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Abstract: Nanoparticles with small diameters and large surface areas have potential advantages
and are actively utilized in various fields related to biomedical and catalytic applications. Multi-
functional applications can be achieved by endowing nanoparticles with piezoelectric, quantum
dot, magnetothermal, and piezoluminescent properties. In particular, multiferroic magnetoelec-
tric nanoparticles (MENPs) can generate electricity by coupling piezoelectric and magnetostrictive
properties when an external magnetic field, which is harmless to the human body, is applied. In
this regard, magnetoelectricity (ME) induced by a magnetic field makes MENPs useful for various
biomedical and electrocatalytic applications. The ME voltage coefficients, which express the efficiency
of energy conversion from magnetic field to electricity, show differences depending on the setup for
ME measurements of MENPs. Therefore, numerous attempts have been made to optimize the ME
characterization method to reduce measurement errors resulting from charge leakages caused by the
specimen preparation, as well as to investigate the ME effect of a single nanoparticle. Our review is
focused on the structures, syntheses (hydrothermal and sol–gel methods), activation mechanism, and
measurement of magnetoelectricity, as well as applications, of core–shell MENPs.

Keywords: magnetoelectric effect; core–shell magnetoelectric nanoparticles; drug delivery; brain
imaging; brain stimulation; cell regeneration; electrocatalyst

1. Introduction

In recent years, nanoparticles have attracted great attention in various application
fields [1–3], especially where movement in a microchannel and high reactivity are critical
parameters, owing to their small size and large surface area. Because of these advantages,
research trends are progressing in the direction of expanding the scope of applications by
equipping nanoparticles with various multifunctions in biomedical and environmental
applications [4–6]. For example, targeted tissues in the human body can be imaged or
photostimulated using irradiation with near-infrared rays and quantum dot nanoparticles
injected into the body [7–9]. Piezoelectric nanoparticles activated by mechanical vibrations,
such as ultrasonic waves, generate electrical signals and transfer them to cells to promote
cell proliferation and differentiation [10–12]. In addition, for hyperthermia therapy, the
magnetothermal phenomenon, which occurs when a high-frequency alternating magnetic
field is applied to magnetic nanoparticles, is employed [13]. As such, there is also a high
need for multifunctional nanoparticles, as proven by recent studies.

The magnetoelectric (ME) phenomenon, which produces an electric field from an
applied magnetic field or vice versa, is one of several multifunctions that have been applied
to nanoparticles. It is primarily employed in research fields where it is advantageous to
use a magnetic field as the driving source [14–25]. Based on these interactions, various
applications related to the ME phenomenon, such as magnetic or current sensors [26,27],
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memory devices [28], high energy density capacitors [29], energy harvesters [30], gyra-
tors [31], resonators [32], inductors [33], ME antennas [34], and magneto-mechano-electric
generators [35] have been developed. A high ME coupling effect is essential for the applica-
tion of multiferroic magnetoelectric nanoparticles (MENPs) with high efficiency. The ME
effect in multiphase ME composites is superior to that in single-phase ME materials [36].
Thus, in most applications, ME composite structured MENPs are generally synthesized as
core–shell structured composites consisting of a magnetostrictive material, which converts
a magnetic field into strain, and a piezoelectric material, which further converts stress from
the magnetostrictive strain into an electric field. Generally, sol–gel [37] and hydrothermal
methods [38,39] are intensively used to fabricate core–shell MENPs. As the synthesis
methods are diverse, the methods for evaluating ME voltage coefficients are also diverse,
including the terms of the physics-to-physics conversion efficiency and the mechanical
interface coupling between the magnetostrictive core and piezoelectric shell in MENPs to
determine the degree of magnetoelectricity. Various methods have been investigated to
precisely and reliably characterize ME voltage coefficients by reducing the artifact error of
small nanoparticles.

Because of the use of a magnetic field, which is harmless to the human body, core–shell
MENPs are suitable for medical applications that require the generation of an electric
field in a material with low magnetic permeability, such as a human body or an ionic
liquid solution [40–42]. Therefore, core–shell MENPs are expanding their range of appli-
cations [43] to biomedicine for brain stimulation [44], cell regeneration [45], imaging [46],
drug delivery and release [47], as well as electrocatalysts for water purification [48], as
illustrated in Figure 1.

Actuators 2022, 11, x FOR PEER REVIEW 2 of 20 
 

 

applications related to the ME phenomenon, such as magnetic or current sensors [26,27], 
memory devices [28], high energy density capacitors [29], energy harvesters [30], gyrators 
[31], resonators [32], inductors [33], ME antennas [34], and magneto-mechano-electric gen-
erators [35] have been developed. A high ME coupling effect is essential for the applica-
tion of multiferroic magnetoelectric nanoparticles (MENPs) with high efficiency. The ME 
effect in multiphase ME composites is superior to that in single-phase ME materials [36]. 
Thus, in most applications, ME composite structured MENPs are generally synthesized 
as core–shell structured composites consisting of a magnetostrictive material, which con-
verts a magnetic field into strain, and a piezoelectric material, which further converts 
stress from the magnetostrictive strain into an electric field. Generally, sol–gel [37] and 
hydrothermal methods [38,39] are intensively used to fabricate core–shell MENPs. As the 
synthesis methods are diverse, the methods for evaluating ME voltage coefficients are also 
diverse, including the terms of the physics-to-physics conversion efficiency and the me-
chanical interface coupling between the magnetostrictive core and piezoelectric shell in 
MENPs to determine the degree of magnetoelectricity. Various methods have been inves-
tigated to precisely and reliably characterize ME voltage coefficients by reducing the arti-
fact error of small nanoparticles. 

Because of the use of a magnetic field, which is harmless to the human body, core–
shell MENPs are suitable for medical applications that require the generation of an electric 
field in a material with low magnetic permeability, such as a human body or an ionic 
liquid solution [40–42]. Therefore, core–shell MENPs are expanding their range of appli-
cations [43] to biomedicine for brain stimulation [44], cell regeneration [45], imaging [46], 
drug delivery and release [47], as well as electrocatalysts for water purification [48], as 
illustrated in Figure 1. 

 
Figure 1. Schematic summary showing the synthesis methods of magnetoelectric nanoparticles 
(MENPs), such as sol–gel and hydrothermal, and their various biomedical and environmental ap-
plications. (a) Brain stimulation. Reproduced with permission from [49]. Copyright 2012, PLoS 
ONE. (b) Brain imaging. Reproduced with permission from [50]. Copyright 2018, BMC Springer 
Nature. (c) Cell regeneration. Reproduced with permission from [45]. Copyright 2022, Royal Society 

Figure 1. Schematic summary showing the synthesis methods of magnetoelectric nanoparticles
(MENPs), such as sol–gel and hydrothermal, and their various biomedical and environmental
applications. (a) Brain stimulation. Reproduced with permission from [49]. Copyright 2012, PLoS
ONE. (b) Brain imaging. Reproduced with permission from [50]. Copyright 2018, BMC Springer
Nature. (c) Cell regeneration. Reproduced with permission from [45]. Copyright 2022, Royal Society
of Chemistry. (d) Drug delivery that induces nano electroporation. Reproduced with permission
from [51]. Copyright 2013, Nature. (e) Electrocatalysts for water purification. Reproduced with
permission from [48]. Copyright 2019, Wiley-VCH.
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For instance, by stimulating the brain with an electric field generated from MENPs
caused by an applied magnetic field, several diseases can be treated, and neuronal cell
regeneration (differentiation and proliferation) can also be accelerated. Moreover, the
electric field generated from MENPs can open channels in the cell membrane and release
drugs loaded on the large surface of the MENPs [52]. It is also possible to create an image of
the structure of tissues by sensing the magnetic field induced by MENPs owing to electric
signals generated from the human body through the converse magnetoelectric effect and
mapping their positions. Moreover, for electrocatalysts, a large surface area and electrical
asymmetry are required to generate sufficient surface charge to induce an ionic reaction in
the solution. Thus, MENPs are promising candidates for electrocatalysis [48].

This review article presents an overview of studies on the materials used and their syn-
thesis strategies, the mechanism of the magnetoelectric phenomenon, ME measurements of
various core–shell MENPs, and their biomedical and electrocatalytic applications reported
in the last decade.

2. Materials and Magnetoelectric Properties of Core–Shell Structured MENPs

Core–shell structured MENPs are multiphase heterostructured ME composites at the
nanoscale, as shown in Figure 2a. In such composites, the ME property is achieved by
elastic interfacial coupling between the magnetostrictive and piezoelectric phases under a
magnetic field [53]. The typical core in MENPs consists of ferromagnetic materials with
a spinel structure (AB2O4) showing magnetostrictive properties and a high magnetic mo-
ment [36]. The shell is typically composed of ferroelectric materials with a perovskite
structure (ABO3), showing spontaneous electric polarization and piezoelectric proper-
ties [54]. For instance, the reported ferromagnetic materials for the magnetostrictive core
are Fe3O4 [55], NiFe2O4 [56], and CoFe2O4, and the perovskite materials for the piezoelec-
tric shell are PbTiO3, BaTiO3 [57], and BiFeO3 [58]. Conversely, if the core and shell of
the core–shell MENP are the piezoelectric and the magnetostrictive phases, respectively,
then when a magnetic field is applied to the MENP, the transmission of the electric field
generated from the piezoelectric core to the surrounding area is partially shielded by the
shell, resulting in transmission of electric energy to tissue or reactants in the surroundings
of the MENP. The smart combination of appropriate materials is crucial for the large ME
effects of MENPs. In addition, interfacial coupling between the core and shell is an impor-
tant factor in increasing the mechanical transmission from the magnetostrictive core to the
piezoelectric shell. For this, well-defined boundaries between different phases without in-
terfacial chemical diffusion due to the low synthesis temperature enhance elastic interfacial
coupling, thus resulting in high ME while simultaneously ensuring high chemical, thermal,
and mechanical stability.

The underlying mechanism of the ME coupling in MENPs is shown in Figure 2b.
In particular, the dielectric asymmetry generated in MENPs results in an electric field,
which is spread to the surrounding area under the influence of alternating magnetic fields
(Figure 2b(i)). For most applications, an electric potential is induced on the surface of
the MENPs from alternating electrical polarization. First, under an alternating magnetic
field, vibrational lattice strain in the magnetostrictive core occurs and is transferred to the
piezoelectric shell as stress through the mechanical interface coupling between different
phases of the core and shell [60,61]. Through the piezoelectric conversion from stress
to electric polarization, an electric field is continuously generated in the MENPs with
repetitive application and removal of the magnetic field, as shown in Figure 2b(ii). This
induces an electric field in the surface of MENPs and additionally induces charge carriers,
i.e., electrons (e−) and holes (h+) in tissue.
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magnetic field is applied. (ii) Repeatedly induced strain and release of the MENPs dependent
on the magnetic moments of the applied magnetic field. Reproduced with permission from [59].
Copyright 2022, Science.

3. Common Synthesis Strategies of Core–Shell Structured MENPs

MENPs can be synthesized by bottom-up methods such as hydrothermal, sol–gel,
solvent evaporation, and solid-state reactions. Among these, the sol–gel and hydrother-
mal syntheses are the most widely used to synthesize magnetostrictive and piezoelectric
phases in core–shell structured MENPs. The sol–gel method is appropriate for obtaining
the desired particle size because the synthesis conditions can be easily controlled by ad-
justing the pH, temperature, and concentration [62]. For this, a homogeneous precursor
solution, in which the initial material is ionized through hydrolysis, is prepared by dis-
solving the initial material in a solvent with an appropriate pH and increasing the reaction
temperature. After the evaporation of the precursor solution, a dehydrated gel is formed
through the polycondensation of alkoxides. Finally, nanocrystalline materials are formed
through the calcination of the obtained gel at high temperatures. One of the representative
works was reported by Song et al., who used the sol–gel method to synthesize core–shell
CoFe2O4@BaTiO3 (CFO@BTO) MENPs consisting of piezoelectric BaTiO3 shells on magne-
tostrictive CoFe2O4 cores, as shown in Figure 3a [45]. To coat the BTO shells on the CFO
cores, BaCO3 and Ti(OCH(CH3)2)4 were dissolved in a citric acid solution to generate Ba
and Ti ions. Next, the CFO nanoparticles were added to the precursor solution containing
Ba2+ and Ti4+. Gelation around the CFO cores was induced by evaporating the precursor
solution. Finally, MENPs with a shell nanoarchitecture of BTO and a size of 50 nm were
obtained by thermal annealing.
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The hydrothermal method provides the advantages of increased solubility and fast
reaction of precursors at elevated temperatures and pressure in an autoclave, thus reducing
the energy and cost required for the reaction [63–65]. First, the precursor solution composed
of the starting materials forms an amorphous layer containing B-site ions in the perovskite
structure (ABO3) through hydrolysis and aging (Figure 3b). Subsequently, during the
hydrothermal reaction using the autoclave, A-site ions are incorporated into the amorphous
layer around the supercritical point of water. Rongzheng et al. chose Fe3O4@PbTiO3 core–
shell particles to demonstrate the effectiveness of the hydrothermal synthesis method [66].
To coat Fe3O4 nanoparticles synthesized using the hydrothermal method with PbTiO3 shells,
Ti4+ ions from the Ti(SO4)2 precursor formed a smooth layer on the Fe3O4 nanoparticles
through an aging process. Then, nanocrystalline PbTiO3 shells were formed by integrating
A-site Pb2+ ions into the Ti hydroxide layer, at relatively low temperatures owing to the
high-pressure process in the autoclave. In addition, annealing was performed to obtain
more crystalline and denser core–shell Fe3O4@PbTiO3 particles.
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Figure 3. Widely adopted fabrication methods of MENPs with core–shell structure. (a) Preparation
of CoFe2O4@BaTiO3 (CFO@BTO) MENPs using the sol–gel method. Reproduced with permission
from [45]. Copyright 2022, Royal Society of Chemistry. (b) Synthesis of core–shell MENPs employing
the hydrothermal method. Reproduced with permission from [67]. Copyright 2010, Royal Society
of Chemistry.

Additionally, the solid-state reaction was used to mechanically fabricate MENPs with
an irregular structure rather than a clear core–shell structure [67]. For this, the piezoelectric
BTO and magnetostrictive Ni0.5Co0.5Fe2O4 (NCF) were milled and mixed to synthesize
BTO–NCF MENPs. The solid-state reaction is based on mechanical mixing and solid-state
diffusion of ions at high temperatures. In addition, single-grain BTO-(Mn0.5Zn0.5)Fe2O
MENPs with varying geometrical shapes were synthesized employing the solid-state re-
action [68]. Other synthesis methods, such as microemulsion-based, solvent evaporation,
and sonochemical syntheses, have been carried out to fabricate ferroelectric and ferro-
magnetic nanocrystals. During microemulsion-based synthesis, nanocrystal precipitation
occurs due to chemical reactions of inorganic salts and the removal of water. Using this
method, MENPs containing CFO [69] and BFO [70] could be successfully synthesized. The
solvent evaporation method is suitable for the synthesis of pure MENPs because of the
easy removal of impurities from the solution during evaporation. Thus, BiFeO3 was syn-
thesized by drying metal ions mixed with organic molecules after solvent evaporation and
calcination [71]. During the sonochemical synthesis, nanoclusters agglomerate due to the
implosive collapse of bubbles produced by acoustic cavitation, and perovskite nanocrystals,
such as SrTiO3 nanoparticles, can be formed after additional calcination [72].
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4. Magnetoelectricity Measurements of Core–Shell Structured MENPs

It is crucial to characterize the ME coupling of MENPs to provide reliable data for
specific applications. ME coupling, which is described with the ME voltage coefficient
(αME), is a result of mechanical interfacial coupling between the magnetostrictive core and
piezoelectric shell, and can be expressed as [45]:

αME= p × λ =
∆E
∆S

× ∆S
∆H

=
∆E
∆H

=
∆V/t
∆H

(Vcm−1Oe−1), (1)

where p and λ are piezoelectric and magnetostrictive coefficients, respectively, ∆E is the
electric field change induced by the ME effect, ∆S is the strain change generated by the
magnetostrictive core, and ∆H is the applied external magnetic field. The electric field
is defined as the voltage change (∆V) divided by the thickness (t) of the piezoelectric
shell. Based on this ideal definition of the ME voltage coefficient, the exact values can be
obtained by measuring the output voltage signals induced by the MENPs under an applied
magnetic field. Generally, ME measurements are conducted under a dynamically changing
alternating magnetic field (HAC) superimposed with a direct-current magnetic field bias
(HDC) [73,74], and the electrical voltage response from the MENPs under the combined
magnetic field is measured using a lock-in amplifier. To obtain a sufficiently large electrical
signal relative to the noise, the sum of electrical signals is measured from multiple MENPs
of the bulk ME composite mixed into a polymer matrix followed by curing, as shown in
Figure 4a. Based on the results obtained from the dynamic ME measurements of multiple
MENPs in a bulk specimen, ME voltage coefficients can be relatively easily determined [75].
However, for the determination of the ME voltage coefficients of a bulk specimen composed
of a cured conductive polymer and MENPs, the reduced polarization of the piezoelectric
shell, owing to charge leakage caused by the conductive polymer, should be considered.
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Society. (b) ME characterization of multiple MENPs placed between two electrodes connected to the
oscilloscope under an AC magnetic field. Reproduced with permission from [59]. Copyright 2022,
Science. (c)-(i) Piezoresponse force microscopy (PFM) probe system for ME measurement of a single
MENP, (ii) hysteresis and (iii) bipolar strain vs. electric field (S-E) curves obtained from a single
MENP with and without the application of a magnetic field, which is utilized for the calculation of
the ME voltage coefficient. Reproduced with permission from [45]. Copyright 2022, Royal Society
of Chemistry.

To overcome the limitations of ME measurements for bulk specimens containing
MENPs, multiple MENPs were placed between two electrodes, which were connected to
an oscilloscope (Figure 4b) [59]. Under a low-frequency alternating magnetic field, MENP-
induced response was detected, exhibiting similar waveforms to the applied magnetic
field intensity and confirming that the voltage signals resulted from the ME phenomenon
activated by the magnetic field. Using this method, amplified voltage signals of MENPs
can be obtained with no polarization reduction due to charge leakage and structural change
of the material [76]. However, it is insufficient to determine the exact ME voltage coefficient
of a single MENP, because it does not consider errors caused by the size deviation of
the manufactured MENPs and the generation of large granulated secondary particles by
primary particle aggregation.

Precise ME measurements of a single MENP are still challenging because of the small
size of the particles. Recently, the modified piezoresponse force microscopy (PFM) probe
system for the point I-V method was utilized to directly measure the ME voltage coefficient
of a single MENP, as illustrated in Figure 4c(i) [45,59,63]. The ME measurement using a
modified PFM probe system is based on the converse piezoelectric effect, which transfers
the applied electricity into strain by ME coupling. During the PFM measurement, the
directions of the MENP polarization, which switch under the applied electric field, were
compared with the piezoresponse hysteresis loops with and without an external magnetic
field. The phase angle switching in the hysteresis loops between 0◦ and 180◦ with and
without a magnetic field indicates that the voltage signals from the MENP measured
by PFM can be ascribed to the piezoelectric phenomenon rather than to the electrostatic
response (Figure 4c(ii)). The asymmetric shifts of the coercive voltages upon application of
an externally applied magnetic field were utilized to calculate the ME voltage coefficient.
The difference between the positive (∆VC

+) and negative (∆VC
−) coercive voltage shifts

with and without a magnetic field in the butterfly loops (S-E curve) represents the charge
generated by the polarization of the piezoelectric shell in a single MENP. Thus, the αME of
a single core–shell MENP can be calculated using the following equation [45]:

αME =

∣∣∆V+
C − ∆V−

C

∣∣
t × ∆H

(Vcm−1Oe−1), (2)

where t is the thickness of the piezoelectric shell coated on the magnetostrictive core, and
∆H is the magnetic field applied to a single MENP. ME measurements using the PFM probe
system hold a promising opportunity to estimate the αME of a single MENP, considering
its morphology and size without polarization loss. Therefore, ME measurements of a
single MENP using probe systems employing PFM [77] or scanning tunneling microscopy
(STM) [37] are expected to attract more attention and be actively developed in the future.
Table 1 lists various studies related to core–shell MENPs, presenting a comparison of
ME voltage coefficient values, syntheses, ME measurement methods, and applications of
MENPs. It is worth noting that ME voltage coefficients of single MENPs attained by point
I-V ME measurements utilizing point probe systems, such as PFM and STM, show relatively
larger values than those obtained from dynamic and oscilloscopic ME measurements of
bulk ME composites and multiple MENPs.
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Table 1. Comparison of materials, syntheses, ME voltage coefficients, ME measurement method, and
applications of MENPs.

Authors (Year)

Material
Synthesis
Method

ME Voltage
Coefficient
(V/cm.·Oe)

ME
Measurement

Method
ApplicationMagnetostrictive

Core
Piezoelectric

Shell

Chaudhuri et al.
(2015) [78]

CoFe2O4
(CFO)

BaTiO3
(BTO)

Hydrothermal/Sol–
gel

method
0.00813 Dynamic ME

measurement
(Bulk

composite)

-

Rao et al.
(2017) [79]

CoFe2O4
(CFO)

BaTiO3
(BTO) Sol–gel method 0.00918 Drug

Delivery

Kozielski et al.
(2021) [80]

CoFe2O4
(CFO)

BaTiO3
(BTO) Sol–gel method 0.00000276 Brain

Stimulation

Almessiere et al.
(2022) [81]

CoMnRFeO4
(CoMnRFe)

BaTiO3
(BTO) Sol–gel method 0.0249 Drug

Delivery

Park et al.
(2022) [59]

CoFe2O4
(CFO)

BiFeO3
(BFO) Sol–gel method 10~30

Oscilloscopic
ME

measurements
(Multiple
MENPs)

Brain
Stimulation

Pane et al.
(2019) [48]

CoFe2O4
(CFO)

BiFeO3
(BFO)

Hydrothermal/Sol–
gel

method
405

Point I-V ME
measurement

(Single MENPs)

Electrocatalysts

Mushtaq et al.
(2019) [63]

CoFe2O4
(CFO)

BiFeO3
(BFO)

Hydrothermal
method 1400 Cell

Regeneration

Fan et al.
(2021) [77]

Fe3O4
(FO)

BaTiO3
(BTO)

Hydrothermal/Sol–
gel

method
260 Brain

Stimulation

Song et al.
(2022) [45]

CoFe2O4
(CFO)

BaTiO3
(BTO) Sol–gel method 47 Cell

Regeneration

Pane et al.
(2022) [82]

CoFe2O4
(CFO)

BiFeO3
(BFO)

Hydrothermal/Sol–
gel

method
325 Electrocatalysts

Nelson et al.
(2022) [83]

CoFe2O4
(CFO)

BiFeO3
(BFO)

Hydrothermal/Sol–
gel

method
1700 Electrocatalysts

5. Applications of MENPs
5.1. Drug Delivery

Conventional drug delivery techniques are effective for the treatment of most common
illnesses; however, they might be insufficient for more complex diseases, such as ovarian
cancer [51] and AIDS [84], where viral reservoirs remain untouched by traditional drug
therapy methods. Therefore, an assisted and enhanced specific drug delivery system is
required [85,86]. In this regard, MENPs can revolutionize drug delivery systems due to their
superior and desirable characteristics as nanocarriers. Their ability to intrinsically generate
electric fields is beneficial for biomedical applications, as living cells possess inherent
electrical properties and utilize them extensively for fundamental recovery functions.
Moreover, the most unique and advantageous function of MENPs is that excitation can be
controlled wirelessly by applying a low-frequency magnetic field.

MENPs as drug delivery nanocarriers enable high-specificity drug delivery, which
is directly aligned with current research trends. Magnetic nanoparticles (MNPs) with
similar characteristics, such as nonzero magnetic moments, also enable targeted delivery to
specific cells. However, drug adsorption and release are uncontrollable and depend on the
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biochemical processes of cells. In contrast, the unique piezoelectric shell of MENPs enables
the on-demand release of drugs by utilizing the intrinsic electric field generated through the
ME effect. It was shown that the drug efficacy of MENPs was significantly increased com-
pared with MNPs acting as nanocarriers [87,88]. The bond-severing mechanism between
the therapeutic agents and MENPs was thoroughly studied, as shown in Figure 5a [51]. It
was assumed that there is a symmetric ionic bond before a magnetic field is applied and an
electric dipole moment is formed. However, through the application of a magnetic field, the
induced electric dipole breaks the symmetry, resulting in a break of the already weak bond,
while the bond at the other end of the dipole is strengthened. With the ideal excitation of
the AC magnetic field, the dipole moment direction is changed, thus uniformly breaking
all bonds and releasing the agent. An efficiently controlled electric field not only facilitates
the on-demand release of therapeutic agents but also incites electroporation (Figure 5a(i)).
This technique has been proven to have an edge over other physical methods for drug
delivery, showing much higher drug efficacy because of the direct drug delivery into cells.
In this method, an electric field is applied to increase the permeability of the cell mem-
brane or open its pores, thereby increasing the uptake of therapeutic agents. The primary
causes of pore opening are: the electrostatic repulsion that dislocates the phospholipid
bilayer, and the constant change in the membrane’s conductivity. Despite its advantages,
the effectiveness of electroporation is strongly dependent on the voltage distribution and
duration. Excessively strong and long excitation might lead to undesirable cell death.
However, electroporation using MENPs can target specific cells that are in proximity to a
low-frequency but specific electric field generated by MENPs; therefore, this is called nano
electroporation. Because of the nanoscaled MENPs, the generated electric field is harmless
for cells. In addition, nano electroporation significantly increases the uptake of therapeutic
agents, improves cell viability, and enables delivery past semipermeable membranes, such
as the blood–brain barrier. This study shows a five-fold increase when MENPs were used
as carriers, compared with other carriers such as HER-2 antibodies (Figure 5a(ii)).

MENPs also have a great affinity to different types of agents or drugs that require
targeted delivery solutions, including antiviral drugs for treating human immunodefi-
ciency virus (HIV), CRISPR-Cas9/gRNA for latent HIV infection, and antiretroviral drug
delivery [84,87,90]. The delivery of such drugs was demonstrated by inducing the electropo-
ration, cell targeting, and cell transport of MENPs [89]. Under an AC magnetic field of 50 Oe
at 60 Hz, cell permeation, intercellular signaling, and cell electromechanical motion inside
human epithelial cells (HEP2) were induced by a single MENP reducing its impedance
(Figure 5b(i)). When an AC magnetic field of 40 Oe at 30 Hz, which is low enough not to
dislocate the phospholipids on the cell membrane, is applied, MENP can pass through
its pathway to the targeted location avoiding reaction with the cells (Figure 5b(ii)). Being
continuously exposed to the DC magnetic field of 50 Oe applied through the direction of
the outlet of the microchannel, it is proven that MENPs can manipulate the live cells to
the targeted area by generating thrust and steering the cells (Figure 5b(iii)). The results
of this in vitro study confirmed that the effects of MENPs were largely positive, reporting
no significant toxicity. The results of the biocompatibility test on HEP2 and NG-108 rat
neuronal cells confirm that MENPs have potential to be used as nanocarriers for enhanced
targeted and on-demand release drug delivery with no toxicity.
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5.2. Brain Imaging

For the noninvasive examination of the brain and other internal organs and tissues,
magnetic resonance imaging (MRI) is routinely used to generate high-resolution images and,
therefore, MRI equipment has become critical for healthcare in hospitals. MRI enables the
noninvasive detection and diagnosis of various diseases, primarily in the brain. In addition,
MNPs can be added as a contrast agent to further enhance imaging quality [91]. Currently,
magnetic particle imaging (MPI) is an emerging magnetic-based imaging technology [50].
However, there is a fundamental difference between MRI and MPI, as the latter does
not detect signals produced from the magnetically aligned atoms; rather, it traces MNPs
and detects voltage due to the nonlinear change in magnetization. The voltage is then
transformed into a signal, which is transformed into an image. This method is more
sensitive because it not only produces a direct image based on the data but can also
quantify the change. Theoretically, the image and data are more impactful because they
can also map neural activities in more detail. Because MNPs act as tracers rather than
contrast agents in MPI, individual particle function correlates with magnetization and
might improve the readings. This shows that MENPs with ME effects have potential to
further improve the MPI imaging process.

Numerical simulation studies indicate that MENPs can generate small magnetic mo-
ments when action potentials travel down neural axons, as can be seen in Figure 6a [50,92].
The exact mechanism is that the magnetic moments of MENPs are flopped near the axons
due to their exposure to a reversed local electric field, and can be observed in the local
contrast change of the magnetic image. Thus, this method can detect the detailed neural
activities of the cells. Furthermore, the change in the action potential of the excitatory post-
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synaptic potential generated at the neuron’s apical dendritic tree is longer in duration, and
theoretically easier to detect, than action potentials. A study demonstrated the possibility
of enhancing brain imaging with MENPs using MPI [93]. The advantages of MPI over MRI,
such as fast temporal resolution and superior sensitivity, enable the mapping of potential
changes, and consequently detailed mapping of brain activity, as shown in Figure 6b.
Currently, there are no in vivo studies confirming the enhancement of brain imaging using
MENPs; however, computational studies indicate their great potential, and other studies
show that MENPs are safe and can be completely secreted in 8 weeks [94]. Further detailed
studies on biomedical imaging are required, as they will deepen our understanding of the
brain and other body tissues.
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Figure 6. Brain mapping by detecting magnetic signals induced by MENPs located on the targeted
brain or other tissues. (a)-(i) Magnetic particle imaging (MPI) brain imaging applications enhanced
with charge sensing based on the ME phenomenon of the MENPs. (ii) Visualized brain map compu-
tationally modeled by placing MENPs on the specific area of the brain. [50]. Copyright 2018, BMC
Springer Nature. (b)-(i) Scans of magnetic resonance images (MRI) using MENPs delivered to the
targeted location of the brain. (ii) Verification of MENP delivery by comparing the morphological
assessment of injected MENPs with the scanned position of the MENPs. (iii) Evaluation of MENPs
in the organs using Raman spectroscopy. Reproduced with permission from [93]. Copyright 2019,
American Chemical Society.

5.3. Brain Stimulation

Brain stimulation using electric fields has proven effective in relieving the symptoms
of brain diseases, such as unintended shaking in the case of Parkinson’s disease [95].
Conventional brain stimulation therapies, which usually utilize electrodes, are invasive
and show unwanted external vibrations. Moreover, the stimulation is not uniform and
may have adverse effects owing to energy dissipation. Other less invasive methods, such
as transcranial magnetic stimulation (TMS), show a significant disadvantage due to the
depth–focal trade-off restricting effective TMS stimulation of the subthalamic region, which
is the targeted region in deep brain stimulation (DBS). Other devices that utilize remotely
powered concepts using magnetic induction or optoelectronics [96] suffer from shallow
penetration depths. The use of MENPs may enable highly uniform brain stimulation and
more spatial precision. In addition to its ability to wirelessly incite an electric field, brain
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stimulation using the MENP-based technology will be noninvasive, after the initial injection
of MENPs, as shown in Figure 7a [49]. Moreover, the spatial distribution of MENPs can
be controlled using a magnetic field because of their nonzero magnetic moment. Because
the electric field is generated by the ME effect, there is no significant energy dissipation
that might damage brain cells. Furthermore, this method may elucidate the mechanisms of
neural networks and enhance their imaging. Thus, owing to the unique characteristics of
MENPs, they can be considered viable candidates for DBS.
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Figure 7. Brain stimulation utilizing the electric field generated from MENPs under the application
of the magnetic field. (a) Illustration of human brain stimulation using MENPs. Reproduced with
permission from [49]. Copyright 2012, PLoS ONE. (b) In vivo study on mice showing successful
brain stimulation using MENPs. Reproduced with permission from [97]. Copyright 2016, Nature.
(c)-(i) ME effect generated using MENPs, (ii) external application of combined AC and DC mag-
netic fields, (iii) in vivo wireless deep brain stimulation. Reproduced with permission from [80].
Copyright 2021, Science.

Although numerous studies have confirmed that the use of MENPs is harmless for
living organisms, their effectiveness and safety as brain stimulants require rigorous investi-
gations. A pioneering computational study suggests that the use of MENPs is superior to
established methods, such as DBS using implanted electrodes [49]. The study compared
typical electric field signals of the brain of a patient with Parkinson’s disease exposed to
different treatments. The results show that after stimulation using MENPs, the electric field
signals of the diseased brain were more similar to those produced by a healthy brain than
when subjected to conventional therapies. Following this initial computational study, vari-
ous effects and phenomena of MENPs for DBS have been observed and thoroughly studied.
An in vitro study confirmed an increase in neuronal cell activity by measuring intracellular
Ca2+ when MENPs were activated with AC and DC magnetic fields [80]. Moreover, the
number of c-Fos-positive cells increased significantly in mice; this number is the usual indi-
cator when neurons fire action potentials, as shown in Figure 7b,c [80,97]. The postmortem
examination of the mice’s brain cells confirmed the increased c-Fos-positive cell number
in the nonmotor thalamic region and the absence of neuroinflammation [85]. Owing to
their numerous advantages and superior characteristics, MENPs can be considered an
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alternative to conventional brain stimulation methods, as they enable the stimulation of the
inaccessible subthalamic region.

5.4. Cell Regeneration

In addition to brain-related applications, MENPs are potentially useful for other medi-
cal applications as well. MENPs can stimulate cell differentiation, which is an important
process in cell regeneration. As shown in Figure 8a, an in vitro study confirmed the ability
of MENPs to induce selective differentiation of SH-SY5Y cells using a stamping magne-
toelectric microscale biorobot [45]. It is also well known that electric stimulation not only
induces differentiation, but is also linked to the proliferation and secretion of proteins,
among other effects [98]. While existing electric stimulation methods rely on electrodes
and are invasive [99], electrostimulation using MENPs would be noninvasive and could
improve stimulation distribution and efficiency. Although piezoelectric materials can also
be utilized for noninvasive electrical stimulation in some cases, where an electrical field
can be generated through simple exercise or movement, movement is strictly restricted
and may damage cells. The simple solution to this issue also lies in the use of MENPs,
owing to their unique and convenient characteristics for inducing wireless electric stim-
ulation. This was confirmed by an in vivo study of a patient with a spinal cord injury
using a combination of MENPs and biocompatible polymeric materials, which successfully
stimulated and fostered the regeneration of functional axons (Figure 8b) [77]. Additionally,
stimulation of the brain using the ME effect of MENPs can destroy specific Alzheimer’s
β-amyloid aggregates, which are possibly responsible for gradual cell degradation, and
might improve the function of brain cells, as shown in Figure 8c [59].
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Figure 8. Cell regeneration induced by the ME effect of MENPs. (a) Schematic showing enhanced cell
differentiation of SH-SY5Y cells through ME stimulation using MENPs. Reproduced with permission
from [45]. Copyright 2022, Royal Society of Chemistry. (b) Repair of a spinal cord injury due to
cell proliferation enhanced by ME stimulation of MENPs. Reproduced with permission from [77].
Copyright 2021, Wiley-VCH. (c) Clearance of Aβ plaques, the main indicator of Alzheimer’s disease,
due to the ME stimulation of MENPs. Reproduced with the permission of [59]. Copyright 2022,
Science. (d) Bone cell proliferation on ME bioscaffolds containing MENPs under a magnetic field.
Reproduced with permission from (*p < 0.03) [63]. Copyright 2019, Elsevier.
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MENPs can also be coupled with a biocompatible scaffold for bone cell proliferation
(Figure 8d) [63]. Scaffolds have been extensively used for this purpose as they efficiently
improve the diffusion of oxygen, nutrients, and waste products, which are critical in the
early stages before vasculogenesis or angiogenesis. Current bone regeneration research
aims for scaffolds that can be compounded with certain biochemical molecules to enable
the development of new tissue [100]. Owing to the positive effect of MENPs on cell regen-
eration, they can be incorporated into scaffolds to enhance the cell proliferation process.
Thus, a significant increase in cell proliferation of 134% was achieved using scaffolds
combined with magnetically stimulated MENPs. Additional observations of fluorescent
images showed that MG63 cells adhered well to the scaffold, indicating successful bone
cell proliferation and signifying the importance of MENP-induced electrical stimulation for
increased cell viability.

5.5. Electrocatalysts

Proper water treatment is crucial to ensure and maintain the supply of potable water in
the future as industrialization expands. MENPs, with their unique characteristics of inciting
intrinsic electric fields, have found another field of application aside from biomedicine,
namely as catalysts for the degradation of organics in wastewater. Current technology
mainly focuses on the use of photocatalysts [101] and magnetic nanostructures [48] as
recoverable carriers for catalytic materials to purify water from various common industrial
pollutants; however, it does not consider the use of nanoparticles with magnetoelectric
properties. It was reported that MENPs can initiate a redox reaction to form hydroxyl and
superoxide radicals, resulting in a significantly increased degradation efficiency of organic
water pollutants by up to 97% after less than an hour, as shown in Figure 9a [48]. In contrast,
other nanoparticles, such as magnetic nanoparticles, did not show the same efficiency
within the same period. It was further demonstrated that other common pharmaceuticals
could also be removed from water with an efficiency of up to 85% (Figure 9b). This highly
efficient performance bodes well for use of MENPs as catalysts in wastewater purification.
Despite promising results, the number of related studies is still sparse. However, this
approach will certainly be important in the future, given the increasing levels of pollution
and current climate changes.
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Effective reduction of the pollutant concentration within 50 min and removal of various common
industrial-grade pollutants using MENPS. The figure and data are showcased by Mushtaq et al.
Reproduced with permission from [48]. Copyright 2019, Wiley-VCH.

6. Outlook and Perspectives

The ever-increasing variety of applications of nanoparticles is being tremendously
boosted by the introduction of nanoparticles with specific functions. Among all these
diverse applications, electricity generation in MENPs under magnetic fields shows high
potential for application in nonmagnetizable media, putting it in the spotlight in biomed-
ical and environmental fields. In this review, recent progress on core–shell MENPs was
introduced, focusing mainly on materials, synthesis methods, ME characteristics, and appli-
cations. Core–shell MENPs enjoy high ME voltage coefficients owing to the phase-to-phase
elastic interfacial coupling in ME composites, i.e., the high bonding strength of the interface
between the magnetostrictive core and piezoelectric shell. Although many characterization
methods have been introduced to evaluate the magnetoelectricity of a single MENP, there
is still a need to improve these methods to accurately perform ME measurements. These
measurements are required to ensure the high quality and efficient performance of MENPs
for practical applications where MENPs must be well-dispersed and their characteristics
must be uniform. This can be achieved if we minimize the errors resulting from materials,
processes, and measurement setups. Dynamic ME measurements with bulk specimens
take into account errors caused by charge leakage and thermal deformation during sample
preparation. Therefore, any evaluation of multiple MENPs should always be presented
with the size deviation errors.

Despite the great advances in MENPs in the last decade, there are still some challenges
that need to be addressed to realize the full potential of MENPs in different applications. (i)
The asymmetric lattice structure of materials constituting the piezoelectric shell of MENPs,
such as BTO, determines its piezoelectric properties. Any reduction in the size of the
piezoelectric phase down to the nanoscale is accompanied by a decrease in the ratio of
the asymmetric lattice phase, consequently leading to a significant decrease in piezoelec-
tric properties and increasing the dependency of the ME phenomenon on the dielectric
properties. Therefore, to attain a large ME effect, it is necessary to improve the material
design of MENPs. (ii) Aggregation of nanoparticles should be avoided during the synthesis
of MENPs, as it can drastically impact the reproducibility of ME measurements due to
nonuniform size distribution and unclear core–shell structures. (iii) Efforts should be
directed towards research initiatives to introduce highly scalable synthesis methods for
the reproducible and highly efficient mass production of MENPs, mitigating the draw-
backs of sol–gel and hydrothermal methods, which are not industrially scalable. (iv) ME
measurement techniques should be refined to allow accurate quantification of the ME
effect for single MENPs. (v) Finally, as applications of MENPs are increasingly focused
on biomedical fields, long-term in vitro and in vivo research is required to improve the
understanding of MENPs’ working mechanisms. One important task, however, is to avoid
cytotoxicity-related issues by either avoiding or reducing the use of toxic solvents and
completely removing impurities during the synthesis of MENPs. We therefore propose that
these research directions, if implemented, can have huge impacts on the many applications
of this emerging field, especially in drug delivery, brain imaging, brain stimulation, cell
regeneration, and electrocatalysts.
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