which was the step signal with maximum angle 120◦, is given in Figure 7. For
this motion trajectory, the setpoint jump was not appropriate for most dynamic systems
making a step. In order to avoid these undesired characteristics, TD was used to make
the output of the plant reasonably follow the input signal. The position tracking of the
two controllers is illustrated in Figure 8. As shown, the setpoint jump of the signal caused
overshoot of the tracking signal with the PID controller C2. The proposed controller was
applied to avoid the overshoot by using TD, and we obtained that C1 better guaranteed
tracking performance in the transient process than C2. The settling time of the system with
C1 was 0.63 s, whereas the steady-state error was 0.044◦. The tracking error of the two
controllers are shown in Figure 9. Figure 9 shows that the tracking error of the proposed
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controller C1 was much smaller than that of C2 in the regulation stage, although the
tracking error was large at the step time.

Figure 6. Control input voltage of C1.

Table 2. Performance indices of the two controllers.

Indices (◦) M µ σ

C1 0.7742 0.0212 0.4929
C2 1.7925 0.2693 0.9348

Figure 7. Desired input signal.

Figure 8. Position tracking performance of C1 and C2.
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Figure 9. Position tracking error of C1 and C2.

5. Conclusions

In this paper, a practical controller based on the LESO and the KF was proposed
for the position tracking of the robotic joint motion with variable inertia and unknown
dynamics. In order to improve the ability of disturbance rejection and control precision
for the robotic joint servo system, which has unknown dynamics and uncertainties, the
mathematical model of the servomechanism for the robotic joint was established to derive
the third-order extended state equations, which was utilized to design the LESO. The LESO
was obtained with variable gain of the parameter b, which was related to the moment of
inertia of the servomechanism. The inertia was estimated by the recursive least square
method. The convergence of the estimation error for LESO showed that the position state
and the total disturbance can be estimated accurately, so the model uncertainties and
disturbances can be compensated effectively. TD was applied to eliminate the overshoot
of the step response, while KF was used to reduce the process noise and measurement
noise. Comparative experimental results demonstrated the superiority of the proposed
control strategy in comparison to PID. The proposed controller had the better tracking
performance in both a transient and steady-state, with time-invariant uncertainties. The
limitations of the designed control law with variable gain of the parameter b may cause the
output to be non-smooth. Furthermore, we can choose b1 to design the control law for the
inertia values changed from minimum Jm to median Jm and b2 to design the control law
while inertia changed from median Jm to maximum Jm.
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