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Abstract: The selection of an appropriate method for modeling vehicle dynamics heavily depends
on the application. Due to the absence of human intervention, the demand for an accurate and
real-time model of vehicle dynamics for intelligent control increases for autonomous vehicles. This
paper develops a multibody vehicle model for longitudinal-vertical dynamics applicable to advanced
driver assistance (ADAS) applications. The dynamic properties of the chassis, suspension, and tires
are considered and modeled, which results in accurate vehicle dynamics and states. Unlike the
vehicle dynamics models built into commercial software packages, such as ADAMS and CarSim,
the proposed nonlinear dynamics model poses the equations of motion using a subset of relative
coordinates. Therefore, the real-time simulation is conducted to improve riding performance and
transportation safety. First, a vehicle system is modeled using a semi-recursive multibody dynamics
formulation, and the vehicle kinematics and dynamics are accurately calculated using the system
tree-topology. Second, a fork-arm removal technique based on the rod-removal technique is proposed
to reduce the number of bodies, relative coordinates, and equations constrained by loop-closure. This
increase the computational efficiency even further. Third, the dynamic simulations of the vehicle
are performed on bumpy and sloping roads. The accuracy and efficiency of the numerical results
are compared to the reference data. The comparative results demonstrate that the proposed vehicle
model is effective. This efficient model can be utilized for the intelligent control of vehicle ADAS
applications, such as forward collision avoidance, adaptive cruise control, and platooning.

Keywords: longitudinal-vertical dynamics; vehicle system dynamics; real-time modeling; fork-arm
removal technique; advanced driver assistance systems

1. Introduction

In recent years, automated driving has been an active research topic. Several ad-
vanced driver assistance systems (ADAS) have been studied in terms of ride comfort,
handling performance, transportation safety, and efficiency [1,2]. This includes several
essential technologies, such as electronic stability control [3], active front steering control [4],
autonomous emergency braking [5], forward collision avoidance [6], adaptive cruise con-
trol [7], and platooning [8]. These ADAS applications necessitate efficient vehicle models,
either for longitudinal, lateral, or vertical dynamics, or for coupling these types due to
intelligent control [9,10].

In the near future, it is expected that highly autonomous vehicles that operate without
human intervention will be on the road, significantly enhancing transportation safety and
efficiency. Acquiring vehicle states and dynamic responses requires precise models to
achieve these objectives [11]. Simplified vehicle models that describe the longitudinal,
lateral, and vertical dynamics separately are insufficient for vehicle coupling dynamics. In
complex driving conditions, coupling dynamics models, such as longitudinal–lateral or
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longitudinal-vertical models, is crucial [12,13]. By analyzing and controlling the coupling
dynamics of vehicles, transportation safety can be enhanced, and ride comfort can be
enhanced. In particular, the forward collision avoidance control can effectively avoid or
mitigate vehicle collision accidents via auto brake based on the precise vehicle states and
dynamics, such as yaw rate, longitudinal speed, and acceleration. The longitudinal-vertical
vehicle states, such as vehicle position, velocity, acceleration, and pitch angle and rate, can
be combined to reduce vibration and enhance driving safety in adaptive cruise control,
platooning, or autonomous emergency braking [14,15]. Most ADAS applications require
coupling dynamics models because the longitudinal, lateral, and vertical dynamics are
strongly coupled and cannot be handled separately. These complex but highly accurate
coupling models are able to match the real dynamics of vehicles as closely as possible [16].
In recent years, many accurate vehicle modeling approaches have been reported. Multibody
models are one typical category [17–20]. Approaches to multibody modeling consider and
model the dynamic properties of all components, such as chassis frame, suspensions, tires,
and shock absorbers. In multibody models, the connectivity (mechanical joints) and the
actual structure of a vehicle system are accurately represented. Multibody models are gen-
erally more accurate than lumped mass models, nonlinear dynamics models, and surrogate
models [21,22].

In most ADAS applications, vehicle multibody models must run robustly and in
real-time on hardware with limited memory, such as an on-board computer or a border
router. For this reason, it is crucial to develop efficient multibody modeling techniques
for autonomous vehicles [23,24]. With the development of multibody dynamics theory,
commercial software packages, such as ADAMS and CarSim, have become increasingly
popular for modeling vehicle dynamics. They consider the dynamic properties of each com-
ponent and develop a multibody model based on Cartesian coordinates. A large number of
degrees of freedom (DOFs) of this type of multibody model makes real-time simulation
in complex driving environments impractical or impossible. Moreover, the equations of
motion directly combine the constrained equations and take a differential algebraic form,
resulting in numerical instability in the worse-case scenarios. The numerical techniques
used to address these issues may increase the computational load further. Commercial
software packages have a high degree of universality and can be utilized in various fields,
including aerospace, machinery, vehicles, oceans, etc. [25–27]. However, there are no ob-
vious advantages for specific applications, such as off-road vehicle operation simulation
on terrain and rigid-flexible satellite attitude control [28,29]. It is inconvenient to perform
cost-effective real-time simulation and efficient modeling within the framework of com-
mercial software packages. Consequently, accurate and efficient multibody vehicle models
are required [30,31].

Therefore, this study aims to improve the computational efficiency of vehicle simu-
lation by developing a longitudinal-vertical multibody dynamics model. The proposed
multibody model can be used to perform dynamics simulations faster than in real time,
facilitating driving control for autonomous vehicles in particular. Moreover, the vehicle
model is capable of describing the longitudinal and vertical dynamics required for ADAS
applications to improve vehicle safety and riding performance. The most important aspects
of this work can be summarized as follows:

- The longitudinal-vertical dynamics of an autonomous vehicle is modeled using an ef-
ficient semi-recursive multibody method. The dynamic properties of all components,
e.g., the chassis, suspension, and tires, are considered and modeled.

- The fork-arm removal technique is proposed using the rod-removal technique to
further reduce the size of the equations of motion.

- For ADAS applications, dynamic simulations based on a multibody model are exe-
cuted in real-time on bumpy and sloping roads.

- The accuracy and efficiency of the vehicle model are investigated in depth, and the
model’s efficacy is confirmed.
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The remainder of this study is organized as follows. In Section 2, a real-time multibody
vehicle model for handling longitudinal-vertical dynamics is developed. Section 3 proposes
a fork-arm removal technique to improve the computational efficiency of the vehicle
multibody. Section 4 investigates the accuracy and efficiency of this vehicle model through
dynamic simulations conducted under varying driving conditions. Section 5 concludes
with a summary of the results of this study.

2. Modeling of Vehicle Coupling Dynamics

Sedans are typically viewed as medium-scale, closed-loop multibody systems with
at least 14 DOFs, including 6 DOFs in the chassis (X, Y, and Z translations as well as
pitch, roll, and yaw angles), 4 DOFs in the front and rear suspension to describe vertical
displacements, and 4 DOFs in the wheels to represent rotations. Figure 1 depicts the system
structure of a sedan equipped with front MacPherson strut suspension and rear multi-link
suspension [32]. The automotive components of the vehicle are connected by mechanical
joints. For instance, the upper end of the shock absorber in the front McPherson suspension
is connected to the chassis frame of the vehicle through a spherical joint. The mechanical
joints with multi-degrees of freedom, such as universal, spherical, and free joints, are
modeled using 1-DOF prismatic and revolute joints by introducing a few auxiliary massless
bodies. The magenta-boxed relative coordinates in Figure 1 correspond to the DOFs of the
vehicle system.
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Figure 1. System structure of a 14 DOF vehicle system.

The system depicted in Figure 1 consists of twelve rigid rods. The rigid rod has
a mass that is distributed uniformly and a moment of inertia about its centerline. It can
be represented in vehicle modeling using a constant-length constrained equation and by
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imposing external and inertia forces on the neighboring bodies. Loops in the vehicle system
are made temporarily accessible by severing two spherical joints and removing all rigid
rods. Once the closed loops are opened, the system structure and recursion techniques can
be used to efficiently pose the open-loop equations of motion. By imposing a small set of
loop-closure constrained equations and introducing Lagrange multipliers, it is possible to
obtain the closed-loop equations of motion [33]. The numerical integration techniques for
this constrained enforcement are somewhat complex, and the computational efficiency is
extremely difficult, particularly for real-time or faster-than-real-time simulation [34].

A 7-DOF vehicle multibody model based on the sophisticated 14-DOF model is created
to reduce the size and complexity of the vehicle system for greater efficiency. The 7-DOF
vehicle model can be used to accurately calculate the longitudinal-vertical dynamics and
states of a vehicle, which could be utilized in autonomous ADAS applications. The 7-DOF
model is created assuming the vehicle is symmetrical left-to-right. It indicates that only
one-half of the vehicle’s multibody system is modeled and the that the dynamics of the
other half are symmetrical. Figure 2 depicts the system structure of the 7-DOF vehicle
model. The vehicle model consists of a chassis frame, a five-bar suspension in the rear,
and a McPherson strut suspension in the front. The vehicle model includes 20 bodies,
described in Figure 2. It includes 3 DOFs in the chassis frame to describe the pitch angle, X
and Z translations, and 4 DOFs in the front and rear suspension (the vertical displacements
of the suspension and the rotation of the wheels). The 7 DOFs correspond to the relative
(joint) coordinates marked in a magenta box in Figure 2.
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Figure 2. System structure of the 7-DOF vehicle system.

To open the closed loops, the spherical joint connecting the steering knuckle and lower
arm is cut, and three loop-closure constrained equations are generated. A steering tie rod
and five rear suspension rigid rods are removed. The removed rods are represented by
six equations constrained to a constant length. To formulate the dynamic equations of
the vehicle system in an understandable way, the point s of body i that instantaneously
coincides with the origin of the inertial reference frame is selected as the reference. The
Cartesian velocities and accelerations of body i (Zi and Żi) and of the entire system (Z and
Ż) can be defined as:

Zi ≡
{

ṡi
ωi

}
, ZT ≡

{
ZT

1 , ZT
2 , . . . , ZT

n

}
, i = 1, 2, 3, . . . , n (1)

Żi ≡
{

s̈i
ω̇i

}
, ŻT ≡

{
ŻT

1 , ŻT
2 , . . . , ŻT

n

}
, i = 1, 2, 3, . . . , n (2)

where ω denotes the angular velocity, and n denotes the number of bodies excluding the
fixed body, which equals 20 in this example.
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In this opened vehicle system, the Cartesian velocities and accelerations are recursively
calculated by using relative velocities and accelerations:

Zi = Zi−1 + bi żi, i = 2, 3, 4 . . . , n (3)

Żi = Żi−1 + bi z̈i + di, i = 2, 3, 4 . . . , n (4)

where żi and z̈i denote the relative velocities and accelerations of the ith mechanical joint,
respectively; bi and di are computed through expressions depending on the type of the ith
joint [33].

By combining Equations (1) and (3), the following velocity transformation is obtained:

Z = R1ż1 + R2ż2 + · · ·+ Rn żn = Rż = TRdż, (5)

where R denotes the first velocity transformation matrix, which is required to calculate
open-loop velocities recursively. Matrix T denotes the path matrix of the vehicle system,
representing the system structure. Matrix Rd represents a diagonal matrix, whose elements
are the bi defined in Equation (3). Vector ż contains the relative velocities of the vehicle
system. Figure 3 depicts the path matrix in this example. This recursive and organized
form enables efficient multibody vehicle modeling.

Rear right subsystem

Steering system

Steering system
& chassis

Front right 
subsystem
& chassis

ChassisFront right subsystem

Figure 3. Path matrix of the 7-DOF vehicle multibody model.

By applying the virtual power method and introducing the first velocity transforma-
tion matrix, the open-loop equations of motion of the vehicle system are derived [35]:

RT
dTTM̄TRdz̈ ≡ RT

dMΣRdz̈ = RT
d

(
QΣ − PΣ

)
, (6)

where M̄ denotes the global mass matrix, and z̈ denotes the relative accelerations of the
vehicle system. The matrices MΣ, QΣ, and PΣ denote the accumulated mass matrix, accu-
mulated external forces, and accumulated velocity-dependent inertia forces, respectively.

For the closed-loop vehicle system, the loop-closure constrained equations (ΦΦΦ) and
their Jacobian matrix (ΦΦΦz) resulting from the cut joints and removed rods are considered.
The constraint Jacobian is composed of two components, which correspond to the rela-
tive coordinates’ dependent and independent components. Consequently, the following
equations are obtained:

Φ̇ΦΦ ≡ΦΦΦzż ≡ΦΦΦd
z żd +ΦΦΦi

zżi = 0, (7)
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where ΦΦΦd
z and ΦΦΦi

z denote the Jacobian’s dependent and independent components, respec-
tively; żd and żi contain dependent and independent relative velocities of the vehicle
system, respectively.

Therefore, the relative velocities and accelerations are expressed by their subsets
(independent ones) through the coordinate partitioning technique:

ż =

−(ΦΦΦd
z

)−1
ΦΦΦi

z

I

żi ≡ Rzżi (8)

z̈ = Rzz̈i + Ṙzżi, (9)

where z̈i denotes the independent relative accelerations of the vehicle system, and Rz
denotes the second velocity transformation matrix, which is a basis of the constraint
Jacobian null space. The second transformation matrix for velocity can be used to project
the equations of motion onto the independent coordinate field.

The ordinary differential equations of motion for the closed-loop vehicle system are
obtained by introducing the second velocity transformation matrix into Equation (6) and
eliminating the Lagrange multipliers:

RT
z RT

dMΣRdRzz̈i = RT
z RT

d

[
QΣ − TTM̄

d(TRdRz)

dt
żi
]

. (10)

Equation (10) is expressed using independent relative coordinates. The independent relative
coordinates correspond to the DOFs of the vehicle system, as shown in the magenta box in
Figure 2.

3. Fork-Arm Removal Technique

The suspension plays a crucial role in the vehicle multibody system, and its per-
formance directly affects the riding and handling performances. The independent front
suspension commonly used in vehicles include the MacPherson strut type and double
wishbone type. As described in Figure 4, the fork-arm components, such as lower-arm or
upper-arm, are quite often components of the suspension. The modeling of the fork-arm
component is sometimes difficult due to its complex structure.

(a) MacPherson strut suspension (b) Double wishbone suspension

Figure 4. Fork-arm components in suspension systems.

In this section, a fork-arm removal technique is proposed, which entails removing
fork-arm components from the multibody system of the vehicle to open the closed loops.
The fork-arm component is viewed as the combination of two rigid rods of varying lengths,
one of whose end is hinged at the same point in a neighboring body and the other of whose
ends are connected to different points in the other neighboring body. The coordinates
of the mechanical joints determine the lengths of the two rigid rods. Their masses and
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inertia of moments are determined by the structure of the fork-arm. The removed fork-arm
component is represented by two equations with constant-length constraints. Calculated
inertia and external forces are applied to the neighboring bodies. Figure 5 depicts the
system tree-topology of the 7-DOF vehicle system after the suspension lower-arm has
been removed.
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Figure 5. System tree-topology of the 7-DOF vehicle model after removing the suspension lower-arm.

When the lower-arm of the front suspension is removed using the fork-arm removal
technique, as depicted in Figure 5, the following two loop-closure constrained equations
are generated: (

rj − rk
)T(rj − rk

)
− ljk = 0 (11)(

rj − rl
)T
(rl − rk)− ljl = 0. (12)

where rrrj , rrrk, and rrrl denote the position vectors of three connecting points (j, k, and l points)
of the fork-arm, respectively; ljk (ljl) denote the distance between j and k (l) points of the
fork-arm, respectively. This distance is constant because the fork-arm is assumed to be
a rigid body.

The inertia and external forces of the removed lower-arm applied on the steering
knuckle (j point) and chassis (k and l points) can be expressed as follows [32]:{

F̄ra
j

F̄r
k

}
= −

[
M̄jj M̄jk
M̄kj M̄kk

]{
Żj
Żk

}
−
{

P̄ra
j

P̄r
k

}
+

{
Q̄ra

j
Q̄r

k

}
(13){

F̄rb
j

F̄r
l

}
= −

[
M̄jj M̄jl
M̄l j M̄ll

]{
Żj
Żl

}
−
{

P̄rb
j

P̄r
l

}
+

{
Q̄rb

j
Q̄r

l

}
, (14)

where F̄ra
j and F̄rb

j denote the total forces of the removed lower-arm acting on the point j,
corresponding to the two removed rigid rods. Note that the fork-arm removal technique is
represented by removing two rigid rods. Vectors F̄r

k and F̄r
l denote the total forces of the

removed lower-arm acting on the points k and l in the chassis, respectively.
The first term on the right-hand side (RHS) of Equations (13) and (14) denotes the

second-derivative-based inertia forces (SDIFs). Terms M̄jj, M̄kk, M̄ll , M̄jk, M̄kj, M̄jl , and M̄l j
denote the diagonal and coupling elements of the mass matrix of the removed lower-arm.
Note that the uniform mass matrix is used. Vectors Żj, Żk, and Żl denote the Cartesian
accelerations at points j, k, and l in the chassis and steering knuckle, respectively. The
second term on the RHS (P̄ra

j , P̄rb
j , P̄r

k, and P̄r
l ) denotes the velocity-dependent inertial forces

(VDIFs). The third term on the RHS (Q̄ra
j , Q̄rb

j , Q̄r
k, and P̄r

l ) denotes the external forces,



Actuators 2022, 11, 378 8 of 16

e.g., spring forces, damping forces, and weight. Their detailed expressions can be found
in [33].

The VDIFs (P̄′) and external forces (Q̄′) of the vehicle system are updated at each
integration step by considering the contribution of the removed lower-arm based on the
following expressions:

P̄′ = P̄ + P̄r
rods =


...

P̄j
P̄k
...

+


0

P̄ra
j + P̄rb

j
P̄r

k + P̄r
l

0

 (15)

Q̄′ = Q̄ + Q̄r
rods =


...

Q̄j
Q̄k
...

+


0

Q̄ra
j + Q̄rb

j
Q̄r

k + Q̄r
l

0

, (16)

where P̄ and Q̄ denote the VDIFs and external forces of the original vehicle system, re-
spectively. Vectors P̄r

rods and P̄r
rods represent the additional VDIFs and external forces of

the removed suspension lower-arm, respectively. Vectors P̄ra
j , P̄rb

j , Q̄ra
j , and Q̄rb

j denote the
VDIFs and external forces resulting from the two removed rods, acting on point j in the
steering knuckle. Vectors P̄r

k, P̄r
l , Q̄r

k, and Q̄r
l represent the VDIFs and external forces acting

on points k and l in the chassis.
The SDIFs are unknown terms and couple the neighboring Cartesian accelerations Żj,

Żk, and Żl via the mass matrix of the suspension lower-arm. Together with the independent
relative accelerations, they can be moved to the left-hand side (LHS) of the equations of
motion and solved. By moving the SDIFs to the LHS, the following expressions are used to
update the mass matrices of the neighboring bodies:

M̄′jj = M̄jj + M̄ra
jj + M̄rb

jj (17)

M̄′kk = M̄kk + M̄ra
kk + M̄rb

kk (18)

M̄′jk = M̄ra
jk + M̄rb

jk (19)

M̄′kj = M̄ra
kj + M̄rb

kj , (20)

where M̄ra
jj , M̄rb

jj , M̄ra
kk, and M̄rb

kk denote the effects on the diagonal elements of the mass

matrices of neighboring bodies ( chassis and steering knuckle). Matrices M̄ra
jk , M̄rb

jk , M̄ra
kj ,

and M̄rb
kj represent the effects on the coupling elements of the mass matrices of neighbor-

ing bodies.
By introducing the SDIFs, VDIFs, and external forces resulting from the fork-arm re-

moval technique, and implementing the first and second velocity transformations, the equa-
tions of motion of the closed-loop vehicle system are formulated as follows [32]:

RT
z RT

d

(
MΣ+MΣ

rods

)
RdRzz̈i=

RT
z RT

d

[(
QΣ+QΣ

rods

)
−TT(M̄+M̄rods)

d(TRdRz)

dt
żi−PΣ

rods

]
, (21)

where M̄rods denotes the composite mass matrix of the removed suspension lower-arm;
MΣ

rods, QΣ
rods, and PΣ

rods denote the accumulated mass matrix, external forces, and VDIFs of
the removed suspension lower-arm, respectively.

Using the fork-arm removal technique to open closed loops reduces not only the
number of loop-closure constrained equations but also the dimension of equations of mo-
tion. The reason is that removing one rigid rod adds only one constant-length constrained
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equation and eliminates one rigid body and two spherical joints (six relative coordinates).
In contrast, cutting one spherical joint results in three constrained equations without the
elimination of bodies, and cutting one revolute joint results in five constrained equations
without the elimination of bodies. Table 1 summarizes the effects of various loop-closure
techniques on constrained equations and the entire system.

Table 1. Effects of loop-closure techniques on constraints, bodies, and relative coordinates.

Loop-Closure Techniques

Decrease Increase

Constraints Joints Bodies
Relative
Coordi-
nates

Inertial
Forces

External
Forces

Cut a revolute joint 5 1 0 1 Null Null
Cut a spherical joint 3 1 0 3 Null Null
Remove a rigid rod 1 2 1 6 X X

4. Results in Accuracy and Efficiency

To verify the effectiveness and efficiency of the proposed vehicle modeling method,
dynamic simulations of the 7-DOF vehicle multibody model on both bumpy and sloping
roads are conducted. A 14-DOF vehicle multibody model and the proposed vehicle model
are compared in terms of their solution accuracy and efficiency. Notably, the 14-DOF vehicle
multibody model used in this work is verified within the framework of a commercial
software package ADAMS [36]. The semi-recursive formulation is also compared to and
validated against two other multibody formulations in terms of precision and efficiency [37].
The wheelbase is 4.1584 m. The wheel tread is 2.3934 m. The height of the vehicle gravity
center is 0.5373 m. The radius of the tire is 0.4672 m. The sprung mass is 1127 kg. The
unsprung weight is 116 kg. The elastic coefficients of the front and rear suspension systems
are 40,000 N/m and 35,000 N/m, respectively. The damping coefficients of the front
and rear suspension systems are 1800 Ns/m. Using a Runge–Kutta integrator, numerical
integration is performed on a MATLAB/C/C++ framework. Utilizing Pacejka’s tire model,
the forces of the dynamic tires are calculated [38]. The straight-line test maneuvers on
bumpy and sloping roads are carried out. All simulations operate on a laptop with an Intel
Core i7 processor running at 2.4 GHz, 8 GB of RAM, and Microsoft Windows.

4.1. Maneuver on a Bumpy Road

In this section, dynamic simulations are conducted using a bumpy road. The driving
environment is described in Figure 6.

Following vehicle Leading vehicle 

Speed bump

16.5°

Figure 6. The bumpy road environment for forward collision avoidance, adaptive cruise, or platooning.

We use speed bumps to simulate a continuously bumpy road. They range in width
from 300 mm to 600 mm and in height from 30 mm to 60 mm. The 50 mm or 60 mm high
arc-shaped bumps have superior speed-control effects [39]. Five continuous speed bumps
are integrated into the roadway’s profile. The details of the bumpy road are depicted in
Figures 7 and 8.
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Figure 7. Straight road with speed bumps.

10 m 5 m 5 m 5 m 5 m

5
0

R
2
0

5

Unit: mm

Road surface

Speed bump

O

Figure 8. The section shape of the speed bump.

In this ADAS environment, the following-vehicle’s states can be calculated in real-time
for collision avoidance and intelligent cruise control with the lead vehicle. Additionally,
the vehicle’s vertical responses that cause vibration can be adjusted or regulated to improve
ride comfort.

On each front wheel, a 300 Nm driving torque is applied, and the initial speed is
20 m/s. The simulation lasts 5 s and the time-step is 1 ms. Following dynamic simulations,
the X- and Z-axis displacement and velocity, as well as the pitch angle and rate, are obtained
for precision analysis. We compare the results of the proposed vehicle model with and
without the fork-arm removal technique to those of the 14-DOF vehicle model (reference
data). The comparative outcomes are depicted in Figure 9.

7
7

(a) X-axis displacement

7
7

(b) X-axis velocity

Figure 9. Cont.
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7
7

(c) Z-axis displacement

7
7

(d) Z-axis velocity

7
7

(e) Pitch angle

7
7

(f) Pitch rate

Figure 9. Results on the bumpy road with different vehicle models.

Due to the accumulation of numerical errors over time, the final displacement and
velocity, as well as the pitch angle and rate, are used to quantify the accuracy of the solution.
The results are shown in Table 2.

Table 2. The numerical results after 5 s simulation (bumpy road).

Models
X-Axis (m and m/s) Z-Axis (m and m/s) Pitch (rad and rad/s)

Displacement Velocity Displacement Velocity Angle Rate

14-DOF 104.06 21.95 0.491 −4.03 × 10−4 −0.026 −9.36 × 10−4

7-DOF 104.06 21.95 0.491 −4.04 × 10−4 −0.026 −9.37 × 10−4

7-DOF
(fork-arm
removal)

103.79 21.88 0.491 −3.91 × 10−4 −0.026 −1.50 × 10−3

According to Figure 9 and Table 2, the greatest error occurs along the X-axis. The
maximum displacement and velocity errors are 0.27 m and 0.07 m/s, corresponding to the
reference values of 104.06 m and 21.95 m/s, respectively. The results along the Z-axis and
around the Y-axis for the three vehicle multibody models are nearly identical when the
vehicle traverses the bumpy road.

Dynamic maneuvers are simulated for 20 s with 1 ms time-step to determine the com-
putational efficiency. The computational burden is in the state vector derivative function.
C/C++ and Intel’s Math Kernel Library are utilized to implement numerical integration.
Table 3 lists the elapsed CPU times for these three vehicle models.

Table 3. Efficiency of different vehicle models in 20 s simulation (bumpy road).

Vehicle Models

14-DOF 7-DOF 7-DOF (Fork-Arm
Removal)

CPU time (s) 7.436 4.806 4.921
Time saving 35.37% (↓) 33.82% (↓)
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Compared to the 14-DOF vehicle multibody model, the 7-DOF vehicle model improves
computational efficiency by 35.37%, and the fork-arm removal technique increases efficiency
by 33.82%. This is due to the reduction in both the size of dynamic equations and the
number of loop-closure constrained equations.

4.2. Maneuver on a Sloping Road

This section simulates a sloping road, which is a common driving environment for
autonomous vehicles. Figure 10 depicts a road environment with a typical slope angle of
16.5°. An initial velocity of 15 m/s is used, and a 1550 Nm driving torque is imposed on
the front wheels. For intelligent control to perform forward collision avoidance, adaptive
cruise control, and platooning, in this ADAS environment, calculating the following vehi-
cle’s states in real-time is anticipated. In addition, the vehicle’s vertical responses can be
controlled to reduce vibration for improved riding quality.

Following vehicle Leading vehicle 

Speed pump

16.5°

Figure 10. The sloping road environment for forward collision avoidance, adaptive cruise, or platooning.

Within the three vehicle models, the displacement and velocity along the X- and
Z-axes, as well as the pitch angle and rate, are calculated and compared. The comparative
results are described in Figure 11.

7
7

(a) X-axis displacement

7
7

(b) X-axis velocity

7
7

(c) Z-axis displacement

7
7

(d) Z-axis velocity

Figure 11. Cont.
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7
7

(e) Pitch angle

7
7

(f) Pitch rate

Figure 11. Results on the sloping road with different vehicle models.

Due to the accumulation of numerical errors over time, the final vehicle responses
(states) are employed for accuracy analysis. The results are depicted in Table 4

Table 4. The numerical results after 5 s simulation (sloping road).

Models
X-Axis (m and m/s) Z-Axis (m and m/s) Pitch (rad and rad/s)

Displacement Velocity Displacement Velocity Angle Rate

14-DOF 74.89 14.95 0.4881 −6.73 × 10−4 −0.0367 7.08 × 10−4

7-DOF 74.89 14.95 0.4881 −6.7 4× 10−4 −0.0367 7.08 × 10−4

7-DOF
(fork-arm
removal)

74.89 14.94 0.4882 −6.91 × 10−4 −0.0367 6.86 × 10−4

From Figure 11 and Table 4, it can be seen that the maximum error occurs along the
X-axis. The maximum errors of displacement and velocity are 0.014 m and 0.005 m/s,
corresponding to the reference values of 74.89 m and 14.95 m/s, respectively. The results
along the Z-axis and around the Y-axis when the vehicle traverses the sloping road are
almost the same within the three vehicle multibody models.

The dynamic maneuvers are also simulated for 20 s with a 1 ms time-step to evaluate
their effectiveness. The elapsed CPU times for the numerical integrations of the three
vehicle models are presented in Table 5.

Table 5. Efficiency of different vehicle models in the 20 s simulation (sloping road).

Vehicle Models

14-DOF 7-DOF 7-DOF (Fork-Arm
Removal)

CPU time (s) 7.385 4.790 4.836
Time saving 35.14% (↓) 34.16% (↓)

The efficiency of the 7-DOF vehicle model is improved by 35.14% compared to the
14-DOF vehicle model, and by 34.16% when the fork-arm removal technique is applied.

4.3. Discussion

In the above ADAS environment, the results indicate that the fork-arm removal
technique results in a slight decrease in efficiency. This is because the SDIFs couple the
neighboring Cartesian accelerations via the mass matrix of the suspension lower-arm, as de-
scribed in Equations (17) to (20). Moving the SDIFs to the LHS of the equations of motion
complicates the generalized mass matrix. In turn, the sparse structure of the generalized
mass matrix has been destroyed, resulting in an increase in computational burden.
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Table 6 outlines the CPU time required to integrate a 14-DOF vehicle multibody model
with and without the fork-arm removal technique on bumpy and sloping roads. The
4th-order Runge–Kutta integrator and 1 ms time-step are used for a fair comparison.

Table 6. Efficiency of a 14-DOF vehicle model with and without the fork-arm removal technique in
20 s simulation.

Techniques
Road Environment

Bumpy Raod Sloping Road

Without fork-arm removal 7.436 s 7.385 s
With fork-arm removal 7.268 s (2.26% ↓) 7.237 s (2.00% ↓)

Applying the fork-arm removal technique to the multibody model of a 14-DOF vehicle
yields a gain in efficiency of approximately 2%. As anticipated, the efficiency gain will
increase for more complex vehicle systems, such as bus or truck systems, which contain
more DOFs and fork-arm components. Due to the removal of fork-arm components, more
bodies, joints, and constrained equations will be eliminated from the entire systems.

In addition, the fork-arm removal technique avoids accurate modeling of fork-arm
component structures. It implies that only their dynamic properties are required for vehicle
modeling, making implementation simple. This method is especially advantageous for
larger closed-loop vehicle systems.

5. Conclusions

This work develops an accurate and real-time dynamics model for vehicle ADAS
applications using a semi-recursive multibody formulation. This vehicle model efficiently
describes the equations of motion using a small set of relative coordinates. In contrast
to the simplified vehicle models used in most ADAS applications, the proposed vehicle
model considers the dynamic properties of all components, resulting in accurate vehicle
characteristics, such as pitch, roll, and yaw angles and their rates. Using the rod-removal
method, a fork-arm removal technique is proposed to further reduce the size of dynamic
equations and the number of loop-closure constrained equations. The dynamic simulations
are performed on both bumpy and sloping roads to verify the effectiveness of the proposed
vehicle model.

The results are examined in terms of X- and Z-axis displacement and velocity, as well as
pitch angle and rate. Comprehensive studies demonstrate that the vehicle model provides
accurate solutions for various road conditions. The CPU time for a 20 s dynamic simulation
on bumpy and sloping roads is 4.806 s and 4.790 s, respectively. The respective efficiencies
increased by 35.37% and 35.14% in comparison to the 14-DOF vehicle model. The proposed
vehicle model can be used for simulations that are faster than real-time, yielding additional
key characteristics that are difficult or impossible to measure using sensor networks. The
proposed method for vehicle modeling is especially advantageous for ADAS applications
in larger autonomous vehicles.
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