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Abstract: The start-up process of a centrifugal pump as turbine (PAT) under gas–liquid two-phase
conditions was simulated based on Fluent, and the evolution mechanism of the internal flow field and
the variation law of force characteristics were studied in its start-up process under gas–liquid two-
phase conditions. The results show that the area with high gas phase concentration corresponds to a
strong vortex at the beginning of the start-up. The vortex intensity in the impeller gradually decreases
with an increase in rotational speed. The gas volume fraction of the blade suction surface is more
significant than that of the blade pressure surface. The higher the inlet gas volume fraction (IGVF) is,
the more severely the blade load will fluctuate during the start-up process. As the rotational speed
increases, the fluctuation of the blade load gradually weakens, and the maximum load is distributed
near the inner edge of the blade after the rotational speed is stable. The periodic unbalanced
radial force is produced in the start-up process. From the pure liquid conditions to the gas–liquid
two-phase conditions with increasing IGVF, the dominant frequency amplitude of radial force shows
a similar trend of decreasing first but then increasing. After the rotational speed tends to be stable,
the dominant frequency of radial force is equal to the rotational frequency of the blade. With the
increase in rotational speed, the dominant frequency amplitude of axial force decreases gradually.
The higher the IGVF, the greater the dominant frequency amplitude of axial force at the same time.

Keywords: PAT; start-up process; gas–liquid two-phase; radial force; axial force

1. Introduction

A centrifugal pump as turbine (PAT) is generally applied to residual pressure energy
recovery of various devices in the petrochemical industry. The recovered medium of PAT
usually contains a certain amount of gas. Gas–liquid two-phase flow can not only affect the
external characteristics of PAT but also cause instability phenomena such as vibration and
noise. Under gas–liquid two-phase conditions, the magnitude and direction of force acting
on the PAT impeller can change with time during its start-up process. These unsteady forces
directly affect the stability of the PAT start-up process [1–3]. Therefore, it is particularly
essential to analyze the force characteristics of the PAT start-up process under gas–liquid
two-phase conditions.

Some scholars have studied the force characteristics of a centrifugal pump under
gas–liquid two-phase conditions. Barrios [4] and Gamboa [5] used visual experiments to
observe that the bubble size in the impeller of the centrifugal pump increases with the
increase in inlet gas volume fraction (IGVF) and decrease in rotational speed. Li et al. [6]
obtained the variation law of a centrifugal pump blade load under different IGVFs. They
pointed out that the imbalance of radial force on the impeller intensified, and the torque on
the impeller reduced with the increase in IGVF. Yuan et al. [7] proposed that the gas volume
fraction in the front shroud near the trading edge increased significantly with the rise in
IGVF than in the back shroud. Luo et al. [8] found that the radial force of the centrifugal
pump impeller and its pulsation amplitude increased first and then decreased with the
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increase in IGVF. The frequency corresponding to the peak value of radial force pulsation
under each working condition was a multiple of the blade rotational frequency. Michael
et al. [9] found that increasing the rotational speed would be beneficial to gas–liquid two-
phase mixing. Due to the increase in flow rate, the occurrence of buzz and cavitation would
increase with the growth of rotational speed. Yan et al. [10] proposed that a large number of
gas blockages would appear in the centrifugal pump impeller with the rise in IGVF at a low
flow rate, resulting in uneven pressure load on the blade surface and some large vortices
in the flow channel. Zhang et al. [11] found that the gas in the centrifugal pump impeller
mainly aggregated near the suction surface of the outlet area. The gas inhomogeneity and
the interphase force in the impeller increased with the rise in IGVF.

Some papers have introduced force characteristics of PAT under stable working con-
ditions. Anthony et al. [12] pointed out that the radial force of PAT at a low flow rate
was a rotating force centered on the impeller, and the average amplitude of radial force
increased with decreasing flow rate. Shi et al. [13] found that adding guide vanes could
reduce the radial force of PAT and make the radial force distribution more uniform. Qu
et al. [14] proposed that the shroud force of the PAT impeller at each level became smaller
and smaller with the increase in stages at the best efficiency point, and the axial force at
each level increased with the rise in the incoming flow head. Yang et al. [15] pointed out
that the radial force of the double-volute turbine was higher than that of the single-volute
turbine overall, while its balance was much poorer. Dai et al. [16] found that the radial force
on the volute reduced and moved to the fourth quadrant as the blade warp angle increased.
Shi et al. [17,18] pointed out that with the increase in IGVF, the relative average static
pressure and pressure pulsation in the volute and impeller of PAT gradually decreased. In
contrast, the hydraulic loss increased in the flow process. Shi et al. [19] found that with
the increase in IGVF, the efficiency and power of PAT gradually decreased while the head
steadily increased. The larger the flow rate, the greater the radial force, and the fluctuation
of radial force under gas–liquid two-phase conditions was more significant than that under
the pure liquid phase. However, the computational analysis of forces during the start-up
process at different IGVFs is also crucial to the PAT.

Overall, the research on the force characteristics under gas–liquid two-phase condi-
tions mainly focuses on centrifugal pumps, while the research on PAT mainly focuses on
steady conditions and pure liquid phase conditions. There are few studies on the tran-
sient characteristics of the PAT start-up process, especially the force characteristics under
gas–liquid two-phase conditions. Therefore, the PAT start-up process under gas–liquid two-
phase conditions was studied using numerical simulation and experimental investigation.
In this study, the combination of water and ideal gas was used as the medium to investigate
the pressure distribution, the velocity streamline distribution, and the gas volume fraction
distribution during the PAT start-up process. The main objective of the present study was
to develop an in-depth understanding of the gas–liquid phase force characteristics and
analyze the variation law of blade load, radial force, and axial force during the PAT start-
up process at different IGVFs, which will help to improve the hydraulic performance of
the PAT.

2. Numerical Simulation and Verification
2.1. Control Equation

The Mixture model can be used to simulate multiphase flow with different and same
velocities of each phase. When the dispersed phase has a wide distribution and the
interphase drag law is unknown, the Mixture model is the most desirable. The working
medium of this paper is water and ideal gas. The gas–liquid two-phase is assumed to
be homogeneous and consecutive. Water is the primary phase, and perfect gas is the
secondary phase. There is no phase transition and mass transfer between the two phases.
Considering the stability and economy of calculation, the Mixture model is used to study
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the PAT start-up process under gas–liquid two-phase conditions. The continuity equation
of the Mixture model is [18]:

∂

∂t
(ρm) +∇ ·

(
ρm
→
v m

)
= 0 (1)

where
→
v m is the mass-averaged velocity and can be calculated as:

→
v m =

n
∑

k=1
αkρk

→
v k

ρm
(2)

αk, ρk and
→
v k represent the volume fraction, the density, and the averaged velocity of the

kth phase component, respectively. ρm is the mixture density and can be written as:

ρm =
n

∑
k=1

αkρk (3)

By summing the momentum equations for all phases, the momentum equation of the
Mixture model can be obtained and expressed as [18]:
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(4)

where n is the phase number, and
→
F is the body force. µm is the mixture viscosity and can

be expressed as:

µm =
n

∑
k=1

αkµk (5)

µk represents the viscosity of the kth phase component.
→
v dr, k is the slip velocity of the

second phase and can be expressed as:

→
v dr,k =

→
v k −

→
v m (6)

2.2. Calculation Model

To analyze the force characteristics of the PAT start-up process under gas–liquid
two-phase conditions, the IS80-50-315 centrifugal pump reversed as the turbine is se-
lected as the study subject. The main design parameters of PAT are the rated speed
nt = 1450 r/min, the rated head Ht = 50 m, and the rated flow rate Qt = 50 m3/h. Figure 1
shows the structure of PAT, and its main structure parameters are the inlet diameter of
impeller D1 = 315 mm, the outlet diameter of impeller D2 = 80 mm, the inlet width of blade
b1 = 10 mm, the inlet offset angle of blade β1 = 32◦, the wrap angle of blade θ = 150◦, the
number of blades z = 6, the base circle diameter D0 = 320 mm, the inlet diameter of volute
Din = 50 mm, and the outlet width of volute b0 = 24 mm.

The entire fluid domain of PAT is modeled in CREO software. The hexahedral struc-
tured grids of the impeller, volute, and outlet pipe are generated by ICEM CFD, as shown
in Figure 2. Fine boundary layer meshes are generated on the blade surface and the flow
surface inside the volute, and mesh refinement is performed at the inlet and outlet sides of
the blade and the volute tongue. The grid independence at IGVF of 0.15 has been verified,
as shown in Figure 3. The X-axis represents the grid number, and the left Y-axis and the
right Y-axis represent head and efficiency, respectively. As the number of grids increases,
the head and efficiency of PAT gradually tend to be stable. When the number of grids
reaches 1.9 million, the relative changes in head and efficiency are less than 1%. So it is
reasonable that the grid numbers of the fluid domain are determined to be 1.9 million.
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2.3. Calculation Method

The rotational speed of PAT is accelerated in its start-up process under the action of
the incoming flow. In addition to the torque provided by the incoming flow, the rotating
parts are also subjected to the load torque and the friction resistance torque. The rotation
equation of the rotor is based on the d’Alembert principle [20]:

J
dω

dt
= Mt −Ml −Mf (7)

where J is the rotational inertia of the rotor, ω is the angular velocity of the rotor, t is the
time, Mt, Ml, and Mf are the fluid flow torque, the load torque, and the frictional resistance
torque acting on the rotor, respectively. Mt can be calculated as:
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Mt =
1
ω

ρgHtQtηt (8)

where ρ is the fluid density, g is the acceleration of gravity, Ht is the head of PAT, Qt is the
flow rate of PAT, and ηt is the efficiency of PAT.

The variation of angular velocity with time during PAT start-up is obtained by inte-
grating Equation (7) as follows:

ω =

[
2
J

∫ t

0
(ρgHtQtηt − Nl − Nf)dt

] 1
2

(9)

where Nl and Nf are the load consumption power and the frictional resistance loss
power, respectively.

Based on the rotation equation of the rotor and the sliding mesh technique, the UDF
program for calculating angular velocity is written and compiled in Fluent [21]. The angular
velocity variation with time is transferred into the flow field solver, and the impeller domain
is accelerated rotationally. The resultant torque on the impeller decreases with the increase
in iteration times, and then the rotational speed gradually increases until the rated speed.

2.4. Boundary Condition

The Mixture model, RNG k-ε turbulence model, and SIMPLEC algorithm are employed
to simulate the start-up process of PAT under gas–liquid two-phase conditions using Fluent
software. The walls of the impeller, volute, and outlet pipe adopt adiabatic non-slip
boundary conditions. The standard wall function method is used to modify the turbulence
model for the near wall region. The residual convergence target is set at 10−5.

It is assumed that the velocity and void fraction distribution of gas–liquid two-phase
flow at the inlet is uniform and equal. The velocity inlet boundary condition is set at the
inlet of the domain. The IGVF is set as 0, 0.05, 0.10, and 0.15, respectively. The IGVF is
defined as:

αg + αl = 1 (10)

αg =
Qg

Qg + Ql
(11)

where αg is the IGVF, αl is the inlet liquid volume fraction, Qg is the gas volume flow, and
Ql is the liquid volume flow.

The outlet boundary condition is set to 0.5 MPa static pressure to avoid cavitation in
industrial processes [17]. The rotational speeds during the start-up process under different
time steps are compared to verify their independence [22]. When the time step is 0.0005 s, it
has little effect on rotational speed in the start-up process. So the time step of the transient
calculation is set at 0.0005 s. Steady results are used as initial conditions for transient
calculation. Starting from the stationary state, the rotational speed of PAT increases with
the iteration of the time step. When the resultant torque on the impeller reduces to nearly 0,
the rotational speed no longer increases and keeps stable near the rated speed. It indicates
that the transient calculation of the PAT start-up process is completed.

2.5. Experimental Verification

The test device for PAT characteristics is shown in Figure 4. The test device and
equipment meet the II-level accuracy requirements in GB/T 3216-2005. Based on ensuring
that the liquid flow rate is at a constant value, the gas flow rate is controlled by the gas
regulating valve to obtain the gas–liquid mixture with different gas content so as to carry
out the gas–liquid two-phase test of PAT. The water in the water storage tank is mixed
with the air generated by the compressor in the gas–liquid mixing device after passing
through the electromagnetic flowmeter, and then they are transported to the PAT. Taking αg
= 0.15 as an example, the head and efficiency of PAT after the end of the start-up are tested
under different flow rates and compared with the simulated results, as shown in Figure 5.
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The rotational speeds are acquired by testing once every 0.1 s during the start-up process.
Figure 6 shows the comparison of rotational speed during the start-up process between
simulated and experimental results at αg = 0.15. The simulated results are consistent with
the experimental results; this indicates that the simulation method in this study is reliable.
Since the inlet flow rate of PAT decreases with the increase in IGVF, the start-up time under
gas–liquid two-phase conditions is longer than that under pure water conditions.
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3. Results and Analysis
3.1. Internal Flow Field Distribution

Whether the pressure distribution is uniform in the impeller channel directly affects
the force of the impeller. The pressure distribution in the impeller is related to the change
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in rotational speed. The starting process is an accelerated motion with smaller and smaller
acceleration. At the beginning of starting, the acceleration is rather big, and the pressure
distributes more unevenly in the impeller. With the decrease in acceleration, the pressure
distributes more uniformly and gradually becomes a gradient distribution in the impeller.
From the most uneven at the beginning to the gradual gradient distribution afterward, the
variation trend of pressure distribution during the start-up process is similar at different
IGVFs. Thus the IGVF αg = 0.15 is taken as an example for analysis. Figure 7 shows the
static pressure distribution of the axial vertical plane in the flow field domain during the
start-up process. From the diagram, it is observed that a lot of low-pressure areas appear
in the impeller flow channel at t = 1 s. At t = 2 s, with the increase in rotational speed, the
low-pressure area in the impeller gradually decreases and converges to the inner edge of
the impeller. After t = 3 s, the rotational speed tends to be stable, and the pressure decreases
gradually from the volute inlet to the impeller outlet in gradient distribution along the
channel direction. The low-pressure area is mainly concentrated on the inner edge of the
impeller. The pressure on the suction surface of the blade is more significant than that on
the pressure surface of the blade.

Actuators 2022, 11, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 6. Comparison of rotational speed during the start-up process between simulated and exper-

imental results at αg = 0.15. 

3. Results and Analysis 

3.1. Internal Flow Field Distribution 

Whether the pressure distribution is uniform in the impeller channel directly affects 

the force of the impeller. The pressure distribution in the impeller is related to the change 

in rotational speed. The starting process is an accelerated motion with smaller and smaller 

acceleration. At the beginning of starting, the acceleration is rather big, and the pressure 

distributes more unevenly in the impeller. With the decrease in acceleration, the pressure 

distributes more uniformly and gradually becomes a gradient distribution in the impeller. 

From the most uneven at the beginning to the gradual gradient distribution afterward, 

the variation trend of pressure distribution during the start-up process is similar at differ-

ent IGVFs. Thus the IGVF αg = 0.15 is taken as an example for analysis. Figure 7 shows the 

static pressure distribution of the axial vertical plane in the flow field domain during the 

start-up process. From the diagram, it is observed that a lot of low-pressure areas appear 

in the impeller flow channel at t = 1 s. At t = 2 s, with the increase in rotational speed, the 

low-pressure area in the impeller gradually decreases and converges to the inner edge of 

the impeller. After t = 3 s, the rotational speed tends to be stable, and the pressure de-

creases gradually from the volute inlet to the impeller outlet in gradient distribution along 

the channel direction. The low-pressure area is mainly concentrated on the inner edge of 

the impeller. The pressure on the suction surface of the blade is more significant than that 

on the pressure surface of the blade. 

 
    

(a) (b) (c) (d) 

Figure 7. Pressure distribution of axial vertical plane at αg = 0.15. (a) t = 1 s; (b) t = 2 s; (c) t = 3 s; (d) t = 4 s. 

Figure 8 shows the velocity streamline distribution of the axial vertical surface in the 

flow field during the start-up process. From the diagram, it is observed that large-scale 

high-intensity vortices are formed in the impeller flow channel at t = 1 s. At t = 2 s, with 

Figure 7. Pressure distribution of axial vertical plane at αg = 0.15. (a) t = 1 s; (b) t = 2 s; (c) t = 3 s;
(d) t = 4 s.

Figure 8 shows the velocity streamline distribution of the axial vertical surface in the
flow field during the start-up process. From the diagram, it is observed that large-scale
high-intensity vortices are formed in the impeller flow channel at t = 1 s. At t = 2 s, with the
increase in rotational speed, the vortex intensity in the impeller decreases, and the vortices
aggregate near the outer edge of the impeller. After t = 3 s, the rotational speed tends to
be stable, the vortex intensity in the impeller decreases further, and the vortices show a
stability trend. They are mainly concentrated on the outer edge of the impeller.
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Figure 9 shows the gas volume fraction distribution of the axial vertical plane in the
flow field during the start-up process. From the diagram, it is observed that the gas phase
distribution in the whole flow field is not uniform at t = 1 s. The gas volume fraction in
the middle area of the impeller flow channel is high, and the distribution range is wide.
Compared with the velocity streamline in Figure 8, it is found that the area with high gas
phase concentration corresponds to a strong vortex at the beginning of start-up, which
shows that the generation of vortex in the impeller flow channel has a great relationship
with the accumulation of gas. At t = 2 s, the area of high gas phase concentration decreases
significantly, and the gas phase gradually gathers to the central region of the impeller. After
t = 3 s, the gas volume fraction increases gradually from the volute inlet to the draft tube
outlet. The gas phase will gather more in the inner edge of the impeller, and the gas volume
fraction near the blade suction surface is more significant than that near the blade pressure
surface. It is indicated that the gas phase tends to move along the blade suction toward
the impeller outlet. After entering the impeller, the liquid phase is subjected to a sizeable
inertial force and centrifugal force, deviating from the typical streamlined trajectory and
moving to the blade pressure surface. In comparison, the inertial and centrifugal force of
the gas phase subjected is relatively less. Under the squeezing action of the liquid phase,
the gas phase is forced to shift to the suction surface, so the gas volume fraction of the
suction surface is higher.
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3.2. Blade Load Distribution

The size and distribution characteristics of the PAT blade load directly affect the
conversion efficiency between fluid and mechanical energy and the stable operation of
the equipment. The blade load is obtained by calculating the pressure difference between
the blade pressure surface and the blade suction surface. Figure 10 shows the distribution
of blade load during the start-up process under different inlet volume fractions. The
ordinate p in the figure is the blade load, and the abscissa L* is the dimensionless parameter
representing the blade position. The 0 position defines the blade inlet, and the 1 position
defines the blade outlet. From the diagram, it is observed that the blade load will oscillate
violently from blade inlet to blade outlet under pure water and gas–liquid two-phase
conditions at t = 1 s. The maximum positive load is generated at the position of 0.24~0.34.
At this moment, the pressure on the pressure surface is more significant than on the suction
surface, resulting in the maximum dynamic torque. The blade load becomes 0 at the
position of 0.48~0.53. The maximum negative load is generated at the position of 0.63~0.78.
At this moment, the pressure on the pressure surface is less than that on the suction surface,
resulting in the maximum resistance torque. At t = 2 s, the oscillation of the blade load
distribution curve obviously weakens. The amplitude of the blade load is the largest under
the condition of αg = 0.15. The wave peak of the blade load curve is at 0.27 position,
and its wave trough is at 0.59 position. The maximum amplitude of the blade load is
reduced to 0.59 times that at t = 1 s. At t = 3 s, the blade load distribution is relatively flat
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under gas–liquid two-phase conditions. The blade load is the largest under the condition of
αg = 0.15, and the maximum blade load is 0.47 times that at t = 1 s. At t = 4 s, the distribution
of blade load shows a similar trend of steady condition. The blade load increases rapidly
along the flow direction of the fluid firstly and then changes gently to the maximum load
at the position of 0.6~0.8. The maximum blade load is 0.36 times that at t = 1 s, and then the
blade load decreases gradually to 0. It is proposed that the maximum load at the initial
start-up moment is distributed near the outer edge of the blade. With the increase in the
rotational speed, the oscillation of the blade load gradually weakens. After the rotational
speed is stable, the maximum load is distributed near the inner edge of the blade. At the
initial start-up moment, the greater the IGVF, the greater the amplitude of the blade load.
The crowding effect of the gas phase on the liquid phase increases with the increase in
the IGVF, which results in the uneven distribution of the liquid pressure in the impeller
flow channel and weakens the workability of the liquid phase to the impeller. Therefore,
decreasing the IGVF is helpful in reducing the oscillation of the blade load during the
start-up process, and thus the stability of the start-up process will be improved.
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3.3. Radial Force Analysis

When the fluid enters the PAT impeller through the spiral volute, the fluid pressure
distribution is not uniform around the impeller. Thus, the radial force acting on the impeller
will be produced. The vibration is caused by dynamic and static interference between the
rotating and stationary parts in the start-up process [23]. By monitoring the x-direction
force Fx and y-direction force Fy of the entire impeller during the start-up process, their
resultant force is the radial force Fr. Figure 11 shows the radial force vector distribution of a
rotation period during the start-up process at αg = 0.15. The magnitude and direction of the
radial force on the impeller change during the start-up process. At t = 1 s, the amplitude
of radial force fluctuation is the largest. Due to the uneven distribution of the local vortex
formed by the liquid flow in the impeller flow channel, the unbalanced radial force is
produced on the impeller, and the vector trajectory of radial force is in the fourth quadrant.
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At t = 2 s, the vector trajectory of radial force reduces and is still in the fourth quadrant,
but its center shifts to the lower left side compared to t = 1 s. When t ≥ 3 s, the vector
trajectory of radial force is slightly enlarged, and its shape is approximately elliptical. This
is because the PAT IGVF reaches a certain level, and the bubble destroys the symmetry
of the internal flow of the impeller, resulting in uneven distribution of the liquid flow in
each flow channel, and thus causing periodic unbalanced radial force, which will affect the
stability of the start-up process.
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To compare the effect of different IGVFs on the radial force time domain of the PAT
start-up process, the start-up process has been respectively calculated under four conditions
of αg = 0, αg = 0.05, αg = 0.10, and αg = 0.15. The time domain characteristic of radial force
during the start-up process is shown in Figure 12. The abscissa is a rotation period when
αg = 0.15, and the ordinate is the radial force. Due to the lower IGVF, the greater the
liquid inlet flow rate, the faster the PAT accelerates during the start-up process. At the
same time, the more minor the IGVF, the more the number of radial force fluctuation. At
t = 1 s, the time domain distribution of radial force is not uniform under different IGVFs.
The amplitude of radial force is the largest under the condition of αg = 0.10. At t = 2 s,
the amplitude of radial force under αg = 0 and αg = 0.05 is much larger than that under
αg = 0.10 and αg = 0.15. When t ≥ 3 s, the time domain distribution of radial force tends to
be stable and oscillates periodically. The amplitude of radial force at low IGVF is slightly
larger than at high IGVF. The number of radial force fluctuations is consistent with the
blade number in each change period. The impeller rotates one cycle, and the radial force
fluctuates six times.
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The frequency domain diagram of radial force is obtained by the Fast Fourier transform
(FFT) for the time domain diagram of radial force in Figure 12, as shown in Figure 13. In
the graph, the abscissa represents the multiple between the radial force frequency (f ) and
the impeller rotation frequency (fn), and the ordinate represents the amplitude of radial
force pulsation (Ar). At t = 1 s, the dominant frequency of radial force is 2 fn, and its
amplitude under gas–liquid two-phase conditions is more significant than that under pure
water conditions. At t = 2 s, the dominant frequency of radial force is 4 fn. At t = 3 s, the
dominant frequency of radial force is 5 fn. Its amplitude is the largest under the pure water
conditions and the smallest under the condition of αg = 0.10. At t = 4 s, the dominant
frequency of radial force is 6 fn, that is, the blade rotation frequency and the secondary
frequency is two times the blade rotation frequency. With the increase in IGVF, the dominant
frequency amplitude of radial force increases slightly. From the pure liquid conditions to
the gas–liquid two-phase conditions with increasing IGVF, at the same time, the dominant
frequency amplitude shows a similar trend of decreasing firstly but then increasing. This is
because a small number of bubbles will increase the non-uniformity of the flow rate, which
prompts the mainstream direction to change, and causes the radial velocity of the internal
fluid particles in the impeller to change. The amplitude of radial force pulsation becomes
lower under gas–liquid two-phase conditions than pure water conditions. When the IGVF
increases, the tiny bubbles rise and merge to form an unstable bubble flow. These bubbles
continue to rupture or merge, which will exacerbate the oscillation of radial force.
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3.4. Axial Force Analysis

Due to the asymmetry between the front and the back shroud of the impeller and the
difference in compression area, the axial force acting on the PAT impeller is produced in
its start-up process. The axial force is mainly composed of the internal force acting on the
front and the back shroud of the impeller, the external force acting on them, and the force
acting on the blade [14]. The start-up process has been respectively calculated under four
conditions of αg = 0, αg = 0.05, αg = 0.10, and αg = 0.15. The time domain characteristic
of axial force during the start-up process is shown in Figure 14. At t = 1 s, the axial force
shows the maximum amplitude and fluctuates twice in a fluctuation cycle under gas–liquid
two-phase conditions. The magnitude and amplitude of the axial force under pure water
conditions are greater than those under gas–liquid two-phase conditions. At t = 2 s, the
axial force at αg = 0 and αg = 0.05 has a secondary fluctuation in a fluctuation period, and
the axial force at αg = 0.1 and αg = 0.15 has a periodic oscillation. When t ≥ 3 s, the axial
force oscillates periodically under different IGVFs, and the amplitude of the axial force
decreases gradually. The magnitude of axial force under low IGVF is more significant
than those under high IGVF. The number of axial force fluctuations in each change cycle is
consistent with the blade number.
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Figure 14. Time domain characteristic of axial force during the start-up process. (a) t = 1 s; (b) t = 2 s;
(c) t = 3 s; (d) t = 4 s.

The frequency domain diagram of axial force is obtained by the FFT for the time
domain diagram of axial force in Figure 14, as shown in Figure 15. At t = 1 s, the dom-
inant frequency of axial force is 2 fn, and its amplitude under the gas–liquid two-phase
conditions is more significant than that under the pure water conditions. At t = 2 s, the
dominant frequency of axial force is 4 fn, and its amplitude is the largest at αg = 0.15. The
frequency domain amplitude of axial force under pure water conditions attenuates slowly.
The axial force still has a large frequency domain amplitude at the high-order frequency
multiplication of the blade rotation frequency. At t = 3 s, the dominant frequency of axial
force is 5 fn. At t = 4 s, the dominant frequency of axial force is 6 fn, that is, the blade rotation
frequency, and the secondary frequency is equal to 2 times the blade rotation frequency. At
the beginning of start-up, the dominant frequency amplitude of axial force is the largest,
gradually decreasing with the increase in rotational speed. The higher the IGVF, the greater
the dominant frequency amplitude of axial force at the same time.
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Figure 15. Frequency domain characteristic of axial force pulsation during the start-up process.
(a) t = 1 s; (b) t = 2 s; (c) t = 3 s; (d) t = 4 s.

4. Conclusions

In this study, the evolution mechanism of the internal flow field and the force char-
acteristics during the PAT start-up process under gas–liquid two-phase conditions were
proposed using numerical simulation and experiments. The major findings are as follows:

(1) At the beginning of start-up, the gas volume fraction is high, its distribution is uneven
in the impeller, and the area with high gas phase concentration corresponds to a
strong vortex. With the increase in rotational speed, the low-pressure area, the high-
concentration gas phase region, and the vortex intensity in the impeller gradually
decrease. The gas phase gradually converges to the inner edge of the impeller, and
the gas volume fraction of the blade suction surface is more significant than that of
the blade pressure surface.

(2) At the beginning of start-up, the blade load oscillates violently, and the maximum load
is distributed near the outer edge of the blade. As the rotational speed increases, the
oscillation of the blade load gradually weakens, and the maximum load is distributed
near the inner edge of the blade after the rotational speed is stable. The larger the
IGVF, the more severe the blade load oscillation during the start-up process. Therefore,
reducing the IGVF is helpful in improving the stability of the PAT start-up process.

(3) The periodic unbalanced radial force is produced in the start-up process. From the
pure liquid conditions to the gas–liquid two-phase conditions with increasing IGVF,
the dominant frequency amplitude of radial force shows a similar trend of decreasing
first but then increasing. After the rotational speed tends to be stable, the dominant
frequency of radial force is equal to the rotational frequency of the blade. With the
increase in IGVF, the dominant frequency amplitude of radial force decreases slightly
at the same time.

(4) At the beginning of start-up, the axial force shows the maximum amplitude and
fluctuates twice in a fluctuation cycle under gas–liquid two-phase conditions. With the
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increase in rotational speed, the dominant frequency amplitude of axial force decreases
gradually. The higher the IGVF, the greater the dominant frequency amplitude of
axial force at the same time.
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