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Abstract: In this paper, an adaptive incremental neural network (INN) fixed-time tracking control
scheme based on composite learning is investigated for robot systems under input saturation. Firstly,
by integrating the composite learning method into the INN to cope with the inevitable dynamic
uncertainty, a novel adaptive updating law of NN weights is designed, which does not need to satisfy
the stringent persistent excitation (PE) conditions. In addition, for the saturated input, differing from
adding the auxiliary system, this paper introduces a hyperbolic tangent function to deal with the
saturation nonlinearity by converting the asymmetric input constraints into the symmetric ones.
Moreover, the fixed-time control approach and Lyapunov theory are combined to ensure that all the
signals of the robot closed-loop control systems converge to a small neighborhood of the origin in a
fixed time. Finally, numerical simulation results verify the effectiveness of the fixed-time control and
composite learning algorithm.

Keywords: fixed-time control; INN control; composite learning; input saturation

1. Introduction

With the development of automation technology towards intelligent manufacturing,
robots have been widely used in military rescue, intelligent assembly, human robot coop-
eration tasks, and other industrial manufacturing fields. On many occasions, robots and
humans share the same workspace. If robot tasks are not performed accurately, unexpected
accidents will occur. Therefore, how to accurately control the robots to perform the required
tasks has always been an exceedingly important research direction [1–3]. Many scholars
have proposed the model-based control schemes in which the inherent dynamics of the
robot are fully known. However, in practice, due to the uncertainty of the environment
and the coupling effect, it is difficult to determine the manipulator model and obtain the
required control accuracy correctly and quickly. Thus, in recent years, a great deal of control
schemes based on universal approximation such as neural networks (NNs) [4–7] and fuzzy
logic systems (FLSs) [8–10] have emerged to deal with the unknown nonlinearity terms
in the manipulator systems. If the network nodes were selected unreasonably, this would
lead to insufficient learning of the nonlinear terms and the degradation of approximation
performance, which was the common weakness in the above-mentioned NN approxima-
tion. An effective way to settle this issue is to dynamically increase the number of nodes,
which is called the INN [11]. No matter whether the NN or INN, it should be pointed
out that the network weight converges to the real value when the sufficient condition for
accurate approximation is established, and the PE condition is an important condition to
ensure the convergence of estimation [12]. The PE condition is difficult to achieve, so it is
often not feasible in practical systems. It is worth emphasizing that the partial PE condition
proposed in [13] relaxed the traditional PE, and it was pointed out that any recursive NN
input trajectory of the radial basis function neural network (RBFNN) defined in a local
regular lattice can be partially activated. In the works [14–17], this idea was utilized in the
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adaptive control design of nonlinear systems such as a manipulator, to ensure the stability
and realize the convergence of the NN weights. Based on the above discussion, how to
solve the problem of insufficient learning caused by improper node selection on the basis
of relaxing the strict PE condition still needs to be further discussed.

On the other hand, during the task of a manipulator, the input control torque cannot
exceed a certain upper limit value due to the inevitable constraints of electromechanical
failure or mechanical structure change. If the torque required by the controller exceeds
the torque provided by the actuator, unpredictable mechanical faults may occur, thereby
damaging the system performance. Hence, it is a meaningful work to investigate the
input saturation [18–24] for practical nonlinear systems. For uncertain nonlinear systems,
considering the effect of input saturations, the authors in [18,19], by constructing an aux-
iliary system, developed two effective control schemes to restrain them. Subsequently,
the works in [22–24] extended the above methods to robotic manipulators [22], ships [23],
and suspension systems [24] and proposed several control schemes that can suppress the
adverse effects of saturation on the actual systems. Obviously, these schemes compensated
the saturations’ nonlinearity by introducing an auxiliary system, yet the auxiliary system
intensified the complexity of the system structure to a certain extent, expanded the amount
of calculation, and may also lead to chattering. In order to amend these flaws, the works
in [20,21] designed a hyperbolic tangent function to approximate the saturation nonlin-
earity for symmetric input constraints, which alleviated the vibration and large amount
of calculation caused by the auxiliary system. Nevertheless, it must be emphasized that
the above work did not consider the asymmetric saturation of the actuators or require
the convergence time of the controlled system. To a certain extent, rapid convergence
will lead to the increase of the vibration amplitude. Therefore, under the constraint of
input nonlinearity, it is hard to obtain stability and good error convergence, which inspired
our research.

In order to achieve high accuracy and fast convergence, the control approach of finite-
time convergence is a preferred solution. The pioneering work [25] introduced the concept
of finite-time stability and proved that it has high-level robustness and faster transient
response. Subsequently, many scholars have followed this work, and many constructive
works have emerged [26–29]. The work [26] presented a smooth finite-time control scheme
of strict feedback nonlinear systems, and the work [27] investigated the issue of finite-time
for nonlinear systems with unmeasurable states through a quantized feedback control
strategy. The research [25–29] limited the convergence time to a range by finite-time control,
but all relied on the initial state of the system. For the sake of breaking these restrictions, the
authors in [30] proposed a fixed-time control scheme, which is independent of the initial
conditions and can be adjusted by the controller parameters. To this end, a large number of
adaptive intelligent control algorithms have been developed [31–35]. By applying universal
barrier functions, a fixed-time control with symmetric constraints for MIMO uncertain
systems was studied in [31]. In [32], the observer-based fixed-time tracking control problem
of SISO nonlinear systems was considered. In [33,34], the fixed-time method was extended
to multiagent systems and a flexible robotic manipulator. In [35], the authors developed
fixed-time control with distrubance for manipulator system, and the work of this paper
extends [35] and introduces composite learning approach on the fram work of the NN
fixed-time theory.

Inspired by the above discussions, this paper proposes an adaptive INN fixed-time
tracking control scheme based on composite learning for the manipulator system under
saturated input. The main contributions are as follows:

1. A new INN adaptive algorithm based on the composite learning technique is designed.
By dynamically generating network nodes and introducing some persistence condi-
tions to adapt to the NN weights, the estimation error information can be properly
integrated into the adaptive law, and the estimation performance is improved on the
basis of relaxing the traditional PE conditions. Even though the works [14–17] studied
composite learning control, they did not consider dynamically activating network
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nodes to adjust the NN input, let alone ensuring that the estimation error converged
in a fixed time.

2. In the framework of the backstepping composite learning approach, the challenge of
devising a fixed-time controller with asymmetric actuator saturation of the manipula-
tor system is effectively tackled. Although the authors in [18,19,22–24] considered the
problem of actuator input saturation, they all solved symmetric saturation by intro-
ducing auxiliary systems, which is not tenable for the asymmetric scenario. Instead,
this paper not only proposes a feasible asymmetric saturation control scheme, but
also ensures fixed-time convergence under the composite learning framework.

The rest of this paper is structured as follows. In Section 2, the system description and
some useful lemmas are introduced. Section 3 shows the radial basis function NN and the
INN. Section 4 introduces how to design the INN controller based on composite learning in
the presence of input saturation and presents the stability analysis. The proposed control
scheme in this paper is validated by the simulation in Section 5. Finally, Section 6 gives the
conclusion of this paper.

2. System Description

The dynamic model of a manipulator with n degrees of freedom can be described as:

H(θ)θ̈ + C(θ̇, θ)θ̇ + G(θ) = τ (1)

where θ ∈ Rn represents the joint position angle vector, H(θ) ∈ Rn×n represents the inertia
matrix, C(θ̇, θ) ∈ Rn×n represents the Coriolis matrix, G(θ) ∈ Rn represents the gravity,
and τ ∈ Rn represents the control torque and satisfies

τi =


τimax, ui > uimax
fri(ui), 0 ≤ ui ≤ uimax
fli(ui), −uimin ≤ ui ≤ 0
−τimin, ui < −uimin

(2)

where ui(i = 1, . . . , n) is the i-th element of the control law u = [u1, u2, . . . , un]T .
τmax = [τ1max, . . . , τnmax]T , τmin = [τ1min, . . . , τnmin]

T , umax = [u1max, . . . , unmax]T , and
umin = [u1min, . . . , unmin]

T are the known saturation parameters; nonlinear functions fri(ui)
and fli(ui) are unknown, but smoothly continuous; fri(0) = fli(0) = 0 and the assump-
tion that vri0 ≤ ḟri(ui) ≤ vri1, vli0 ≤ ḟli(ui) ≤ vli1 are satisfied in ui ∈ [0, uimax] and
ui ∈ [−uimin, 0], respectively, where vri0, vri1, vli0, and vli1 are positive constants.

The manipulator has the following two commonly used properties.

Property 1 ([10]). For any θ, θ̇ ∈ Rn, H, C, and G are bounded and their first derivatives are
available.

Property 2 ([10]). Ḣ − 2C is an antisymmetric matrix, which means, for any z ∈ Rn, zT

(Ḣ − 2C)z = 0 are established.

Lemma 1 ([31]). If a positive Lyapunov function V(x) satisfies: V̇ < −pVα − qVβ + h, where
p > 0, q > 0, h > 0, 0 < α < 1, and β > 1, then the system ẋ = f (x, t) is considered to
be stable in fixed-time, whose solution will converge to a compact set Ω = {x|V ≤ min([h/
(p(1− γ))]1/α, [h/(q(1− γ))]1/β)}, where 0 < γ < 1, and the convergence time of the system
satisfies: T ≤ Tmax = 1

pγ(1−α)
+ 1

qγ(β−1) .

Lemma 2 ([31,33]). For any xi ∈ R, we have

n

∑
i=1
|xi|r ≥

(
n

∑
i=1
|xi|
)r

, i f 0 < r ≤ 1 (3)
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n

∑
i=1
|xi|r ≥ n1−r

(
n

∑
x=1
|xi|
)r

, i f r > 1 (4)

Lemma 3 ([16]). The vector ξ2 is not used, then its estimate value can be obtained according to the
following second-order filter: {

˙̂ξ1 = ξ̂2
˙̂ξ2 = w2(ξ1 − ξ̂1)− ζwξ̂2

(5)

where ξ̂1 and ξ̂2 are estimates of ξ1 and ξ2, respectively. Note that with the frequency w fit low
enough, the estimation error of ξ2 is small enough to make ξ̂2 ≈ ξ2.

Definition 1 ([13]). For an n-dimensional bounded column vector Φ(t), if there are positive
constants a1, a2, and t0 such that a1I ≤

∫ t0+∆t
t0

Φ(u)ΦT(u)du ≤ a2I is valid for arbitrary time
interval ∆t, then the bounded signal Φ(t) is called PE.

3. Radial Basis Function NN Approximator

The RBFNN has a strong nonlinear approximation ability. As long as there are enough
nodes, any nonlinear term can be approximated with any accuracy. However, due to the
limited number of nodes in practical applications, there will be an approximation error.
The expression of the RBFNN approximating the nonlinear term is

Y(x) = WTΦ(x) + ε(x) (6)

where W ∈ Rn×k denotes the network weight, Φ(x) ∈ Rk denotes the regression vector,
ε(x) ∈ Rn denotes the approximation error, x ∈ Rm denotes the input vector of the network,
n denotes the dimension of the nonlinear term to be estimated, k denotes the number of
nodes in the neural network, and m denotes the dimension of the network input vector.

The Gaussian function is the most commonly used basis function in the RBFNN
because of its simple form and being differentiable at any order, and its expression is
as follows:

Φi(x) = exp[
−(x− µi)

T(x− µi)

σ2
i

], i = 1, . . . , k (7)

where µi ∈ Rm denotes the i-th node and σi ∈ R+ denotes the standard deviation.
In order to overcome the shortcomings of the inaccurate nodes manually set in advance,

the method of incremental learning [11] to generate nodes is introduced, and the node
addition process is shown in Figure 1. Firstly, the initial state of the system is set to the
first node of the network, i.e.,

µ(t0) = x (8)

In the following process, the network will decide whether to generate nodes according
to the distance between the current input and the node set. After each sampling period T,
the node set of the network is

µ(t + T) =

{
[µ(t) , µnew], dis > ε

µ(t) , dis ≤ ε
(9)

where µ(t) ∈ Rm×k denotes the node set of the network at time t, µnew ∈ Rm×1 indicates
the newly generated node, while µ(t + T) denotes the node set at time t + T. dis denotes
the Euclidean distance between the network input and node set, whose calculation formula
is shown as (10), and ε is the distance threshold parameter to be designed.

dis = ‖x− µ̄min‖ (10)

where µ̄min represents the weighted average node of the neural network, which is obtained
according to the weighted average of b nodes closest to the current input vector, i.e.,
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µ̄min =
∑b

i=1 arg minµ{||x− µi||}
b

(11)

Finally, the newly generated nodes of the network are

µnew = µ̄min + δ(x− µ̄min) (12)

where δ > 0 is the parameter to be designed.

Figure 1. The schematic diagram of the incremental neural network.

From the above process, it is not difficult to find that, compared with the traditional
neural network, the neural network using incremental learning has a significant advantage
in that it can ensure that the input is always in the compact domain of the neural network,
enabling the maximum activation of the nodes. Since the degree of node activation depends
on the Euclidean distance between the current input and the nodes and the nodes of the
incremental neural network are generated according to the real-time input, when the
current input is not in the network compact domain, the nodes will be automatically added
to expand the compact domain, so the effectiveness of the incremental neural network
can be better guaranteed. In contrast, the nodes in the traditional NN need to be set up
artificially; when the prior knowledge of the complex system is not accurate, the designed
node set is far away from the input of the system and cannot be activated effectively, which
will lead to a significant reduction in the approximation performance of the network. We
call the RBFNN with incremental learning the IRBFNN.

4. Controller Design and Stability Analysis
4.1. Controller Design

The proposed control scheme is shown in Figure 2. Let z1 = θ and z2 = θ̇; the dynamic
equation of the system (1) can be rewritten as

Hż2 + Cz2 + G = τ (13)

The state space equation of the manipulator can be sorted out as

ż1 = z2, ż2 = H−1(τ − Cz2 − G) (14)

Thus, define the error signal of the system as

z̃1 = z1 − θd, z̃2 = z2 − z2d (15)

where θd ∈ Rn denotes the desired joint position and z2d ∈ Rn denotes the virtual control
law to be designed later.
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Figure 2. The overview of the proposed control scheme.

The dynamic error equation of the system can be obtained as

H ˙̃z2 + Cz̃2 = τ − Hż2d − Cz2d − G (16)

According to the backstepping control method and the theory of fixed-time stability,
design the virtual control law z2d as

z2d = −K12z̃1 − K12

n

∑
i=1

wi(z̃1,i)− K13Sigβ(z̃1) + θ̇d (17)

In order to ensure that z2d and its derivate are both continuous, the nonlinear function
wi(z̃1,i) is designed as

wi(z̃1,i) =

{
Sigα(z̃1,i), |z̃1,i| ≥ ϑ

a1z̃1,i + a2z̃3
1,i , |z̃1,i| < ϑ

(18)

where ϑ is a small constant, Sigc(.) = sign(.)|.|c.
Using the IRBFNN to estimate the unknown model of the system, we obtain

Y(x) = WTΦ(x) + ε(x) = −Hż2d − Cz2d − G (19)

where x = [z1, z2, z2d] ∈ R3n×1 is the input of the IRBFNN and Y(x) ∈ Rn×1, W ∈ Rk×n,
Φ(x) ∈ Rk×1, and ε(x) ∈ Rn×1 represent the item to be estimated, the ideal weight, the
regression vector, and the approximation error, respectively. k is the number of nodes of
the IRBFNN, and ||ε(x)|| ≤ ε̄. Thus, the dynamic error equation can be rewritten as

H ˙̃z2 + Cz̃2 = τ + WTΦ(x) + ε(x) (20)

Define the estimated error W̃ of the network weight as

W̃ = Ŵ −W (21)

where Ŵ is an estimate of the ideal network weight W.
In order to make the network weights converge in a fixed time without the strict PE

condition, we designed the weight update law with composite learning technology [16].
Firstly, the error of the IRBFNN is defined as:

Ei(t) = B(t)Ŵi − Di(t) , i = 1, 2, . . . , n (22)

where Ŵi(t) ∈ Rk×1 represents the estimated network weight of the i-th joint and
Ei(t) ∈ Rk×1 is the corresponding network estimation error, and the auxiliary terms
B(t) ∈ Rk×kand Di(t) ∈ Rk×1 are defined as follows:{

B(t) =
∫ t

0 e−r(t−u)Φ(x)ΦT(x)du
Di(t) =

∫ t
0 e−r(t−u)Φ(x)(WT

i Φ(x) + εi(x))du
(23)
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where B(t) ∈ Rk×k is a symmetric matrix, and B(t) = BT(t).
Combining (23) and (21), the estimation error of the network (22) can be further

arranged as

Ei =BŴi − Di

=
∫ t

0
e−r(t−u)Φ(x)(ΦT(x)(Ŵi −Wi)− εi(x))du

=BW̃i + Ψi

(24)

where Ψi = −
∫ t

0 e−r(t−u)Φ(x)εi(x)du and Ψi is bounded. In (24), BW̃i corresponds to the
estimation error of the network weight and Ψi corresponds to the approximation error, so
Ei corresponds to the total error of the IRBFNN.

To calculate WT
i Φ(x) + εi(x) in Equation (23), from Equations (13) and (19), we

can obtain
WT

i Φ(x) + εi(x) = τi ϕi (25)

ϕi =

 ˙̃z2,i + ż2d,i
z̃2,i + z2d,i

1

†− ˙̃z2d,i
−z2d,i
−1

 (26)

where [·]† denotes the pseudo inverse of a vector. Since z2,i = θ̈i is the angular acceleration
of the manipulator and cannot be obtained directly, its estimated value is obtained through
the second-order filter shown in Lemma 3, that is

ϕ̂i =

 ˆ̇z2,i + ż2d,i
z2,i + z2d,i

1

†−ż2d,i
−z2d,i
−1

 (27)

Then, the expression of Di(t) in Equation (23) can be further arranged as

Di(t) =
∫ t

0
e−r(t−u)Φ(x)τi ϕ̂idu (28)

Obviously, the expression (23) is a solution for the system of differential Equation (29),
so the update laws of the auxiliary terms B, D are set as:{

Ḃ = −rB + Φ(x)ΦT(x)
Ḋi = −rDi + Φ(x)τi ϕ̂i

(29)

Based on the composite learning approach, design ˙̂Wi by the IRBFNN, as shown in (30):
˙̂Wi =Γ−1

i (Φ(x)z̃2,i−K32,iSigα(Ei)−K33,iSigβ(Ei)) (30)

where Γi ∈ Rk×k, K32,i ∈ Rk×k, and K33,i ∈ Rk×k are all full-rank diagonal constant matrices
and their elements are all positive.

Remark 1. It is not difficult to find that the weight composite learning law in the Formula (30)
combines the position tracking error signal of the current system with the total error signal of the
IRBFNN. The idea is to ensure the convergence of the weight by using the feedback effect of the
historical error generated by the system and the updating of the weight. It should be noted that,
compared with the existing results, the composite learning law designed by us can guarantee not
only the weight convergence, but also convergences at a fixed time.

In order to satisfy the input saturation effect of the actuator, introduce the variable Ξ
to assist the torque design; one has

Ξ = diag[τ̄i/ūi] , i = 1, 2, . . . , n (31)
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where diag[·] denotes a diagonal matrix, τ̄i represents the upper limit of the torque that the
actuator can accept, while ūi represents the parameter related to the expected maximum
control law, and{

τ̄i = τimax, ūi = uimax, τimax/uimax ≥ τimin/uimin
τ̄i = τimin, ūi = uimin, τimax/uimax < τimin/uimin

(32)

According to (20), we can obtain
˙̃z2 = H−1(ΞΞ−1τ + WTΦ(x) + ε)− H−1Cz̃2 (33)

In the proposed controller, the relation between the actual control torque τ and the
designed control law u is as follows:

τ = χ(u) + ∆τ (34)

where ∆τ represents the difference between the actual input saturation effect curve and the
ideal value and the assumption that |∆τ| ≤ ∆τ̄ and χ(u) represents the conversion value
of the control law u after the saturation effect. Use the hyperbolic tangent function to solve
the input saturation effect, that is

χ(ui) =
τ̄i
ηi

arctan(
ηiui
ūi

) , i = 1, 2, . . . , n (35)

where ηi = π/2. According to mean-value theorem, the following equation holds:

Ξ−1χ(u) = u− Υ(u)u (36)

Υ(u) = diag[
(υiuiπ/2ūi)

2

1 + (πυiui/2ūi)2 ] , i = 1, 2, . . . , n (37)

where 0 < υi < 1.
According to (20) and (36), this can be arranged as

˙̃z2 = H−1(Ξu− ΞΥ(u)u + ∆τ+WTΦ(x) + ε)−H−1Cz̃2 (38)

According to the fixed-time control theory, the control law of u is constructed as

u = Ξ−1uo + ua, ua = −
‖uo‖z̃2

‖z̃2‖(1− l)
, ‖z̃2‖ 6= 0 (39)

uo =− z̃1 − z̃2 − K22Sigα(z̃2)− K23Sigβ(z̃2)− ŴTΦ(x)

where λmax(Υ(u)) < l < 1, and if ‖z̃2‖ = 0, ua = 0.

Remark 2. It should be mentioned that the control scheme in this paper can solve the trajectory
tracking control task of single-arm manipulator systems with input saturation well. However, if the
proposed control scheme is extended to dual-arm manipulator systems, it is necessary to analyze
the internal force relationship between the two arms, which makes the controller design process
more complex.

4.2. Stability Analysis

The property of the proposed IRBFNN composite learning fixed-time control scheme
can be summarized as the following theorem.

Theorem 1. Consider the manipulator system (1) with input saturation, and design the virtual
controllers (17), the actual fixed-time controller (39), and the composite learning law (30), then it
can be concluded that:

(1) All the error signals are guaranteed to converge in a fixed time;
(2) The position signal θ converges to a small neighborhood of the desired position θd in a fixed time;
(3) The joint torque is guaranteed not to transgress the constraints sets.
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Proof. According to the error signal in the controller, choosing the following three candi-
date Lyapunov functions, we obtain

V1 =
1
2

z̃T
1 z̃1, V2 =

1
2

z̃T
2 Hz̃2

V3 =
1
2

n

∑
i=1

((B−1Ei)
TΓiB−1Ei)

(40)

Combine (15) and (17); we can obtain V̇1 as

V̇1 =z̃T
1 ˙̃z1 = z̃T

1 (z̃2 − K12z̃1 − K12

n

∑
i=1

wi(z̃1,i)− K13Sigβ(z̃1))

=z̃T
1 z̃2 −

n

∑
i=1

(k12,i z̃2
1,i)−

n

∑
i=1

(k12,i z̃1,iwi(z̃1,i))−
n

∑
i=1

(k13,i|z̃1,i|β+1)

(41)

In accordance with the definition of wi(z̃1,i, the following two situations about the
term Γ = −∑n

i=1 k12,i z̃1,iwi(z̃1,i) should be considered:
Case 1: If |z̃1,i| ≥ ϑ, it follows that

Γ = −
n

∑
i=1

(k12,i|z̃1,i|α+1) (42)

Case 2: If |z̃1,i| < ϑ and according to the inequality |c|µ|d|ρ ≤ µ
/
(µ + ρ)γ̄|c|µ+ρ

+ρ
/
(µ + ρ)γ̄−µ/ρ|d|µ+ρ (µ, ρ and γ̄ are positive), we have

Γ = −∑n
i=1 k12,i z̃1,i(a1z̃1,i + a2z̃3

1,i)

≤ −∑n
i=1(k12,i|z̃1,i|α+1) + ∑n

i=1(k12,i z̃2
1,i)

+ ζ(1− α)γ̄−∑n
i=1 k12,i(a1 + a2)z̃2

1,i

(43)

where ζ = min{k12,1, k12,2, . . . , k12,i}. Considering that a1 + a2 > 0 and following the above
two cases of analysis yield

Γ ≤ −
n

∑
i=1

(k12,i|z̃1,i|α+1) +
n

∑
i=1

(k12,i z̃2
1,i) + ζ(1− α)γ̄ (44)

Combining (41) with (44), we obtain

V̇1 ≤ z̃T
1 z̃2 −

n

∑
i=1

(k12,i|z̃1,i|α+1)−
n

∑
i=1

(k13,i|z̃1,i|β+1) + ζ(1− α)γ̄ (45)

From (20) and (39) and Property 2, V̇2 can be expressed as

V̇2 =z̃T
2 H ˙̃z2 +

1
2

z̃T
2 Ḣz̃2

=z̃T
2 (uo + Ξua − ΞΥ(u)u + ∆τ − Hż2d − Cz2d − G)

≤z̃T
2 (−z̃1 − z̃2 − K22Sigα(z̃2)− K23Sigβ(z̃2)

− ŴTΦ(x) + WTΦ(x) + ε + ∆τ + Ξua − ΞΥ(u)u)

≤−
n

∑
i=1

(k22,i|z̃2,i|α+1)− z̃T
2 z̃1 −

n

∑
i=1

(k23,i|z̃2,i|β+1)− z̃T
2 z̃2

− z̃T
2 W̃TΦ(x) + z̃T

2 (ε + ∆τ) + z̃T
2 (Ξua − ΞΥ(u)u)

(46)

According to (24), we have

B−1Ei = W̃i + B−1Ψi (47)
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From Equation (23) and the definition of matrix B, one has

(B−1Ei)
T = W̃T

i + ΨT
i B−1 (48)

Taking the derivative of (47) with respect to time, we obtain

∂(B−1Ei)

∂t
=

∂(W̃i + B−1Ψi)

∂t
= ˙̃Wi + B−1ḂB−1Ψi + B−1Ψ̇i

(49)

= ˙̂Wi − Ẇi + Ψ′i

= ˙̂Wi + Ψ′i

From Equation (23) and combined with the definition of Ψ, it is known that Ψ̇i is
bounded, so Ψ′i is bounded.

According to (30), (40), (47), and (49), one can obtain

V̇3 =
n

∑
i=1

(B−1Ei)
TΓi(

˙̂Wi + Ψ′i)

=
n

∑
i=1

(B−1Ei)
TΓi

˙̂Wi +
n

∑
i=1

(B−1Ei)
TΓiΨ′i

=
n

∑
i=1

(B−1Ei)
T(Φ(x)z̃2,i − K32,iSigα(Ei)

− K33,iSigβ(Ei))) +
n

∑
i=1

(B−1Ei)
TΓiΨ′i

=
n

∑
i=1

ET
i B−1(−K32,iSigα(Ei)−K33,iSigβ(Ei))

+
n

∑
i=1

(W̃T
i + ΨT

i B−1)Φ(x)z̃2,i + (B−1Ei)
TΓiΨ′i)

=
n

∑
i=1

k

∑
j=1

(−k′32,i,j|Ei,j|α+1−k′33,i,j|Ei,j|β+1)

+
n

∑
i=1

(W̃T
i Φ(x)z̃2,i + ΨT

i B−1Φ(x)z̃2,i+ET
i B−1ΓiΨ′i)

Choose a general candidate Lyapunov function V as

V = V1 + V2 + V3 (50)

For the convenience and conciseness of the proof process, let

A = −A1− A2− A3

A1 =
n
∑

i=1
(k12,i|z̃1,i|α+1 + k13,i|z̃1,i|β+1)− ζ(1− α)γ̄

A2 =
n
∑

i=1
(z̃2

2,i + k22,i|z̃2,i|α+1 + k23,i|z̃2,i|β+1)

A3 =
n
∑

i=1

k
∑

i=1
(k′32,i,j|Ei,j|α+1 + k′33,i,j|Ei,j|β+1)

(51)

Based on (45), (46), (50), and (51) and Young’s inequality, it can be obtained that
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V̇ =V̇1 + V̇2 + V̇3

≤A+
n

∑
i=1

(ΨT
i B−1Φ(x)z̃2,i+ET

i B−1ΓiΨ′i+z̃T
2 (εi+∆τ))

≤A +
n

∑
i=1

(
‖ΨT

i B−1Φ(x)‖2

2
+

ε̄2
i + ∆τ̄2

i
2

+
‖Ei‖2 + ‖B−1ΓiΨ′i‖2

2
+ z̃2

2,i)

≤−
n

∑
i=1

(k12,i|z̃1,i|α+1 + k13,i|z̃1,i|β+1) + ζ(1− α)γ̄

−
n

∑
i=1

(k22,i|z̃2,i|α+1 + k23,i|z̃2,i|β+1)

−
n

∑
i=1

k

∑
j=1

k′32,i,j|Ei,j|α+1+k′33,i,j|Ei,j|β+1

+
n

∑
i=1

(
‖ΨT

i B−1Φ(x)‖2

2
+
‖B−1ΓiΨ′i‖2

2
+

ε̄2
i + ∆τ̄2

i
2

)

≤− κ1V
α+1

2 − κ2V
β+1

2 + ν

(52)

where κ1, κ2 satisfy κ1 = min(2λmin(K12),
2λmin(K22)

λmax(H)
, 2λmin(K′32)

λmax(Γ)
), κ2 = min(2λmin(K13)n

1−β
2 ,

2λmin(K23)n
1−β

2

λmax(H)
, 2λmin(K′33)n

1−β
2

λmax(Γ)
), K′32 = B−1K32, and K′33 = B−1K33. According to the above

analysis, it is known that B−1, εi, Φ(x), and Ψ′i are all bounded. That is, there exists a

positive constant ν such that ν = ∑n
i=1(

‖ΨT
i B−1Φ(x)‖2

2 +
‖B−1ΓiΨ′i‖

2

2 +
ε̄2

i +∆τ̄2
i

2 ) + ζ(1− α)γ̄.
In light of Lemma 1, the related signals ϑ = [z̃1, z̃2, E]T that make up the Lyapunov

function V will converge to the compact set Ω =

{
ϑ|V ≤ min

(
ν

κ1(1−γ)

2
α+1 , ν

κ2(1−γ)

2
β+1

)}
in a fixed time, and the convergence time satisfies: T ≤ Tmax = 2

κ1γ(1−α)
+ 2

κ2γ(β−1) , where
0 < γ < 1.

5. Simulation Verification
5.1. Simulation Settings

In order to verify the feasibility and effectiveness of the proposed control scheme, a
simulation experiment was carried out on a two-DOF manipulator model [14], and the
expression is shown in (53), while the model is shown in Figure 3. The meanings of the
parameters in the expression are shown in Table 1. The desired trajectory is shown in (54).
The mass and length parameters of the linkage manipulator were set as follows m1 = 4 kg,
m2 = 2 kg, g = 9.81 N/kg, l1 = 0.5 m, and l2 = 0.5 m. The saturation torque of Joint 1 was
selected as 100N, and the saturation torque of Joint 2 was select as 50N, i.e., τ̄ = [100, 50]T .
The saturation characteristic parameter ū is given as ū = [300, 300]T .[

H11 H12
H21 H22

][
θ̈1
θ̈2

]
+

[
C11 C12
C21 C22

][
θ̇1
θ̇2

]
+

[
G1
G2

]
=

[
τ1
τ2

]
(53)

θd(t) =
[

θd1
θd2

]
=

[
−1 + 0.5× sin(0.5πt)
1 + 0.6× cos(0.5πt)

]
(54)

The parameters in the virtual controller and actual control law were chosen as
K12 = diag[3, 2], K13 = diag[4, 2], K22 = diag[3, 2], and K23 = diag[4, 2]. The relevant
parameters of the INN are given as follows: σ = 0.5, δ = 0.9. The maximum number of
nodes in the network is 100, ε = 0.5. The parameters of the network weight update rate
based on composite learning were chosen as K32 = diag[4, 4] and K33 = diag[2, 2]. The
fixed-time-related parameters were set to α = 0.6 and β = 2.
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Figure 3. The model of the 2-DOF manipulator.

In order to more intuitively compare the performance of the incremental neural net-
work controller based on composite learning (CLIRBFNN), we set up a group of convincing
comparative simulations. The comparative controllers adopted the fixed-time incremental
neural network controller (IRBFNN), the general neural network controller (RBFNN), and
the PD+ controller (PD+), and the weight update rate of the comparative controller adopted
the traditional update rate, that is

˙̂W = Γ−1(Φ(x)z̃2 − λŴ) (55)

where Γ = diag[2, 2] and λ = diag[10, 10]. The control law of the compared PD+ controller is

u = −Kp z̃1 − Kd ˙̃z1 + G (56)

τi =

{
τ̄iSign(ui), |ui| > τ̄i
ui, |ui| ≤ τ̄i

(57)

where the gravity term G is fully compensated. The values of Kp and Kd were selected as
Kp = diag[100, 40] and kd = diag[80, 40].

Table 1. The description of the 2-joint manipulator.

H11 (m1 + m2)l2
1 + m2l2

2 + 2m2l1l2cosθ2

H12 m2(l2
2 + l1l2cosθ2)

H21 m2(l2
2 + l1l2cosθ2)

H22 m2l2
2

C11 −m2l1l2q̇2sinθ2

C12 m2l1l2(θ̇2 + θ̇1)sinθ2

C21 m2l1l2 θ̇1sinθ2

C22 0

G1 m2l2gcos(θ1 + θ2) + (m1 + m2)l1gcosθ1

G2 m2l2gcos(θ1 + θ2)

In order to specifically compare the controllers under different initial states, three groups
of different initial states were set, i.e., θ(0) = [−1, 1], θ(0) = [−0.6, 0.6], and
θ(0) = [−0.5, 0.5], and the corresponding initial position errors were z̃1(0) = [−2.6, 2.6],
z̃1(0) = [−1.5, 1.5], and z̃1(0) = [−0.4, 0.4]. The purpose of this setting was to fully investi-
gate the performance of the controller when the initial error is more than 20-times the preset
steady-state error. On the other hand, the performance of the two joints under positive and
negative errors can be observed. Moreover, the difference between the performance of the
controller under a small initial error and a large initial error can be seen.

5.2. Result Analysis

The simulation results are presented in Figures 4–12. Figures 4 and 5 show the curves
of the tracking error under different initial conditions. It can be seen that different initial
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values have a certain impact on the transient response, but have little impact on the steady-
state error. This means that the designed fixed-time controller has good performance under
different initial conditions. Figures 6–9 present the tracking errors and control torques of
Joint 1 and Joint 2 based on different controllers. It is obviously seen that the controller
proposed in this paper can ensure that the error converges to a smaller neighborhood
than the other compared controllers. Figure 10 shows the norm of the weight. We can
see that the they are all bounded and can converge to constants. Figure 11 shows that
each dimension weight value of the CLIRBFNN can eventually converge to the constant
value, and adding new nodes to the network, the trained weights do not need to be
retrained, which indicates that the CLIRBFNN adopted by the proposed controller has a
high calculation efficiency. The weight update rate based on the IRBFNN and RBFNN was
designed using Lyapunov stability, which was not applied to the error term of the network,
so it can only be guaranteed to converge in a certain equilibrium interval. In terms of
amplitude, the weight of the CLIRBFNN is at least three orders of magnitude higher than
that of the IRBFNN and RBFNN, which expresses the effectiveness of composite learning
in weight training. Figure 12 describes the network estimation error for Joint 1 and Joint 2
under the CLIRBFNN, IRBFNN, and RBFNN, respectively. For the CLIRBFNN, the network
estimation error of each dimension will eventually converge to the smallest neighborhood
near zero in a fixed time. For the IRBFNN and RBFNN, the network estimation error can
only oscillate periodically in a large interval, and the oscillation period is positively related
to the period of the desired trajectory.

In order to more quantitatively analyze the role of each control term in the control
process, we analyzed the relative proportion of each control term. Blue refers to the first
and second terms of uo in (39); red is the third term of uo; green is the fourth term of uo;
yellow is the NN’s control term. Figure 12 depicts that, in the absence of composite learning
control, i.e., the IRBFNN and RBFNN, the weights cannot be well trained, resulting in the
proportion of network control terms being less than one-thousandth of the whole control
process. Therefore, the approximation performance of the system is degraded, which is
also the reason why the steady-state errors in Figures 6 and 7 are larger than that of the
proposed controller in this paper. From Figure 13a,d, it can be seen that, in the transient
regulation stage, the proportion terms (blue) and fixed-time terms (red and green) account
for a large proportion, which indicates that the transient regulation mainly depends on
the non-network terms. In the process of steady-state regulation, the proportion of the
CLIRBFNN terms exceeds 80% of the total most of the time, and the proportion of the
non-network control terms is very small, which shows that the CLIRBFNN compensates
the uncertainty terms well and has excellent approximation performance.

Through the above analysis, the following conclusions can be drawn: the NN fixed-
time controller based on composite learning can ensure that the network weights converge
when the continuous excitation is not satisfied, and all error signals of the manipulator
system can converge to a small neighborhood near zero in a fixed time with the input
being saturated.

Figure 4. Error z̃1,1 with different initial values.
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Figure 5. Error z̃1,2 with different initial values.

Figure 6. The tracking error of Joint 1.

Figure 7. The tracking error of Joint 2.

Figure 8. The torque of Joint 1.

Figure 9. The torque of Joint 2.
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(a) (b) (c)

(d) (e) (f)

Figure 10. The norm of the weights for the two joints based on the CLIRBFNN, IRBFNN, and RBFNN.
(a–c) show the norm of the weights for Joint 1. (d–f) show the norm of the weights for Joint 2.

(a) (b) (c)

(d) (e) (f)

Figure 11. The weight of two joints based on the CLIRBFNN, IRBFNN, and RBFNN. (a–c) show the
weights of Joint 1. (d–f) show the weights of Joint 2.

(a) (b) (c)

(d) (e) (f)

Figure 12. The estimation error based on the CLIRBFNN, IRBFNN, and RBFNN. (a–c) show the
estimation error of Joint 1. (d–f) show the estimation error of Joint 2.
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(a) (b) (c)

(d) (e) (f)

Figure 13. The torque ratio law under different NN control. (a–c) show the proportion of Joint 1.
(d–f) show the proportion of Joint 2.

6. Conclusions

In this paper, a fixed-time adaptive tracking control scheme with actuator satura-
tion was proposed for the manipulator system under the composite learning framework,
combined with the INN control scheme. A new incremental neural network adaptive
algorithm based on compound learning was designed, so that the estimation error informa-
tion could be properly integrated into the adaptive law, which improved the estimation
performance and relaxed the PE condition. At the same time, a hyperbolic tangent function
was designed to solve the problem of asymmetric input saturation, and a backstepping
recursive fixed-time control scheme was employed to design the controller. In addition,
the stability analysis was carried out by using the fixed-time Lyapunov theory, which not
only suppressed the input saturation, but also ensured the fixed-time convergence of all
signals. Our future work will extend the presented scheme to a dual-arm robot and verify
the proposed control approach by using the Baxter robot.
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