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Abstract: This paper presents two nonlinear model predictive control (MPC) methods for the in-
tegrated propulsion and cabin-cooling management of electric vehicles. An air-conditioning (AC)
model, which has previously been validated on a real system, is used to accomplish system-level
optimization. To investigate the optimal solution for the integrated optimal control problem (OCP),
we first build an MPC, referred to as a joint MPC, in which the goal is to minimize battery energy
consumption while maintaining cabin-cooling comfort. Second, we divide the integrated OCP into
two small-scale problems and devise a co-optimization MPC (co-MPC), where speed planning on
hilly roads and cabin-cooling management with propulsion power information are addressed suc-
cessively. Our proposed MPC methods are then validated through two case studies. The results
show that both the joint MPC and co-MPC can produce significant energy benefits while maintaining
driving and thermal comfort. Compared to regular constant-speed cruise control that is equipped
with a proportion integral (PI)-based AC controller, the benefits to the battery energy earned by the
joint MPC and co-MPC range from 2.09% to 2.72%. Furthermore, compared with the joint MPC,
the co-MPC method can achieve comparable performance in energy consumption and temperature
regulation but with reduced computation time.

Keywords: eco-driving; speed planning; cabin thermal management; model predictive control;
electric vehicle

1. Introduction

The electrification of vehicles has become an unstoppable force due to severe environ-
mental pollution and a shortage of fossil fuel resources [1,2]. Compared to hybrid electric
vehicles (HEVs), electric vehicles (EVs) have higher energy efficiency and can realize zero
emissions. With their superior performance, EVs are becoming more attractive to automo-
tive manufacturers and consumers [3]. Nonetheless, the well-known range anxiety caused
by limited battery capacity remains a concern for further establishing their mass-market ac-
ceptance [4]. Therefore, improving overall energy efficiency and saving energy are essential
for EVs.

Eco-driving is the main method of increasing the efficiency of EVs. Based on terrain
data obtained from vehicle-to-infrastructure (V2I) or geographical information systems
(GIS), the eco-driving controller can determine the optimal energy-saving velocity profile
along a certain route [5–7]. Several methods have been proposed in the past to address
this topic. Dynamic programming (DP), also known as the globally optimal method, is
widely used as a benchmark strategy but is not suited for real-time applications due to
its computational burden [8–10]. Another popular method is Pontryagin’s maximum
principle (PMP), which has been demonstrated to be successful in addressing real-time
energy management in HEVs [11]. Yet, for speed planning on hilly roads, the PMP method
is still burdened with a high computational load or is too complex to implement [12]. In
addition, heuristic-based feedback control methods have been proposed, but these rely
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heavily on parameter tuning, and their performance may deteriorate in various driving
situations [13]. Recently, reinforcement learning (RL) methods have also been adopted
for eco-driving [14]. RL is very similar to DP in that it can optimize the cost-to-go value
function based on the Bellman equation. Unlike DP, RL introduces approximations to
improve computational efficiency and thus can be used as a real-time controller [15]. The
drawbacks of RL are the difficulty of designing a good reward function and balancing
‘exploration’ and ‘exploitation’, which can cause the algorithm to easily become trapped
in a local optimum [16]. To take into account both the optimization performance and
computational efficiency, model predictive control (MPC) has been proposed [17–19]. A
two-level MPC method was presented in [20] to solve the cruise problem for a parallel HEV.
The case study demonstrated that MPC is a suitable method for HEV energy management
and cruise control.

However, the aforementioned eco-driving studies only dealt with the propulsion
system. The power consumption of the heating, ventilation, and air conditioning (HVAC)
was not considered. In fact, the HVAC system can contribute up to 20% of a vehicle’s
energy consumption in hot or cold environments [21,22]. Several studies have been con-
ducted to incorporate cabin thermal management into the power management of a single
vehicle or multiple connected and automated vehicles. A battery lifetime-aware automo-
tive climate control methodology was developed in [23] for an EV. However, this study
adopted a low-order air-conditioning (AC) model that limited the model’s accuracy and
caused variations in the controller’s performance for different drive profiles and ambient
temperatures. A more accurate control-oriented AC system predictive model was described
in [24]. With this model, an eco-cooling control method for a vehicle’s AC system was
developed, incorporating the vehicle speed profile [25,26]. Similar studies and methods
can be found in [27–29], where vehicle speed and traffic preview predictions over short
and long prediction horizons were exploited. To consolidate the performance of these
MPCs, two different multi-level MPC methods were proposed in [30,31]. Focusing on
real-time computation, a linear time-varying MPC method was developed in [32] for an AC
model with an ideal vapor-compression cycle. It can be concluded that most state-of-art
AC control methods are usually designed to minimize AC power consumption under
the assumption that speed profiles are known in advance. However, this is not always
a reliable assumption. For example, a vehicle’s speed may vary depending on the speed
limits, topography, and surrounding traffic. Meanwhile, the predicted speed can be further
optimized to achieve eco-driving. Thus, instead of estimating the future speed, it would be
more practical to optimally regulate the future speed.

To the best of the authors’ knowledge, eco-driving and HVAC management have not
been considered together in an optimal control problem (OCP). In this paper, we study the
integrated optimal control of eco-driving and cabin-cooling management using the MPC
method. The main contributions are highlighted as follows:

• A joint optimization-based MPC is proposed to address the integration problem of
eco-driving and thermal management. In order to achieve cabin thermal comfort,
we introduce a novel state that constrains the average temperature over a moving
window, thus ensuring fairness in the assessment of energy savings;

• A co-optimization-based MPC is subsequently proposed in order to produce compara-
ble performance with a lower computational load;

• A detailed analysis is conducted in which the proposed MPC methods are compared
to other benchmark control methods and their practicability is examined.

The remainder of this paper is organized as follows: Section 2 presents the system
modeling including the control-oriented modeling of AC-level optimization and its vali-
dation. Section 3 uses the MPC method to formulate the optimization problem in both a
global and distributed manner. The simulation setup and results of the case studies are
presented in Section 4. Section 5 provides the performance evaluation of the proposed MPC
methods. Finally, the concluding remarks are given in Section 6.
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2. System Modeling

The overall power consumption of an EV, in which the battery is the main energy
supplier, is categorized into three types: the propulsion motor, air-conditioning (AC)
system, and vehicle ancillaries. Compared to the other two types, the ancillaries’ load
is marginal and ignored in this study [33]. The modeling of the propulsion system as a
part of the longitudinal dynamics of the vehicle, as well as the AC and battery system, are
presented in this section. The schematic of the overall EV system is depicted in Figure 1.
As shown in the figure, the EV system consists of a propulsion system, an AC system, and
a cabin thermal system. Both the propulsion and AC systems are powered by the battery
pack that is passively cooled by ambient air. The AC system has two operating modes,
fresh air and recirculation. The cabin air temperature is influenced by the vented air into
the cabin, the heat exchange with the cabin shell, and the cabin interior.
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Figure 1. Schematic of the studied EV, including the propulsion system, AC system, and cabin
thermal system. The AC system uses a refrigerant cycle with an electrically driven compressor for
cooling. In the studied system, the battery pack is passively cooled by ambient air.

2.1. Vehicle Longitudinal Dynamics

Driving on a hilly road while achieving a certain kinetic and potential energy, the
vehicle encounters retarding forces that include gradient resistance, rolling resistance, and
air drag. The longitudinal dynamics schematic is illustrated in Figure 2, where m, kf, r,
and g are the vehicle mass, final reduction ratio, wheel radius, and gravity acceleration,
respectively; f is the rolling friction coefficient; and α(s) denotes the road slope at location
s. The parameters CD, Af, and ρ denote the aerodynamic drag coefficient, vehicle frontal
area, and air density, respectively.
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Figure 2. Schematic of longitudinal dynamics.

The vehicle’s longitudinal acceleration is described by

a(s) =
dv(s)

dt
= v(s)

dv(s)
ds

=
kf
r

Tm(s)
m
− g f cos α(s)− g sin α(s)− CD Afρv2(s)

2m
(1)

where the acceleration provided by the motor torque Tm, i.e., am = kfTm/rm, is taken as
the control input.

The road slope α(s) is a location-related factor that could be highly nonlinear. To
remove the nonlinearity originating from the road slope, the longitudinal dynamics in
Equation (1) are described in the space domain using the transformation between the time
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and space coordinates, that is, dv/dt = vdv/ds. Defining the kinetic energy of a unit mass
EV = v2/2, the system state v can be replaced with EV. Combining this with a = dv/dt
and dv/dt = vdv/ds, the derivative of EV with respect to the position can be written as

dEV(s)
ds

= fEV,s = bEV(s) + am(s)− aroad(s), (2)

where b = −CD Afρ/m, and

aroad(s) = g f cos α(s) + g sin α(s). (3)

Because the longitudinal dynamics are formulated in the space coordinates, the travel time
t becomes a system state expressed by

dt(s)
ds

= ft,s =
1√

2EV(s)
. (4)

The right-hand sides of the dynamics in Equations (2) and (4) are compactly represented by
the functions fEV,s and ft,s, where the first subscript denotes the respective state and the
second subscript implies that the dynamics are derived from distance s.

The linear dynamics in Equation (2) and the nonlinear dynamics in Equation (4)
are discretized in the space domain using zero-order hold and forward Euler methods,
respectively,

EV(k + 1) = f̃EV,s = eb∆sEV(k) +
am(k)− aroad(k)

b
(eb∆s − 1) (5)

t(k + 1) = f̃t,s = t(k) +
1√

2EV(k)
∆s, (6)

where ∆s is the distance sampling interval. A detailed implementation of the zero-order
hold method can be found in [19]. The tilde symbol over the functions indicates that the
dynamics have been discretized.

2.2. Propulsion System

Focusing on Nissan Leaf 2013, which is the prototype vehicle for this study, a bench-
mark study, along with elaborate experimental measurements, was carried out by Oak
Ridge National Laboratory [34]. Based on the experimental data in [34], the power con-
sumption of the entire propulsion system (motor and inverter) Pprop is regarded as a
nonlinear function of the motor torque Tm and rotational speed ωm. An interpolation
polynomial is chosen to fit the original data

Pprop(ωm, Tm) = p1 + p2ωm + p3Tm + p4ω2
m + p5ωmTm + p6T2

m, (7)

where the coefficients p1, p2, p3, p4 , p5, and p6 are 233.7, 1.084, 2.869, 1.485× 10−3, 0.9972,
and 0.1165, respectively. The polynomial order is determined by trial and error according
to the measured operation data. As demonstrated in Figure 3a, a good fit can be obtained
using a second-order polynomial in both ωm and Tm. The bounds on Tm are illustrated in
Figure 3b. To remove the need for interpolation, a piecewise nonlinear approximation is
implemented on the original bounds, as depicted by the green lines in Figure 3b. A detailed
description can be found in [20]. The limits on Tm can be translated as the limits on the
longitudinal force (i.e., limits on acceleration)

max(−c1, −c2 − c3EV(k)−0.5) ≤ rmam(k)
kf

rmam(k)
kf

≤ min(c1, c2 + c3EV(k)−0.5),
(8)
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where the coefficients c1, c2, and c3 are 280, −160.9, and 7381, respectively. Here, ωm has
been expressed as a function of EV.
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Figure 3. Power consumption and torque bounds of the motor. (a) Power consumption: measure-
ments are represented by dots and the fitted polynomial by a surface; (b) Torque bounds of the
motor, where the maximum and minimum torques of the motor are depicted by solid and dashed
lines, respectively.

2.3. AC System

A high-fidelity AC system was established based on CoolSim, which is an open-source
modeling environment available from the National Renewable Energy Lab (NREL); the
modeling details can be found in [35]. This AC model was validated on experimental data
in [36]. To reduce the control complexity, in this study, we perform a system-level analysis
for which a simplified control model is more adequate, e.g., the model proposed in [26].
The discrete-time AC model is described as

θcab(k + 1) = f̃θcab,t = θcab(k) + ξ1(θint(k)− θcab(k))

+ ξ2(θshell(k)− θcab(k)) + ξ3Wbl(k)(θain(θevap, θcab)− θcab(k)) + ξ4
(9)

θevap(k + 1) = f̃θevap,t = θevap(k) + ξ5(θevap(k)− θ
targ
evap(k))

+ ξ6Wbl(k)(θevap(k)− θamb(k)) + ξ7∆Wbl(k)(θevap(k)− θamb(k)) + ξ8
(10)

θain(θevap, θcab) = ξ9θevap(k) + ξ10θcab(k) + ξ11 (11)

Wbl(k + 1) = f̃Wbl,t = Wbl(k) + ∆Wbl(k), (12)

where θcab, θint, θshell, θain, θevap, and θ
targ
evap represent the temperature (in °C) of the cabin air,

cabin interior, cabin shell, cabin inlet air, evaporator wall, and evaporator wall temperature
target, respectively. In Equation (12), Wbl and ∆Wbl are the blower air flow rate and its
increment (in kg/s). The proposed AC model possesses the following characteristics:

1. The models given by Equations (9) and (10) are nonlinear due to the bilinear terms
in them.

2. The variable θain in Equation (9) is just an intermediate or auxiliary variable and not a
state variable. It can be directly obtained from Equation (11).

3. The temperatures θint and θshell are dynamic but they change slowly and have lit-
tle impact on the integration of the system. Hence, they are considered as the
input parameters.

In summary, this simplified AC model has three states, θcab, θevap, and Wbl, and two
control inputs, θ

targ
evap and ∆Wbl. Notice that the thermal dynamics are derived from time,

which is indicated by the subscript t in the functions f̃θcab,t, f̃θevap,t, and f̃Wbl,t.
The condenser fan, blower fan, and compressor constitute the primary energy con-

sumers of the AC system. In this work, the power to drive the condenser fan, denoted as
Pfanc, is set (unchanged) to 233 W [35]. To estimate the blower fan power Pfanb, a regression
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model is directly applied [24]. The compressor power Pcomp is usually determined by a
simple model involving the difference in energy between the ambient air and cabin inlet
air [37]. Based on the test data in CoolSim, Pcomp and Pfanb are expressed as

Pcomp(·) =
cair

COP
β1Wbl(k)(θamb(k)− θain(·)) (13)

Pfanb(Wbl) = β2W2
bl(k) + β3Wbl(k) + β4, (14)

where cair = 1008 J/kgK is the specific heat capacity of air at constant pressure, COP is the
coefficient of performance of the cooling process, θamb is the ambient temperature, and (·)
is used as a compact notation for a function of multiple variables. Note that Equation (13) is
defined for fresh-air flow, and θamb in Equation (13) should be replaced by θcab if the cabin
air is recirculated.

The unknown parameters in Equations (9)–(14) are identified by collecting the re-
sponses of the high-fidelity CoolSim model under different random inputs [24] every 1 s.
Figure 4 provides the validation results of the control-oriented AC model, where the first
two plots are the sinusoidal inputs to the AC system. Figure 4c–e show the outputs of both
the control-oriented model and high-fidelity model.
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Figure 4. Validation of the control-oriented AC model. Sinusoidal inputs to the AC system: (a) the
target temperature of the wall of the evaporator and (b) the flow rate of the blower air. Outputs
include (c) the temperature of the evaporator, (d) the air inlet temperature into the cabin, and (e) the
air temperature in the cabin, as well as the power of two components: (f) the evaporator blower and
(g) the compressor.

In comparison to the actual results from the high-fidelity model in CoolSim, the
control-oriented AC model shows good accuracy in capturing the trends in the AC system
outputs. Additionally, Figure 4f,g show the comparison between the actual AC power in
CoolSim and the estimated AC power using Equations (13) and (14). The figure shows that
the two sets of data are very close.
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2.4. Battery System

The Li-ion battery is modeled by an equivalent circuit model

Pbat(·) = Uoc Ibat − I2
batRbat = Pprop(·) + Pcomp(·) + Pfanb(Wbl) + Pfanc, (15)

where Pbat is the power at the battery terminals, Ibat is the current (positive during discharge,
negative during charge), Uoc is the open-circuit voltage, and Rbat is the equivalent internal
resistance [19,31].

By solving Equation (15), Ibat can be expressed as

Ibat(·) =
Uoc −

√
U2

oc − 4Pbat(·)Rbat
2Rbat

. (16)

The power consumption of the battery at each instant is calculated as the product Uoc Ibat(·).

3. MPC Method and Formulation

In this section, the MPC method is applied to the integrated OCP as described above,
and two different MPC problem formulations are described. We first propose a joint
optimization-based MPC method in which the objective is to minimize battery energy loss
while maintaining cabin-cooling comfort. Then, a co-optimization-based MPC method
is presented in which speed planning on hilly roads and cabin-cooling management are
treated successively.

3.1. Joint Optimization-Based MPC Method

Although the AC system and propulsion system are two independent systems, their
stress on the battery is applied simultaneously. Hence, a general idea is to formulate a joint
optimization-based MPC (joint MPC) problem to explore the potential for saving energy.

For each sampling interval, the objective is to minimize the energy costs by integrating
the battery power

J(·) = Uoc Ibat(x, u, w)
∆s√
2EV

, (17)

where ∆s/
√

2EV denotes the passing time per sampling interval. Here, x, u, and w
are the states, control inputs, and predicted disturbances, which are described in more
detail below.

Besides minimizing energy costs, the MPC is required to keep states within bounds.
Some of these bounds, including the speed and cabin temperature limits, are allowed to be
violated for a short period. This is modeled by relaxing the state constraints as

vmin(k|i)2

2
≤ Ev(k|i) + δEv(k|i) ≤

vmax(k|i)2

2
(18)

θcabmin ≤ θcab(k|i) + δθcab
(k|i) ≤ θcabmax , (19)

where vmin(k|i) and vmax(k|i) are the minimum and maximum allowable speeds along
the prediction horizon and δEv and δθcab

are slack variables. The severity of the constraint
violation is regulated by penalizing the slack variables within the objective function.

To better regulate the cabin temperature, an additional constraint is imposed to main-
tain the average cabin temperature θ

avg
cab at the desired target temperature θ

targ
cab within the

prediction horizon. This requires introducing a new state

θ
avg
cab (k + 1) = f̃θ

avg
cab ,t = θ

avg
cab (k) +

∆tθcab(k)
tdes

, (20)



Actuators 2022, 11, 356 8 of 21

where tdes is the desired driving time along the prediction horizon and θ
avg
cab (0) = 0. The

cooling demand can be strictly met by constraining the average cabin temperature at the
end of the horizon to

θ
avg
cab (N) + δθ

avg
cab

= θ
targ
cab , (21)

where N is the number of samples along the horizon. During the first few MPC updates,
the cooling system may not be powerful enough to keep the average temperature at the
target value. Hence, Equation (21) is relaxed by the slack variable δθ

avg
cab

, which is a scalar
value that will also be penalized in the objective function.

In principle, it is not necessary to introduce the new state θ
avg
cab , as the cabin temperature

can also be regulated by a penalizing deviation from θ
targ
cab within the objective function.

However, this would require the tuning of an additional penalty for the temperature
deviation, which is avoided by the formulation with the new state.

The vectors of the states, control inputs, and predicted disturbances in the joint MPC
can be summarized as 

x =
[
EV t θcab θevap Wbl θ

avg
cab

]>
u =

[
am θ

targ
evap ∆Wbl

]>
w =

[
α θamb θint θshell

]>,

(22)

respectively. Combining Equations (2)–(4), Equations (9)–(12), and (20), the system dynam-
ics can be written as

f̃s =
[

f̃EV,s f̃t,s f̃θcab,s f̃θevap,s f̃Wbl,s f̃θ
avg
cab ,s

]>
, (23)

where f̃θcab,s, f̃θevap,s, f̃Wbl,s, and f̃θ
avg
cab ,s can be easily obtained from f̃θcab,t, f̃θevap,t, f̃Wbl,t, and

f̃θ
avg
cab ,t by applying a simple conversion, as follows. For any of the four thermal states, θcab,

θevap, Wbl, and θ
avg
cab , their discrete dynamics in both the time and space domains can be

written using first-order discretization as
x(k + 1) = x(k) + ∆t ft = f̃x,t

x(k + 1) = x(k) +
∆s√
2EV

ft = f̃x,s,
(24)

respectively. Eliminating ft, the dynamics in the space domain f̃x,s are rewritten as

f̃x,s = x(k)
(

1− ∆s√
2EV∆t

)
+

∆s f̃x,t√
2EV∆t

. (25)
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In its more general form, the joint MPC in the discrete space with the prediction made
at the time instant i is defined as

min
N

∑
k=1

(
J(x, u, w) + W(δEv , δθcab

)
)
+ ρθ

avg
cab

δ2
θ

avg
cab

(i) (26a)

subject to

x(k + 1|i) = f̃s(x(k|i), u(k|i), w(k|i)) (26b)

x(k|i) ∈ [xmin(k|i), xmax(k|i)] (26c)

u(k|i) ∈ [umin(i), umax(i)] (26d)

g(x, u, w) ≤ 0 (26e)

x(0|i) = x(i), (26f)

x(N1|i) ∈ X (i) (26g)

where k is the discrete index for the sample along the horizon. The penalties of the slack
variables

W(δEv , δθcab
) = ρEv δ2

Ev
(k|i) + ρθcab

δ2
θcab

(k|i) (27)

and ρθ
avg
cab

δ2
θ

avg
cab

(i) are added to the objective function Equation (26a). The penalty factors

ρEv , ρθcab
, and ρθ

avg
cab

are generally set to large values. The constraints of all the state and
control variables are defined by Equations (26b)–(26d) according to the system operating
requirements. Equation (26e) collects all inequality constraints. The initial state values
can be found in Equation (26f), and a target set for all the final state values is imposed by
Equation (26g). From the disturbance vector, the road slope α(k|i) is assumed to be known
along the prediction horizon, whereas the remaining disturbances, θint(i) and θshell(i), are
assumed constant along the prediction horizon but may change value at different MPC
updates, invoked at sample i.

The vector function in Equation (26e) includes three sets of inequality constraints:

1. The speed and cabin temperature limits in Equations (18) and (19).
2. Limits on the motor torque in Equation (8).
3. Vehicle acceleration limits amin and amax imposed to reduce driving discomfort,

amin ≤ fEV,s(k|i) ≤ amax, (28)

where the vehicle acceleration equals fEV,s, as shown in Equation (2).

The target set X (i) in Equation (26g) contains three items called by the optimization
mission:

1. The passing time over the prediction horizon N, which should adhere to a specified
value

t(N|i)− t(0|i) ≤ tdes(i), (29)

where tdes is the desired passing time and is computed by

tdes(i) =
N

∑
k=1

2∆s
vmin(k|i) + vmax(k|i)

. (30)

2. The target speed, as the vehicle is expected to end the horizon with the average or
greater speed. This requires

EV(N|i) ≥ 1
2
(

vmin(N|i) + vmax(N|i)
2

)2 = (vmin(N|i) + vmax(N|i))2/8. (31)

3. The target average cabin temperature in Equation (21).
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3.2. Co-Optimization-Based MPC Method

A sub-optimal solution to the joint optimization problem is a co-optimization-based
MPC (co-MPC). The control structure of the co-MPC is shown in Figure 5. It can be seen
that the co-MPC is a two-layer approach, where two MPCs are customized for the driving
speed optimization and cabin-cooling optimization, respectively. The higher-layer MPC
(HMPC) computes the propulsion power and time trajectories (P̂prop, t̂) to the end of the
horizon. Then, the lower-layer MPC (LMPC) uses these trajectories to compute the control
inputs to the AC system.

Minimize propulsion 

energy

Minimize battery energy 

consumption while regulating 

cabin temperature

Higher layer MPC -

driving speed optimization

Lower layer MPC -

cabin cooling optimization

Propulsion 

power and time 

trajectories

Co-MPCOptimization goals

𝑃prop, Ƹ𝑡

Figure 5. Control structure of the co-MPC. Two different optimization goals are selected for the
higher-layer and lower-layer MPCs.

Aiming to minimize the net propulsion energy, the HMPC is defined in the discrete
space to directly utilize the road information predicted at instant i,

min
Nh

∑
k=1

(
Pprop

∆s√
2EV/m

+ ρEv δ2
Ev

)
(32a)

subject to

xh(k + 1|i) = f̃s,h(xh(k|i), uh(k|i), wh(k|i)) (32b)

xh(k|i) ∈ [xh,min(k|i), xh,max(k|i)] (32c)

uh(k|i) ∈ [uh,min(i), uh,max(i)] (32d)

gh(xh, uh, wh) ≤ 0 (32e)

xh(0|i) = xh(i), (32f)

xh(Nh|i) ∈ Xh(i) (32g)

where Nh is the prediction horizon. In this problem, the state, control, and auxiliary
variables are set as

xh = [EV t]T, uh = [am], wh = [α], (33)

and f̃s,h = [ f̃EV,s f̃t,s]T is the state dynamics vector. The constraints of all system variables
and inequality constraints, along with the initial state values and final state targets, are
indicated by Equations (32c)–(32g). Details can be found in Section 3.1.

The LMPC is designed, as seen in Figure 5, to minimize battery energy consumption
while regulating cabin temperature similarly to the joint MPC. However, although the joint
MPC is implemented in the space domain, the LMPC is implemented in the time domain,
as the prediction of the speed trajectory is now available from the HMPC. Taking Nl and ∆t



Actuators 2022, 11, 356 11 of 21

as the prediction horizon and the sampling interval, the LMPC in the discrete time with
disturbance P̂prop predicted at the time instant i is defined as

min
Nl

∑
k=1

(
Uoc Ibat(xl, ul, wl)∆t + ρθcab

δ2
θcab

)
+ ρθ

avg
cab

δ2
θ

avg
cab

(i) (34a)

subject to

xl(k + 1|i) = f̃t,l(xl(k|i), ul(k|i), wl(k|i)) (34b)

xl(k|i) ∈ [xl,min(k|i), xl,max(k|i)] (34c)

ul(k|i) ∈ [ul,min(i), ul,max(i)] (34d)

xl(0|i) = xl(i), (34e)

θ
avg
cab (Nl) = θ

targ
cab (34f)

where the index k indicates the current travel time of the vehicle. The state, control, and
auxiliary variables are set as 

xl = [θcab θevap Wbl θ
avg
cab ]

T

ul = [θ
targ
evap ∆Wbl]

T

wl = [Pprop θamb θint θshell]
T,

(35)

and f̃t,l = [ f̃θcab,t f̃θevap,t f̃Wbl,t f̃θ
avg
cab ,t]

T is the state dynamics vector. It should be noted
that tdes used in Equation (20) has been replaced with Nl∆t. The constraints of the state
and control variables, as well as the initial states and final state target, are indicated by
Equations (34c)–(34f). Please see Section 3.1 for more details.

4. Case Studies

The established MPCs were first verified using an urban expressway segment of a
length of 20 km located between Xuanwu Nanjing and Jurong Zhenjiang in China. The
altitude information was taken from the Google Elevation API. In this study, we assumed
that there was no leading vehicle on the road, which meant that the ego vehicle could
freely change its speed within the given limits. The upper speed limit was set to 70 km/h
according to the legal limit, whereas the lower limit was set to 50 km/h to avoid blocking
traffic. Meanwhile, θamb and θ

targ
cab were set at 30 °C and 24 °C to imitate a summer cooling

scenario. Other parameters used in the constraints on the state variables and control inputs
are given as 

θcab ∈ [23.5 °C, 24.5 °C]

θevap ∈ [0 °C, 12 °C]

Wbl ∈ [0.02 kg/s, 0.18 kg/s]

θ
targ
evap ∈ [3 °C, 10 °C]

∆Wbl ∈ [−0.05 kg/s, 0.05 kg/s]

a ∈ [−1.5 m/s2, 1.5 m/s2].

(36)

4.1. Parameters and Numerical Solver

The parameters of the EV and AC models are listed in Table 1, whereas Table 2 lists
the design parameters of the joint MPC and co-MPC. As indicated in Table 1, the control
horizon was identical to the prediction horizon. The settings were chosen to balance
the control performance and computational cost. The software CasADi with the interior-
point optimization solver (IPOPT) was selected to solve the established MPCs [38]. The
simulations were conducted on a desktop computer (Intel i7-11700 CPU with 2.5 GHz and
16 GB RAM) using MATLAB 2019a.
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Table 1. Parameters of the EV and AC models.

Parameter Value

Vehicle mass m 1521 kg
Aerodynamic drag coefficient CD 0.32

Vehicle front area Af 2.277 m2

Rolling resistance coefficient f 0.015
Air density ρ 1.2 kg/m3

Gravitational acceleration g 9.81 m/s2

Wheel radius r 0.316 m
Battery normal voltage Uoc 365 V
Battery pack resistance Rbat 0.11Ω

Specific heat capacity of air cair 1008 J/kgK
Coefficient of performance COP 3.5

AC parameter ξj(j = 1, 2, ..., 11) [0.0699,0.0298,0.3566,−0.2961,−0.0845,−0.1004,
−1.5820,−0.3278,0.7205,0.6874,−11.3561]

AC parameter βj(j = 1, 2, 3, 4) [1.51,26293,−2437,71]

Table 2. Parameters of the joint MPC and co-MPC.

Parameter Value

Joint MPC
Sampling interval ∆s 20 m

Prediction/control horizon N 50

Co-MPC
Sampling interval ∆s, ∆t 20 m, 1 s

Prediction/control horizon Nh, Nl 50, 60

4.2. Reference Methods

Two reference control methods were developed for comparison purposes. The first
method employed an ideal constant-speed (CS) strategy, whereas the AC system employed
a proportion integral (PI) strategy that is commonly applied to real-life vehicles. The PI
strategy regulated the evaporator wall temperature and the blower rate to maintain the
desired cabin air temperature. Detailed information about this PI strategy can be found
in [39]. The second method adopted the HMPC proposed in Section 3.2 to regulate the
driving speed, whereas the AC system was regulated by the PI. The above two reference
methods are named CS-PI and HMPC-PI, respectively.

Since the CS and PI were similar to the actual strategies, the CS-PI was considered
the baseline for the other methods. The HMPC-PI was used to demonstrate not only the
benefits of the speed optimization in comparison with the CS-PI but also the marginal
benefits achieved by the integrated optimization in comparison with the proposed joint
MPC and co-MPC.

4.3. Simulation Results

The altitude profile of the expressway and the speed trajectories are shown in Figure 6a,b.
As observed in the bottom plot, the driving speed was regulated by the road’s speed
limit. The HMPC-PI, co-MPC, and joint MPC show qualitatively similar speed trajectories,
which, in combination with the altitude profile in the top plot, yield the following features:
acceleration before going uphill, deceleration while going uphill, and acceleration while
going downhill. However, the variation in the amplitude of the joint MPC is greater than
those of the HMPC-PI and co-MPC. The acceleration profiles in Figure 6c also confirm the
effectiveness of the acceleration constraint. The jerk profiles shown in Figure 6d are also
provided here for a later discussion about driving comfort.
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Figure 6. Speed results of the first case study. (a) Altitude profile of the expressway; (b) Speed
trajectories for different methods; (c) Acceleration profiles of the co-MPC and joint MPC; (d) Jerk
profiles of the co-MPC and joint MPC.

To help clarify the behavior of cabin-cooling management, an LMPC control over a
single MPC update is presented before discussing the overall simulation results. In this
example, we assumed that the propulsion power over the prediction horizon P̂prop had
been calculated through the HMPC and had a simple form, as shown in Figure 7a. It can be
seen in Figure 7b that the cabin air temperature in both recirculation mode and fresh-air
mode exhibits similar trends. Initially set at 24 °C, θcab was forced to decrease below the
desired value. Following this, θcab was gradually raised to a high value and finally dropped
back to the desired value.

Driving time (s)

Driving time (s)

(a)

(b)

Figure 7. Results of an LMPC update. (a) Input to the LMPC: P̂prop; (b) Cabin air temperature in two
AC modes.
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Comparing the results in the two AC modes with and without cabin air recirculation,
we find that:

1. In fresh-air mode and when the propulsion power is negative, the proposed LMPC
does not decrease the cabin temperature too much below the average. This is because
the thermal losses increase with the difference between the ambient and cabin temper-
atures and are much greater than the losses from cycling the energy twice through the
battery, i.e., first recuperating the braking energy in the battery, and then using it later
to cool down the cabin when the propulsion power is positive. Hence, the thermal
buffer in fresh-air mode is much less efficient than the electric buffer.

2. In recirculation mode, the LMPC can make greater use of the thermal buffer to reduce
energy losses caused by double electricity cycling. During negative propulsion power,
the braking energy is used directly by the AC system to cool the cabin until the lower
temperature limit is reached, thus reducing the amount of energy recuperated in
the battery. During the positive propulsion power, the cabin temperature passively
increases due to the influence of the hot ambient temperature, although the battery
energy is still needed by the AC system to keep the average temperature at 24 °C. As
a result, the thermal buffer exhibits higher efficiency in recirculation mode than in
fresh-air mode.

Figure 8a,b show the cabin air temperature trajectories over the entire trip for the two
AC modes. In Figure 8a, it can be seen that θcab drops rapidly from the initial 30 °C to
around the desired 24 °C for all methods. During the remaining driving time, the CS-PI
and HMPC-PI cause θcab to stay nearly constant. On the contrary, both the co-MPC and
joint MPC cause θcab to change slightly around the desired 24 °C, as shown in the amplified
plot in Figure 8a. In Figure 8b, it can be seen that θcab initially reaches the same cabin
temperature in a shorter period of time due to the fact that the cabin air is recycled to blow
the evaporator during recirculation mode. On the other hand, the thermal buffer is better
utilized in recirculation mode.

A comparison of the AC system outputs of the different methods during a short period
[400 s 480 s] is shown in Figure 8c–h. Both the CS-PI and HMPC-PI maintain almost constant
cabin air temperatures and blower rates, with only small decreases in the blower rate, as
indicated by the black lines in Figure 8c,d. As with the co-MPC and joint MPC, the blower
rate displays similar patterns. In contrast, the cabin air temperature shows the opposite
trend in the blower rate, as shown by the blue and red lines in Figure 8d. Figure 8e,f present
the control inputs to the AC system. As can be seen, the proposed co-MPC and joint MPC
allow the evaporator wall temperature target to jump to the high bound, thus reducing
the cooling demand. The last two plots in Figure 8 show the AC power and propulsion
power, respectively. Based on these power curves and the aforementioned case study of an
LPMC update, it can be concluded that the proposed co-MPC and joint MPC demonstrate
the same power management approach for AC power: the AC power decreases when the
propulsion motor is consuming high power; the AC power increases when the propulsion
power is low.
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Figure 8. Thermal results of the first case study, as well as a comparison of the different methods
during a short period. (a) Cabin air temperature trajectory in fresh-air mode; (b) Cabin air temper-
ature trajectory in recirculation mode. The comparison includes the (c) Blower rate; (d) Cabin air
temperature; (e) Evaporator wall temperature target; (f) Increment of the blower rate; (g) AC power;
(h) Propulsion power.

To test the MPC under various road conditions, we included a hilly road between
Chengdu and Chongqing in China with a length of 14 km, whose terrain can be seen in
Figure 9a. The high and low speed limits were set to 80 km/h and 40 km/h, respectively.

The simulation results for the second case are illustrated in Figure 9, where the results
in fresh-air mode are ignored for simplicity. The terrain shown in Figure 9a displays fewer
saddles; thus, the regulated speed appears smoother. According to Figure 9b, only the
range [47,73] km/h is activated, which implies that maximizing the speed band usage is
not always required for optimal speed planning. In terms of the cabin air temperature, the
co-MPC and joint MPC produced similar results, as shown in Figure 9c.
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Figure 9. Simulation results of the second case study in recirculation mode. (a) Altitude profile of
the hilly road; (b) Speed trajectories for different methods; (c) Cabin air temperature trajectories for
different methods.

5. Performance Evaluation

In this section, the performance of the proposed methods in terms of energy efficiency,
thermal comfort, and computation time is discussed.

5.1. Energy Consumption Evaluation

Based on the simulation results of the first case study, the performances of the different
methods were summarized and are shown in Table 3. The first two rows in Table 3
illustrate that the average speed and average cabin temperature of each control method
were maintained at around 60 km/h and 24 °C, respectively. Therefore, it is reasonable to
compare energy consumption hereafter.

Table 3. Performance of the four methods in the first case study.

MPC Method CS-PI HMPC-PI Co-MPC Joint MPC
Fresh Recir Fresh Recir Fresh Recir Fresh Recir

Average speed (km/h) 60.00 60.00 60.02 60.02 60.02 60.02 60.01 60.04
Average θcab (°C) 23.97 23.97 23.97 23.98 23.98 23.97 23.94 23.95

Propulsion energy (MJ) 7.969 7.969 7.862 7.862 7.862 7.862 7.856 7.850
AC energy (MJ) 2.891 1.218 2.891 1.218 2.806 1.179 2.800 1.174

Battery energy (MJ) 11.123 9.426 10.940 9.244 10.853 9.203 10.821 9.183

For the first scenario in fresh-air mode, the propulsion energy, AC energy, and battery
energy of the CS-PI were 7.969 MJ, 2.891 MJ, and 11.123 MJ, respectively. In recirculation
mode, the corresponding values were 7.969 MJ, 1.218 MJ, and 9.426 MJ. Taking these values
as the baseline, the energy benefits earned by the other three methods in the two AC modes
were determined and are depicted in Figure 10.
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Figure 10. Energy benefits of the different methods compared to the CS-PI in the first case study.
(a) Fresh-air mode; (b) Recirculation mode.

It can be seen in Figure 10a that driving speed optimization with HMPC can reduce
propulsion energy by 1.34%. Using the cooling management in the co-MPC can enable
a 2.94% AC energy reduction compared to the HMPC-PI in fresh-air mode. Hence, the
co-MPC finally obtained a 2.43% total reduction in battery energy consumption, which is
0.78% higher than that of the HMPC-PI. As expected, among the three methods, the joint
MPC achieved the most savings. For instance, the joint MPC generates 2.72% savings in
battery energy loss, which is 1.07% higher than that of the HMPC-PI and 0.29% higher
than that of the co-MPC. Such additional 0.29% benefits are understandable since the
global solution Equation (26) theoretically allows a larger space for optimization than the
co-optimization solutions Equations (32) and (34).

When compared to fresh air mode, the co-MPC and joint MPC achieve greater AC
energy savings in recirculation mode, i.e., 4.01% and 4.41%, as listed in Figure 10b. These
results are reasonable since the thermal buffer is more effectively utilized in this mode, as
previously discussed. The battery energy savings of the three methods were 1.93%, 2.36%,
and 2.58%. Thus, compared to the HMPC-PI, the marginal AC benefits achieved by the
joint MPC were 0.65%.

Table 4 summarizes the performance of the four methods in the second case study
and Figure 11 provides the statistical energy benefits obtained from Table 4. As can be
seen, the co-MPC yielded a battery energy reduction of 2.09–2.22%, whereas the joint MPC
resulted in a reduction of 2.29–2.58%. Compared to the HMPC-PI, the marginal AC benefits
achieved by the joint MPC were as large as 1.48%.

Table 4. Performance of the four methods in the second case study.

MPC Method CS-PI HMPC-PI Co-MPC Joint MPC
Fresh Recir Fresh Recir Fresh Recir Fresh Recir

Average speed (km/h) 60.00 60.00 59.98 59.98 59.98 59.98 59.95 59.95
Average θcab (°C) 24.00 24.00 24.00 24.00 24.01 24.00 24.01 24.01

Propulsion energy (MJ) 5.022 5.022 4.952 4.952 4.952 4.952 4.924 4.925
AC energy (MJ) 1.620 0.956 1.620 0.956 1.569 0.917 1.566 0.913

Battery energy (MJ) 6.985 6.345 6.915 6.275 6.839 6.204 6.825 6.181
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Figure 11. Energy benefits of different methods compared to the CS-PI in the second case study.
(a) Fresh-air mode; (b) Recirculation mode.

5.2. Driving and Thermal Comfort

We illustrated the acceleration profiles of the different control methods when the AC
was running in fresh-air mode in Section 4.3. As shown in Figure 6c, both the co-MPC
and joint MPC maintained the vehicle acceleration strictly within [−1.5, 1.5] m/s2. In
addition, according to Figure 6d, the jerk profiles stabilized at [−0.5, 0.5] m/s3, which
should not cause any significant discomfort. We can conclude that the proposed MPCs
provide acceptable driving comfort.

Both the average cabin air temperature and the severity of the temperature changes
should be considered when assessing the impact of the proposed methods on thermal
comfort. As indicated in Tables 3 and 4, the average cabin air temperature was nearly equal
to the desired 24 °C. On the other hand, the cabin air temperature has been designed to vary
within a small thermal buffer, which will not cause significant discomfort to passengers.
Therefore, the proposed MPCs ensure the comfort of passengers.

5.3. Computation Time

The computation time is, in principle, strongly affected by the length of the prediction
horizon. As the associated prediction horizon was chosen to balance the control perfor-
mance and computational cost, we evaluated only the computation time of the MPCs that
adopted the parameters shown in Table 2. Table 5 presents the computation time for the
different methods. The second row refers to the average computing time per MPC update.
It can be seen that the CS-PI had the shortest computation time, i.e., 2 ms. The co-MPC had
a computation time of 22 ms, which was 13 ms faster than the 35 ms for the joint MPC.

Table 5. Computation times of the four control methods.

MPC Method CS-PI HMPC-PI Co-MPC Joint MPC

Computation time (ms) 3 10 22 35

6. Conclusions and Future Work

In this paper, two MPC methods are proposed to handle the integrated propulsion
and cabin-cooling management for EVs. As a joint optimization control method, the joint
MPC is first designed to minimize battery energy loss while maintaining cabin-cooling
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comfort. Then, a co-optimization control method, co-MPC, is proposed to address speed
planning on hilly roads and cabin-cooling management successively using a two-level
MPC framework. The performance of the two methods is validated through simulations,
including comparisons with other methods. It can be concluded that:

1. Due to the integration of AC management, the proposed joint MPC ultimately reduces
battery energy consumption by 0.65% to 1.48% compared to the HMPC-PI. Moreover,
the thermal buffer is more effectively utilized in recirculation mode than in fresh-air
mode.

2. Both the joint MPC and co-MPC produce significant energy benefits while maintaining
driving and thermal comfort. In particular, the total energy savings range from 2.09%
to 2.72%, whereas the AC energy savings range from 2.94% to 4.49%.

3. In comparison with the co-MPC, the joint MPC has higher energy benefits but also
higher computational overhead. Hence, the co-MPC appears to be a suitable choice
for real-time applications with limited computational power.

It is important to note that both the joint MPC and co-MPC are essentially nonlinear
MPCs (NMPCs). To further reduce the computation time of NMPCs, solvers may be
implemented that are better suited for real-time applications. Future work may focus on
using a custom or a commercial solver that might be able to reduce the computation time
of a classic NMPC, e.g., by applying real-time iterations [40]. Real-time solvers must also
adhere to limited memory usage in order to be embedded in a hardware platform, which is
also a subject for future study. Meanwhile, instead of passive air cooling, the battery pack
requires active coolant cooling for heavier EVs [41]. Hence, in the future, battery thermal
management will be incorporated into the design of an integrated propulsion and thermal
management system for EVs.
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