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Abstract: Attitude control of a novel regional truss-braced wing (TBW) aircraft with low stabil-
ity characteristics is addressed in this paper using Reinforcement Learning (RL). In recent years,
RL has been increasingly employed in challenging applications, particularly, autonomous flight
control. However, a significant predicament confronting discrete RL algorithms is the dimension
limitation of the state-action table and difficulties in defining the elements of the RL environment.
To address these issues, in this paper, a detailed mathematical model of the mentioned aircraft is
first developed to shape an RL environment. Subsequently, Q-learning, the most prevalent dis-
crete RL algorithm, will be implemented in both the Markov Decision Process (MDP) and Partially
Observable Markov Decision Process (POMDP) frameworks to control the longitudinal mode of
the proposed aircraft. In order to eliminate residual fluctuations that are a consequence of discrete
action selection, and simultaneously track variable pitch angles, a Fuzzy Action Assignment (FAA)
method is proposed to generate continuous control commands using the trained optimal Q-table.
Accordingly, it will be proved that by defining a comprehensive reward function based on dynamic
behavior considerations, along with observing all crucial states (equivalent to satisfying the Markov
Property), the air vehicle would be capable of tracking the desired attitude in the presence of different
uncertain dynamics including measurement noises, atmospheric disturbances, actuator faults, and
model uncertainties where the performance of the introduced control system surpasses a well-tuned
Proportional–Integral–Derivative (PID) controller.

Keywords: reinforcement learning; q-learning; fuzzy q-learning; attitude control; truss-braced wing;
flight control

1. Introduction

The aviation industry is expeditiously growing due to world demands such as re-
ducing fuel burn, emissions, and cost, as well as providing faster and safer flights. This
motivates the advent of new airplanes with novel configurations. In addition, the scope
clause agreement limits the number of seats in each aircraft and flight outsourcing to protect
the union pilot jobs. This factor leads to an increase in the production of Modern Regional
Jet (MRJ) airplanes. In this regard, the importance of a safe flight becomes more vital
considering more crowded airspace and new aircraft configurations having the ability to fly
faster. Truss-braced wing aircraft is one of the re-raised high-performance configurations,
which has attracted significant attention from both academia [1] and industry [2] due to
its fuel burn efficiency. As a result, there would be a growing need for reliable modeling
and simulations, analyzing the flight handling quality, and stability analysis for such con-
figurations [3,4], while very few studies have addressed the flight control design for this
aircraft category.

In the last decades, various classic methods for aircraft attitude control have been
developed to enhance control performance. However, the most significant deficiency of
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these approaches is the insufficient capacity to deal with unexpected flight conditions,
while typically requiring a detailed dynamic model of the system.

Recently, the application of Reinforcement Learning (RL) has been extended to real
problems, particularly, flight control design [5]. Generally, there are two main frameworks
to incorporate RL in the control design process, i.e., the high-level and low-level control
systems. In [6], a Soft Actor-Critic (SAC) algorithm was implemented in a path planning
problem for a long-endurance solar-powered UAV with energy-consuming considerations.
Another work [7] concentrated on the low-level control of a Skywalker X8 using SAC and
comparing it with a PID controller. In [8], an ANN-based Q-learning horizontal trajectory
tracking controller was developed based on an MDP model of an airship with fine stability
characteristics. Apart from the previous method, Proximal Policy Optimization (PPO) was
utilized in [9] for orientation control of a highly dynamically coupled fixed-wing aircraft
in the stall condition. The PPO was successfully converged after 100,000 episodes. The
application of PPO is not limited to fixed-wing aircraft. In [10], An improved proximal
policy optimization algorithm is introduced to train a quadrotor for low-level control loops
in various tasks such as take-off, precise flight, and hover.

Additionally, several papers have focused on particular maneuvers (such as the land-
ing phase control) both in low-level and high-level schemes. For instance, in [11], Deep
Q-learning (DQL) is used to guide an aircraft to land in the desired field. In [12], a Deep
Deterministic Policy Gradient (DDPG) was implemented for a UAV to control either path-
tracking for landing glide slope or attitude control for the landing flare section. Similarly,
a DDPG method in [13] is used to control the outer loop of a landing procedure in the
presence of wind disturbance. Additionally, the DDPG method is utilized in [14] to track
desired values of skid steering vehicles under fault situations. This method could perform
dual-channel control over the yaw rate and longitudinal speed. The works which have
been referred to so far accompanied ANNs to be able to converge. However, to our best
knowledge, there is research in attitude control using discrete RL without aiming at ANNs.
In [15], a Q-learning algorithm was implemented to control longitudinal and lateral ori-
entations in a general aviation aircraft (Cessna 172). This airplane profits from suitable
stability characteristics, and the desired angles are zero. Furthermore, there are some Fuzzy
adaptations of the work in [16], such as [17] where the Q-functions and action selection
strategy are inferred from Fuzzy rules. Additionally, ref. [18] proposed a dynamic Fuzzy
Q-learning (FQL) for online and continuous tasks in mobile robots.

Motivated by the above discussions, the main contributions of the current study can
be summarized as follows:

(1) Alongside the response to global aviation society demands, a TBW aircraft (Chaka
50) (Figure 1) with poor stability characteristics has been chosen for the attitude
control problem;

(2) It will be demonstrated that the proposed reward function is able to provide a robust
control system even in low-stability and high-degree-of-freedom plants;

(3) The performance of the Q-learning controller will be evaluated in both MDP and POMDP
problem definitions using different control criteria. Moreover, by proposing an effective
Fuzzy Action Assignment (FAA) algorithm, continuous elevator commands could be
generated using the discrete optimal Q-table (policy). Such a control approach illustrates
well that the tabular Q-learning method can be a strong learning approach resulting in
an effective controller for complex systems under uncertain conditions;

(4) In order to prove the reliability and robustness of the proposed control method, it is
examined under different flight conditions consisting of sensor measurement noises,
atmospheric disturbances, actuator faults, and model uncertainties, while the training
process is only performed for ideal flight conditions.
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Figure 1. Chaka Modern Regional Jet (MRJ) Family [4].

2. Modeling and Simulation

In this section, the nonlinear equations of motion are derived for the airplane based
on [19,20] in order to provide a nonlinear RL environment. There are some open-source
environments based on Gym and Flight Gear such as GymFG [21]. Yet the specifics of
the novel configuration enforce this research to simulate from scratch. By considering
FB = [OB, xB, yB, zB], FS = [OS, xS, yS, zS], and FE = [OE, xE, yE, zE] as body, stability, and
inertial frames as noted in Figure 2, the translational and rotational equations in the body
frame are as follows:
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ṙ

B

+

 0 −r q
r 0 −p
−q p 0

BIx 0 0
0 Iy 0
0 0 Iz

Bp
q
r

B

=

 LA
MA
NA

B

+

 LT
MT
NT

B

, (2)

OB,S

OE

xB

yB = yS

zB
xEyE

zE

xS

zS

α

α

Figure 2. Chaka-50 body, stability, and inertial frames of reference.

In the above, [V]B = [u v w]T is the velocity vector, and [ω]B = [p q r]T denotes the
roll, pitch, and yaw angular rates vector in body frame along xB, yB, and zB. Here, ]B, ]S,
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and ]E are used for body, stability, and inertial frames. Assuming that the thrust forces do
not generate net moments and the thrust is in the x-direction, we have LT = MT = NT =
FTy = FTz = 0. In this work, the proposed control is implied in the longitudinal channel.
Therefore, the aerodynamic forces and moments are formulated as follows (assuming no
coupling between the longitudinal and the lateral modes):

 L
D

MA

 = q̄Sc̄

cL0 cLα cLα̇
cLu cLq cLδE

cD0 cDα cDα̇
cDu cDq cDδE

cm0 cmα cmα̇ cmu cmq cmδE




1
α
α̇c̄

2V1
u

V1qc̄
2V1
δE


. (3)

In addition, obtaining aerodynamic forces in the body frame [FA]
B = [FAx FAy FAz ]

T requires
a transfer from the stability to body frame as follows:FAx

FAy

FAz

B

=

cosα 0 −sinα
0 1 0

sinα 0 cosα

BS−D
0
−L

S

. (4)

The vector of the gravity acceleration in the body axis (defined by (1)) is as follows:gx
gy
gz

B

=


−g sin θ

g cos θ sin φ
g cos θ cos φ

. (5)

Additionally, the rotational kinematic equations are necessary for transfer from the body
to the inertial frame to acquire aircraft orientation in the inertial frame and to define the
reward function in later sections. In this case, there are three approaches according to [20].
The Euler angle differential equation is used in this research due to the simpler initialization.φ̇

θ̇
ψ̇

 =

1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ/ cos θ cos ϕ/ cos θ

p
q
r

B

. (6)

To calculate velocity and position vector in the inertial frame, a transfer from the body
to the inertial frame is necessary. Based on Figure 2, this transformation contains three
rotations as follows:

[T]EB = [T(ψ)]XB[T(θ)]YX [T(φ)]EY. (7)

Thus, using (1) and (6), the velocity and position in the inertial frame can be obtained:ẋ
ẏ
ż

E

=

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

XB cosθ 1 sinθ
0 1 0

−sinθ 0 cosθ

YX1 0 0
0 cosφ −sinφ
0 sinφ cosφ

EYu
v
w

B

. (8)

Stability and control derivatives for the Chaka-50 are reported in [4] based on Computa-
tional Fluid Dynamics (CFD). The summary of these derivatives is presented in Table 1.
Before six-degree-of-freedom (6-DoF) simulation using Equations (1) and (2), the trim
conditions in a wings-level flight are calculated for simulation verification based on trim
equations in [22]. In the drag equation, the absolute value of δE, iH1 , and α1 is considered.
Additionally, flight path angle γ1, motor installation angle φT , and horizontal tail incidence
angle iH are zero. The elevator deflection δE and required thrust FTx for a trim flight are
obtained and shown in Table 2. The values in the aforesaid table are important for 6-DoF
simulation validation. By substituting these coefficients in the trim equations, the presented



Actuators 2022, 11, 374 5 of 17

airplane should be stabilized in the simulation and maintain its Angle of Attack (AoA)
given in Table 2. In this case, the simulation is verified for upcoming steps. Additionally,
the geometric, mass, and moment of inertia data are given in Table 3. All simulations are
performed in MATLAB R2022a.

Table 1. Stability and control derivatives (1/rad).

Longitudinal
Derivatives Take-Off Cruise −10% Model

Uncertainty
+10% Model
Uncertainty

cD0 0.0378 0.0338 0.0304 0.0371
cL0 0.3203 0.3180 0.2862 0.3498
cm0 −0.07 −0.061 −0.054 −0.067
cDα

0.95 0.8930 0.8037 0.9823
cLα

11.06 14.88 13.39 16.37
cmα −12.18 −11.84 −10.65 −13.02
cDu 0.040 0.041 0.0369 0.0415
cLu 0 0.081 0.0729 0.0891
cmu 0 −0.039 −0.0351 −0.0429
cDq 0 0 0 0
cLq 11.31 12.53 11.27 13.78
cmq −40.25 −40.69 −36 −44
cDδE

0.1550 0.1570 0.1413 0.1727
cLδE

0.96 0.78 0.702 0.858
cmδE

−6.15 −5.98 −5.38 −6.57

Table 2. Trim parameters of Chaka MRJ.

Required Thrust (FTx ) (lbs) Angle of Attack (α◦) Required Elevator (δ◦
E )

21,433.02 0.39 −2.28

Table 3. Chaka-50 required specifics for simulation.

Parameter Value Parameter Value

Wing Area (m2) 43.42 Ixx (kg·m2) 378,056.535
Mean Aerodynamic Chord (m) 1.216 Iyy (kg·m2) 4,914,073.496

Span (m) 28 Izz (kg·m2) 5,670,084.803
Mass (kg) 18,418.27 Ixz (kg·m2) 0

2.1. Atmospheric Disturbance and Sensor Measurement Noise

Atmospheric disturbance is generally air turbulence in minuscule regions in the
atmosphere. According to the literature, atmospheric disturbance is defined as a stochastic
process which is characterized by velocity spectral. There are two prevalent models which
are usually implemented. In this research, the Dryden turbulence model is utilized [23] for
its simpler mathematical formulation.

Gu(s) = σu

√
2Lu

πV1

[
1

1 + ( Lu
V1

s)

]
,

Gw(s) = σw

√
2Lw

πV1

[
1 + 2

√
3 Lw

V1
s

(1 + 2Lw
V1

s)2

]
.

(9)

Here, Lw, and Lu are the scaling length, and σu, σw represent the intensity of turbulence.
Additionally,

σu =
σw

(0.177 + 0.000823z)0.4 ,

σw = 0.1u20,
(10)
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where u20 is the wind speed at the height of 20 f t, and V1 = 160 m
s . Subsequently, the

equations of motions are updated according to [24] considering wind effects. The wind
components and their derivatives are computed in the inertial frame but usually, the wind
calculation in the body frame is more easygoing as an alternative, where the first and
third components of wind velocity vector [W]B = [Wx Wy Wz]T in the body frame are
implemented in 6-DoF simulation.

Ẇx =

[
∂Wx

∂x

]B

(u + Wx) +

[
∂Wx

∂y

]B

(v + Wy) +

[
∂Wx

∂z

]B

(w + Wz) +

[
∂Wx

∂t

]B

,

Ẇy =

[
∂Wy

∂x

]B

(u + Wx) +

[
∂Wy

∂y

]B

(v + Wy) +

[
∂Wy

∂z

]B

(w + Wz) +

[
∂Wy

∂t

]B

,

Ẇz =

[
∂Wz

∂x

]B

(u + Wx) +

[
∂Wz

∂y

]B

(v + Wy) +

[
∂Wz

∂z

]B

(w + Wz) +

[
∂Wz

∂t

]B

.

(11)

The spatial derivatives of the wind speed, which are often stated in the inertial frame, must
be transferred to the body frame:

[∇W]B = [T]BE[∇W]E[T̄]BE. (12)

The effect of wind on angular rates ωE
w can be defined as a rigid solid air caused by fluid

stresses, and it is expressed in the inertial frame as

E =
1
2

[
(

∂Wz

∂y
−

∂Wy

∂z
)

]E

i +
1
2

[
(

∂Wx
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− ∂Wz

∂x
)

]E
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1
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(
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)

]E

k. (13)

The above equation must be transferred to the body axis so as to be used in the 6-DoF simulation:

p
q
r

B

=
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q
r

B
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( ∂Wz

∂y −
∂Wy
∂z )

( ∂Wx
∂z −

∂Wz
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∂Wy
∂x −

∂Wx
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E

. (14)

In addition, sensor noises are considered as much as ±10% of the measured pitch angle.

2.2. Elevator Fault

An actuator fault is a kind of failure influencing the inputs of the plant. Due to
malformed operation, material aging, or inappropriate maintenance processes, actuator
faults may occur in the aircraft. In this work, the actuator fault is formulated as two
terms; the first is a multiplicative term that is defined as the elevator’s incompetency in
reaching the desired quantity, and the second is meant as output quantity bias, namely,
an additive term.

δEt = 0.6δEt − 0.7◦, If t > 12s,

0.7δEt + 0.6◦, If t > 8s,

0.8δEt − 0.5◦, If t > 4s,

(15)

The Equation (15) expresses the elevator working with its 60%’s power, and simultaneously
a −0.7◦ output alteration after 12 s of flight. It is assumed the fault will be aggravated over
time. Analogous faults with different parameter values occurred after 4 and 8 s of flight
where 20% deficiency and 0.5◦ additive bias after 4 s and 30% deficiency and 0.6◦ additive
bias after 8 s were considered in this work.

3. Attitude Control Using Q-Learning

Truss-braced wing aircraft usually suffer from inadequate stability owing to their
narrow mean aerodynamic chord (MAC). More precisely, this fact can be verified by com-
paring the Phugoid and Short-period modes of Boeing N+3 TTBW [3] and Chaka 50 [4]
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with those of Cessna 172 [25]. A summary of numerical values for the longitudinal modes
of above-mentioned aerial vehicles has been gathered in Table 4. This table can verify the
aforementioned claim. For clarification, the Chaka and Boeing with analogous configura-
tions suffer from poor stability characteristics thanks to their agile characteristics. On the
opposite, the Cessna 172 benefits from stable dynamics behaviors. To better demonstrate
the dynamic behavior of the air vehicle, simulation results of trim conditions are depicted
in Figure 7 over 1500 s. Needless to say, the angle of attack is converged to its theoretical
trim value (Table 2). Additionally, the pitch angle is converged in accordance with the angle
of attack. However, low-stability existence (resulting in long-time fluctuations) is affected
by the damping ratio of the Phugoid mode.

Table 4. Longitudinal dynamics characteristics of presented regional aircraft in comparison with
other related works.

Aircraft/ Roots Short Period Roots Phugoid Roots

Chaka 50 −0.8± 0.61i −0.0064± 0.05i
Cessna 172 −3.23± 5.71i −0.025± 0.19i
Boeing N+3 −0.35± 0.35i −0.0082± 0.07i

3.1. MDP and POMDP Definition in Attitude Control

To make the attitude control problem suitable for an RL environment, one should
define the control problem as an MDP in which the next state of the system could be
determined using only the current value of the action and system states [26]. To this end,
the problem is formulated as follows: at each time-step t, the controller receives the state’s
information including θt ∈ S1, and θ̇t ∈ S2 from the environment. Based on that, using the
current policy of the system, the controller selects an action (which is the elevator deflection,
δEt ∈ A(s). Subsequently, by applying δEt to the aircraft, the system proceeds to the next
step, θt+1, θ̇t+1, and achieves a reward, Rt+1 ∈ R, which is used to evaluate and improve
the performance of the current policy. This process continues until reaching final states
θT , θ̇T .

θ0, θ̇0, δE0 , R1, θ1, θ̇1, . . . , θT , θ̇T (16)

Accordingly, by observing both θt and θ̇t in the state vector of the system, the problem
satisfies the Markov property. Moreover, as will be discussed in the following, using
only the pitch angle (θt) as the system states, which leads to a Partially Observable MDP
(POMDP), can also result in a stable control system, though with reduced performance.
Now, the purpose of the RL is to find an optimal policy that achieves maximum reward
over time. In this regard, the state-action value function Qπ(θ, θ̇, δE) defines the expected
return, which is the sum of discounted rewards starting from one specific state following
policy π to the terminal state θT , θ̇T .

Qπ(θ, θ̇, δE) = Eπ

[ ∞

∑
k=0

γkRt+k+1

∣∣∣∣ θt = θ, θ̇t = θ̇, δEt = δE

]
, (17)

where 0 < γ < 1 denotes the discount factor.

3.2. Structure of Q-Learning Controller

In this work, the optimal policy in each state is approximated directly using an early
breakthrough in RL, namely, the Q-learning [16]. Q-learning is an off-policy, model-free
control algorithm, which is based on the Temporal Difference (TD) method as a combination
of the dynamic programming and Monte Carlo approaches. Generally, considering an RL
environment for the attitude control problem, using the current control command (δEt ), the
system state (θt, θ̇t) is obtained at each time step, which is then used to modify the action
selection policy. Such an iterative process is continued for several episodes so as to reach
an optimal strategy. The pseudocode of the Q-learning method is given in Algorithm 1.
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Algorithm 1: Q-learning Aircraft Attitude Controller
Data: Learning Rate α, Discount Factor γ, Desired Angle θdes = 1deg
Result: Qπ∗ (θ, θ̇, δE)

1 Q(θ0, θ̇0, δE0 )← 0; for all θ ∈ S1, θ̇ ∈ S2, δE ∈ A(s);
2 for Episode Number = 1 to 20000 do
3 Initialize 6-DoF simulation with a random θ0 ∈ [0 2] deg.
4 for time-step (0.01) = 0 to 5 s do
5 Select an action δE based on the ε-greedy strategy.;
6 Execute 6-DoF simulation using computed δEt , observe Rt+1, θt+1, θ̇t+1.;
7 Update the state-action value function:

Q(θt, θ̇t, δEt ) = Q(θt, θ̇t, δEt ) + ᾱ

[
Rt+1 + γmax

δE
Q(θt+1, θ̇t+1, δE)−Q(θt, θ̇t, δEt )

]
Substitute simulation parameters in time-step t with t + 1.

8 end
9 end

10 Return Qπ∗ (θ, θ̇, δE)

Due to the nonlinearity and poor stability characteristics of truss-braced wing air-
craft, the Q-learning implementation without utilizing NNs can be a challenging problem.
However, in the following, it will be shown that by defining a comprehensive reward
function along with employing an introduced Fuzzy Action Assignment (FAA) scheme,
the air vehicle is capable of following the desired pitch angle even in the presence of sensor
measurement noises, atmospheric disturbance, actuator faults, and model uncertainties.

3.3. Reward Function and Action Space Definition

The definition of an effective reward function plays a key role in the convergence of
the learning process. Therefore, this research has carefully concentrated on the reward
function design and hyper-parameters tuning. In this way, the reward function would be
computed in three consecutive steps, while it contains different system variables including
θ, q, δE.

First of all, to restrict the high operating frequency of the elevator, it is essential to give
a large punishment in the case of aggressive elevator selection. Thus, in case of an elevator
altering more than 0.1 radians, this punishment is applied.

Rewardt = −10000, If
(
|δEt | − |δEt−1 |

)
> 5.73◦. (18)

Subsequently, if the operation rate of the elevator is satisfactory, the reward function
will be computed as follows if the aircraft is in the vicinity of the desired state.

Rewardt = (300, If |eθt | < 0.05◦)

+ (300, If |eθt | < 0.02◦)

+ (400, If |qt| < 0.04◦)

+ (600, If |qt| < 0.02◦)

+ (800, If |qt| < 0.005◦),

(19)

where eθt = θt− θdest is proportional error. This definition checks the status of pitch tracking
first. Then, after the early episodes, the controller finds and prioritizes fewer pitch rates
using more reward allocations. The mentioned terms were specified for learning process
convergence. In other words, they are involved when the simulated states are in proximity
to desired values. However, it is vital to guide the learning process from the first state
using another term. Consequently, if none of the above two conditions are met, we should
encourage the air vehicle to move towards the desired state. This can be achieved using the
following reward function:
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Rewardt = −(100 |eθt |)
2 − (40 |qt|)2. (20)

Accordingly, the farther the system is from the desired state, the less reward it receives.
Additionally, a derivative term (the second term) has been incorporated into the reward
function to avoid high pitch rates. The mentioned reward function has been carefully
developed during precise dynamics consideration of flight simulations. More specifically,
the presence of the pitch rate (qsim) in Equation (19), as well as its weight in Equation (20),
plays a substantial role in the convergence rate.

Considering the tabular Q-learning, the elevator commands are obtained discretely.
Thus, the elevator commands are divided into −0.25 to +0.25 radians with 0.025 inter-
vals, corresponding to 21 elevator deflections. Additionally, the ε-greedy action selection
strategy with an epsilon decay is used in this research to enhance the greedy action selec-
tion probability in the last episodes. This epsilon decay scheme (Table 5) eliminates the
uncertainties in action selections in the last episodes.

δEt =

{
arg max Q(θt, θ̇t, δE) with probability 1− ε

random action with probability ε
(21)

Table 5. Q-learning and PID simulation parameters.

Parameter Value

Epsilon(ε) [0.1 : 3× 10−6 1 : 0.04]
Alpha (ᾱ) [0.02 : 9× 10−7 : 0.002]

Gamma (γ) 0.99
Episode number 20,000

θobserved (rad) [−10,−0.024 : 0.002 : −0.002,−0.001, 0]
θ̇observed (rad) [−10,−0.04,−0.02,−0.005]

V1(
m
s ) 160

hinit(m) 300
Kp, Ki, Kd −15,−4,−2

1 The intervals are written in blue.

3.4. Structure of Fuzzy Action Assignment

The previous discussions were focused on the main structure of the learning process
which generates discrete MDP and POMDP models. In order to generate continuous
elevator commands, a Fuzzy Action Assignment (FAA) method is proposed here to enhance
the performance of the basic Q-learning. In this method, instead of taking a discrete greedy
action in a given state θ, θ̇, a relative weight (known also as the validity function or
membership function) is assigned to each cell of the grid of system states (see Figure 3)
according to the current value of the state-action value function. More precisely, the
membership function corresponding to a cell of the grid with centers θi and θ̇j is defined
as follows:

MFi,j = exp

(
−1

2

(
θt − θi

σθ

)2
)

exp

−1
2

(
qt − θ̇j

σθ̇

)2
, (22)

where σθ and σθ̇ represent the validity widths of membership functions.
Subsequently, δE is calculated at each time-step using a weighted average as follows:

δEt =
∑i ∑j MFi,j arg max Q(θi, θ̇j, δE)

∑i ∑j MFi,j
. (23)

The pseudocode of the proposed control strategy is summarized in Algorithm 2. As
will be seen in the following section, the employment of the FAA approach results in
a robust control system in the presence of different types of uncertain dynamics, while
generating feasible control commands. In addition, it should be noted that more effective
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approaches to determining the membership functions such as using adaptive membership
functions [27,28] can be involved in the design to improve closed-loop performance, which
are beyond the scope of this paper.

(θi, θ̇j)

Figure 3. Grid of state variables used for tabular Q-learning (The center of each cell, which is used to
compute the membership function of the cell is shown by a circle point.)

Algorithm 2: Q-learning controller improved by FAA scheme

Data: Qπ∗(θ, θ̇, δE)
Result: Trajectory of the system

1 Initialize 6-DoF simulation using predefined initial conditions;
2 for time-step (0.01) = 0 to 5 s do
3 Determine the virtual value of the pitch angle (in the case of tracking a variable

trajectory);
4 Compute the membership function corresponding to each cell of the grid using

Equation (22);
5 Select an action δE according to FAA technique Equation (23);
6 Execute 6-DoF simulation using computed δE, compute the next system states;
7 Substitute simulation parameters in time-step t with t + 1.
8 end

4. Simulation Results and Discussion

In this section, flight simulations are performed in two problem frameworks as
MDP and POMDP. The difference between them is observing θ̇ in the MDP model, while
the POMDP neglects that. Obviously, the state-action table in the MDP model is three-
dimensional (θ × θ̇ × δE) whereas in the POMDP model, it is shaped as a two-dimensional
table (θ × δE). In addition to the number of observed states, the bounds and intervals
of states are important in the convergence time. In this way, to train the RL controller
efficiently, it is momentous to divide θ and θ̇ intervals knowledgeably so as not to lose any
important information. As a synopsis, the simulation parameters and the intervals are
listed in Table 5.

As seen, a linear decay is used for ε and ᾱ during episodes. Additionally, the state-
action table intervals including θ and θ̇ are mentioned in this table, where blue numbers
denote the interval length. These values are considered symmetrically with positive signs
for the positive zone.

Figure 4 shows the rewards of each episode for MDP and POMDP modeling. In
early episodes, POMDP results are better and cause fewer fluctuations. However, after
about 4000 episodes, MDP starts achieving positive rewards. The MDP converges fairly
in episode number 10000 and surpasses the POMDP method. It is worth mentioning that
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POMDP never achieves positive rewards. Consequently, encompassing θ̇ plays a significant
role in learning efficiency.

Figure 4. MDP and POMDP rewards over 20,000 episodes.

4.1. Constant Pitch Angle Tracking

The result of the proposed Q-learning controller for tracking a constant pitch angle
is illustrated in Figure 5 in comparison with a PID controller. Elevator deflections are
shown in Figure 6, as well. Obviously, closed-loop performance in the case of POMDP is
worse than others because the environment modeling does not satisfy the complete Markov
Property. However, it is significantly better than the results shown in Figure 7 for open-loop
simulation. To better compare the performance of different control systems, the tracking
error is defined as follows:

TE =

∫ t
0 |θt − θdes|dt

t
. (24)

Also the control effort is computed as:

CE =

∫ t
0 |δE|dt

t
. (25)

As can be observed in Table 6, the tracking error using the FAA technique is less than
PID, while having the same control effort. Additionally, the overshoot and the settling time
in the case of FAA approach prove better tracking results. Furthermore, the FAA technique
can satisfactorily solve the issue of oscillations caused by discrete action selections and it
simultaneously reduces the control effort.

Table 6. Tracking error and control effort of four methods for θdes = 1◦.

Controller Tracking Error
(deg)

Control Effort
(deg) Overshoot (%) Settling Time

(s)

MDP 0.071 2.11 7.38 -
POMDP 0.13 3.48 30.15 -

PID 0.066 0.69 27.42 5.44
FAA + MDP 0.057 0.69 8.20 1.76
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Figure 5. Performance of the improved Q-learning controller (using FAA) compared to MDP, POMDP,
and PID controller.

Figure 6. Elevator deflections for θdes = 1◦ tracking.
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Figure 7. The angle of attack and pitch angle variation in the vicinity of trim conditions.

4.2. Variable Pitch Angle Tracking

The tracking of a variable pitch is followed in this study for two reasons; firstly, the
learned policy by a fixed desired pitch angle can be used for other angles without the need
for retraining. Second, the desired pitch angle for takeoff and landing maneuvers is in the
range of ±3◦ as usual. Therefore, the tracking of a variable pitch angle between ±4◦ is
reasonable. The tracking result for a variable pitch angle is illustrated in Figure 8. At first
glance, it is obvious that both MDP and FAA-improved MDP Q-learning were able to track
variable θdes in ideal conditions. However, the high working frequency of the elevator in
the case of MDP (shown in Figure 9) proves the significant superiority of the FAA scheme.

2 4 6 8 10

2

2.5

3

3.5

4

4.5

Figure 8. Variable θ tracking using MDP and FAA-improved MDP (a) in ideal conditions, (b) in the
presence of sensor measurement noises and atmospheric disturbances.
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Figure 9. Elevator deflections in variable θ tracking (a) in ideal conditions, (b) in the presence of
sensor measurement noises and atmospheric disturbances.

Now, to evaluate the robustness of the proposed control scheme, closed-loop response
is investigated in the presence of different types of uncertain dynamics including measure-
ment noises, atmospheric disturbance, actuator faults, and model parameter uncertainties.
Table 7 illustrates a comparison between various flight conditions. Considering ideal flight
conditions, the analogous tracking error between MDP and FAA is noticeable. However,
the less control effort using FAA proves its efficiency. On the other hand, in the presence
of sensor measurement noises and atmospheric disturbances, the proposed method is
significantly superior compared to the basic Q-learning. More specifically, using the FAA
approach, the control effort even considering measurement noises and external distur-
bances is less than that of the MDP in ideal conditions. It should be noted that, in the
simultaneous presence of sensor measurement noises and atmospheric disturbances, the
basic Q-learning controller is unable to stabilize the system (see Figure 8b), while using the
proposed method, the air vehicle could efficiently follow the desired trajectory.

Table 7. Tracking error and control effort of two methods in variable θdes tracking in different
flight conditions.

Controller Flight Condition Tracking Error (deg) Control Effort (deg)

MDP Ideal 0.108 1 2.224
FAA + MDP Ideal 0.112 1.008

MDP Noise + Disturbance 23.816 5.424
FAA + MDP Noise + Disturbance 0.132 2.032

MDP Actuator Fault 0.304 1.796
FAA + MDP Actuator Fault 0.136 1.004

FAA + MDP −10% Uncertainty 0.116 1.16
FAA + MDP +10% Uncertainty 0.116 0.972

1 The best results of each group are written in bold.

Another simulation is performed to evaluate the proposed method’s robustness in
the presence of actuator faults and model uncertainties. In this regard, a sequence of both
multiplicative and additive actuator faults is applied to the elevator control surface based
on Equation (15). Additionally, the model parameter uncertainties are mentioned in Table 1.
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The system response is obtained as shown in Figure 10. As can be observed, in the MDP
case, the system experienced more tracking errors between 12 to 20 s but the FAA controller
produced satisfactory outcomes considering both control effort and tracking errors. Apart
from that, the generated δE in the MDP case is not applicable in real applications owing to
high working frequency. The FAA method is able to generate satisfactory findings even in
the presence of model uncertainties in the range of±10%. As a result, the proposed method
is effectively capable of dealing with different uncertain terms, which are inevitable in real
flight experiments.

Figure 10. (a) Elevator deflection of basic MDP Q-learning in faulty and ideal flight conditions;
(b) Pitch angle tracking related to (a). (c) Elevator deflection of FAA-improved Q-learning in ideal
and faulty conditions; (d) Pitch angle tracking related to (c). (e) Elevator deflection of FAA-improved
Q-learning in the presence of ±10% model uncertainties; (f) Pitch angle tracking related to (e).

5. Conclusions

This work proposed a robust attitude control system for an agile aircraft using an im-
proved Q-learning under both MDP and POMDP problem modeling. The aircraft is a novel
regional truss-braced wing airplane, which was treated as an RL environment. It was
shown that by defining an appropriate reward function and satisfying the Markov property,
Q-learning, even considering the tabular case, is convergent for such a challenging system.
This method was verified in constant and variable θdes tracking simulations, where the
variable pitch angle tracking became possible using a novel efficient transformation, which
maps the real pitch angle into a virtual variable according to the instantaneous difference
between the real pitch angle and the desired angle. Finally, the FAA-augmented method
was introduced to construct continuous control commands, eliminate response fluctuations,
and provide a robust control system in the presence of atmospheric disturbances, sensor
measurement noises, actuator faults, and model uncertainties.
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Nomenclature

[u v w] Velocity components in body frame
[p q r] Angular velocity components in body frame
φ, θ, ψ Roll, pitch, and yaw angles
Ix, Iy, Iz Moments of inertia in body frame
m Mass of airplane
FA Aerodynamic force vector in body frame
FT Engine thrust vector in body frame
LA Aerodynamic moment vector
LT Thrust moment vector in body frame
g Acceleration of gravity
D Drag
L Lift
α Angle of attack
δE Elevator deflection
q̄ Airplane dynamic pressure
c̄ Mean aerodynamic chord
S Wing Area
Q(s, a) State-action value function
R Reward
ᾱ Learning rate
Kp, Ki, Kd Proportional, integral, derivative coefficients of PID controller
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