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Abstract: This study developed a nonlinear behavior prediction model for elasto-plastic steel coil
dampers (SCDs) using artificial neural networks (ANN). To train the ANN, first, the input and output
data of the behavior of the elasto-plastic SCD was prepared. This study utilized the design parameters
and load–displacement curves of the SCD to train the ANN. The elasto-plastic load–displacement
curve of the SCD was obtained from simulation results using an ANSYS workbench. The design
parameters (wire diameter, internal diameter, number of active windings, yield strength) of the
SCD were defined as the input patterns, while the yield deformation, first stiffness, and second
stiffness were output patterns. During learning of the neural network model, 60 datasets of the SCD
were used as the learning pattern, and the remaining 21 were used to verify the model. Although
this study used a small number of learning patterns, the ANN predicted accurate results for yield
displacement, first stiffness, and second stiffness. In this study, the ANN was found to perform very
well, predicting the nonlinear response of the SCD, compared with the values obtained from a finite
element analysis program.

Keywords: elasto-plastic; steel coil damper; artificial neural network; damper; energy dissipate;
nonlinear behavior

1. Introduction

External loads such as earthquakes and winds can induce large vibrations in long-span
bridges and high-rise buildings, and these vibrations can last for a long time because of
low damping. Isolation systems and dampers have accordingly been applied to these
structures to improve their safety and usability by controlling the vibrations. The isolators
and vibration control devices have been installed in both newly established structures and
to seismic retrofit existing structures [1]. For example, flexible piping systems respond to
seismic motion with large displacements. To reduce the large deformation produced by
earthquakes, a damper can be installed in the piping system [2].

Seismic isolation devices are used to prevent vibration within a structure, and there
are several types of dampers used to isolate structures, depending on the purpose. Such
dampers can be classified into elasto-plastic dampers, viscous dampers, mass dampers,
and friction dampers. Elasto-plastic dampers work by absorbing energy generated by the
hysteretic deformation of a metal material, such as a steel bar, but the fatigue characteristics
of repeated loading should be considered [3]. Viscous dampers are not highly affected
by stiffness, so they can control from small to large vibrations. However, they are highly
dependent on temperature [4,5]. Mass dampers such as a tuned mass damper were applied
to various mechanical and civil structures [6–8]. A friction damper has the advantage that
its damping force can be arbitrarily changed by the energy absorbed by friction [9].

Added damping and added stiffness (ADAS), triangular added damping and added
stiffness (TADAS), unbonded bracing, loop-shaped damper, and lead damper devices were
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used in practice. ADAS is a device developed in the 1980s using concepts by Skinner [10],
and TADAS is a device developed in Taiwan by modifying ADAS. However, these devices
have problems such as fatigue destruction (ADAS, TADAS), device complexity, complex
joined parts (unbonded bracing and loop-shaped damper), and difficult welding due to
local stress concentration.

The elasto-plastic steel coil damper (SCD) overcomes the disadvantages of previous
systems by distributing the internal stress of the damper during compression. Since the
entire body of the SCD can be used for energy dissipation, the damping ratio is high,
while the stress concentration is reduced, and the fatigue performance is also excellent. In
addition, the SCD can be successfully applied to vibration control and isolated vibration
devices [3].

If the wire diameter of SCD is small, it is possible to calculate the stress and the strain
of the coil spring using equations for existing elastic mechanics theory with reasonable
accuracy. If an SCD is subjected to a larger load, the wire diameter must be increased, and
the cross-section of the wire changes from circular to various shapes. In such cases, it is not
easy to analyze the behavior of the SCD, which exceeds the elastic limit.

Wahl [11] and SAE reports [12] described the materials, formulas, and theories for
designing coil springs. Wahl [11] and Chandeler [13] reported a way to design coil springs
based on stress correction factors. Saynor [14] analyzed several factors that affect the
design, and John [15] introduced a method that allows the design to be performed directly
without repeated calculations, by combining several formulae of coil springs. In addition,
Anker [16–18] studied the characteristics of the coil spring according to changes in pitch
and the outer diameter. Recently, Sato [19] verified the lateral deformation of a coil spring
through numerical and experimental studies using a self-developed finite element analysis
program. Suzuki [20] presented an analytical technique for coil springs using a general
structure analysis program. Meanwhile, a study on the nonlinear characteristics of the coil
spring was carried out by Bathe [21]. They constructed the nonlinear bending–deformation
relationship of the coil spring using elasto-plastic and viscoelastic theory. In a study on
the coil spring material, Sawanobori [22] analyzed the dynamic characteristics of coil
springs according to the material properties of the steel, using a finite element method.
Research using shape memory alloy was conducted by Kwon [23] and Lee [24], and Oh [25]
investigated the design factors involved in using carbon-fiber-reinforced polymer (CFRP)
for a light weight coil spring.

The SCD can reduce the vibration of the structure by producing the hysteretic damping
by the nonlinear behavior with the material properties. Recently, the SCD has begun
research to apply as a snubber to reduce vibration in the piping system of nuclear power
plants [3]. To effectively reduce the vibration of the structure, the hysteretic behavior of the
SCD should be accurately investigated. Therefore, this study proposes a methodology to
precisely predict the nonlinear behavior of the SCD.

To design the SCD, it is necessary to develop a practical method to accurately predict
nonlinear behavior. An artificial neural network (ANN) can be used to develop a design
model for an elasto-plastic SCD. The ANN is very effective when considering various inputs
and outputs without mathematical calculations compared to existing regression analysis.
It is generally used to estimate an unknown function while relying on many inputs. The
first neural network model was proposed in 1943 by McCulloch and Pitts [26]. Since then,
ANN have become a new alternative approach for pattern recognition in many fields of
application, including biology [27], economics [28], environment [29], manufacturing [30],
medicine [31], and the military [32]. In civil engineering, neural networks have been
applied to assess the damage to a structure, analyze the behavior of the material, design
the optimization of the structure, monitor the groundwater level, control the structural
vibration, assess the structural reliability, and predict concrete compressive strength [23–42].

This study used an ANN to predict the hysteretic behavior of the elasto-plastic SCDs.
To train the ANN, the input and output nonlinear behavior data of the SCD had to be
prepared. For this purpose, design parameters and load–displacement curves were used
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for the ANN learning process. The load–displacement curves of the SCD were obtained
from a simulation using ANSYS Workbench software.

This paper introduces the structure of the ANN used in this study. The design
parameters of the SCD and the acquisition of the load–displacement curve were obtained
using a large number of numerical analyses. The paper discusses the process and results
for predicting the nonlinear behavior of an elasto-plastic SCD using the ANNs.

2. Analytical Model of the Elasto-Plastic SCD
2.1. Mechanical Behavior of Coil Spring

When a coil spring is loaded by compressive force, it develops the internal forces
shown in Figure 1. As is well known, the spring stiffness in the elastic range, ke is repre-
sented by Equation (1).

ke =
G × d4

8 × Ne × D3 (1)

where G is the shear modulus, d is the wire diameter, Ne is the number of effective windings,
and D is the diameter of the spring [3].
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Figure 1. Forces in a compressive spring [3].

The SCD is deformed in a nonlinear way beyond the elastic range with k2 of stiffness,
as shown in Figure 2. The elastic stiffness can be calculated using Equation (1), but the
post-yield stiffness cannot be easily derived by theoretical formulation.
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Figure 2. Force–displacement relationship.

2.2. Finite Element Model

This study performed numerical analyses to determine the design parameters of the
SCD. Finite element analysis software, ANSYS, was used for the numerical analyses, so the
nonlinear behaviors of the elasto-plastic SCD could be confirmed. Table 1 shows the design
parameters used for the nonlinear analyses of the SCD.
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Table 1. Design parameters of SCD.

Parameters Symbols Values

Wire diameter d (mm) 6 8 10
Spring diameter D (mm) 40 50 60
Yield strength fy (MPa) 400 580 650

Number of effective windings n (number) 4 5 6

The SCD models used in the analysis are shown in Figures 3–5. The wire diameters of
the SCDs used in the analysis were 6 mm, 8 mm, and 10 mm. The spring diameters were
40 mm, 50 mm, 60 mm, and the yield strengths of the steel material were 400 MPa, 580 MPa,
and 650 MPa. The number of effective windings of coils was four, five, and six, respectively.
Therefore, the total number of cases used in the analysis was 81 (3 × 3 × 3 × 3 = 81).
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2.3. Loading Test Simulation

ANSYS Workbench was used to simulate the nonlinear behavior of the SCD. The
analysis case shown in Table 1 was performed to simulate a loading test to confirm the
nonlinear behavior. The enforced displacement was input to deform the spring, and the
displacement was set from 0 to 70 mm according to each model. The three-dimensional
solid element (SOLID186) was used to construct the analytical model, and the bi-linear
material model was applied to simulate the nonlinear behavior of the material (see Figure 6).
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Figure 6. Stress–strain curve (580 MPa).

All of the SCD had a minimum free length of 130 mm. Figures 7–9 show the load–
displacement curves for yield strengths of 400 MPa, 580 MPa, and 650 MPa when the
number of effective coils was 5. In Figures 7–9, the wire diameters were between 6 and
10 mm, and the spring diameters varied from 40 to 60 mm. A total of 81 datasets, including
the load–displacement data in Figures 7–9, were used to predict the nonlinear behavior of
the SCD using the ANNs.
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3. Estimation of the Elasto-Plastic Behavior of SCDs Using ANN
3.1. Objective of Estimation

While designing the coil spring, the wire diameter, spring diameter, number of effective
windings, and yield strength were determined as the design parameters. This study utilized
the design parameters of the SCD and the loading test simulation results as learning patterns
(learning data sets) for the ANNs. The nonlinear load–displacement curve of the elasto-
plastic SCD was predicted using the learned ANNs. The design parameters of the SCD
were defined as input patterns, while the yield displacement (δy), first stiffness (k1st), and
second stiffness (k2nd) of the SCD were assumed to be output patterns. Therefore, a total of
three neural network models were used to predict the yield displacement, first stiffness,
and second stiffness. The elasto-plastic behavior of the SCD can be calculated using the
predicted results.
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3.2. Estimation Procedure

The flow chart for the predicted load–displacement curve of the SCD is shown in
Figure 10. Prior to constructing the ANN model, the first stiffness, the second stiffness,
and the yield displacement were calculated according to each SCD using the ANSYS
analysis results. Here, yield displacement was defined as the displacement where the first
stiffness and the second stiffness cross. An ANN1 model was constructed by inputting the
wire diameter, central diameter, number of effective windings, and yield strength and by
outputting the yield displacement. ANN2 and ANN3 models were constructed by models
outputting the first stiffness and second stiffness, respectively, under the same input set.
Finally, the elasto-plastic responses of the SCDs were calculated using the predicted yield
displacement, first stiffness, and second stiffness.
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and second stiffness, respectively. The black circle at the point where the two lines intersect
indicates the yield displacement.

3.3. Artificial Neural Network

It is known that ANNs can effectively handle input–output relationships that are
difficult to construct using mathematically strict models. In order to build the ANN, this
study constitutes an input layer, hidden layer, and output layer, as shown in Figure 12. The
input layer is a distribution layer for inputting data to predict the elasto-plastic behavior
of the SCD, and the hidden layer is the weighted matrix connecting the input layer to the
output layer. The output layer outputs the prediction result through the operation in the
input layer and the hidden layer. The weighting matrix of the hidden layer is updated using
the error between the predicted result and the target value. This repetitive procedure is the
ANN learning process. The learning process of the neural network is further described in
the following paragraphs.
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Since the learning process of the artificial neural networks is described in detail in
several papers, this paper briefly explained [38]. Assuming that the input of the input layer
is Ih, the output of the hidden layer can be represented by the following equation.

o1
i = f 1

(
net1

i

)
(i = 1, 2, . . . , n2) (2)

where f1 and net1
i are the activation function and the net input of the jth node of the hidden

layer, respectively. The net input is

net1
i =

n1

∑
h=1

W1
ih Ih + b1

i (3)

where W1
ih is the connection weight matrix between the input and hidden layers and b1

i is
the bias of the hidden layer. The relationship between the net input of the hidden layer and
the output of the output layer is as follows:

o2
j = f 2

(
net2

j

)
j = 1, 2, · · · , n3 (4)

where f 2 and net2
j are the active function and the net input of the jth node of the output

layer. The net input is as follows:

net2
j =

n2

∑
i=1

W2
jio

1
i + b2

j (5)
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where W2
ji is the connection weight matrix between the hidden and output layers and b2

j is
the bias of the output layer.

The weights and biases should be modified so that the learning algorithm of the ANN
predicts the desired output. This process, the so-called learning or training, is accomplished
by minimizing the error function, which is defined as follows:

error = ∑
∣∣∣od − o2

j

∣∣∣2 (6)

where od and o2
j are the desired output and the predicted output.

4. Verification of the ANN Model

The design parameters of the SCD were estimated using the proposed ANN. The
estimation performance was verified by comparing the estimation results to the finite
element analysis results for the loading test simulation. The nonlinear behavior of the SCD
was calculated using the predicted results. To train the neural network models, among the
81 datasets for the SCD, 60 were used for the learning pattern, and the remaining 21 were
used for verification of the model.

4.1. Learning Process of ANN Models

Tables 2–4 show the sample data for 10 learning patterns among 60 patterns for ANN1,
ANN2, and ANN3, respectively. In Table 2, the wire diameter, spring diameter, yield
strength, and number of effective windings were used as the input pattern of ANN1, and
the yield displacement was defined as an output pattern of ANN1. In Tables 2 and 3,
the first stiffness and second stiffness were defined as the output patterns of ANN2 and
ANN3, respectively. In order to assign the same weighting, the design parameters were
normalized from 0.1 to 0.9. The TANSIG function and PURELIN function were used as the
activate functions in the hidden and output layer, respectively [43]. In addition, 0.95 was
selected as the initial learning rate, the error rate defined by the mean square error (MSE)
was 1.0 × 10−6, and the number of learnings was set to 400 times.

Table 2. Input and output patterns of ANN1.

Wire Diameter
(mm)

Internal
Diameter (mm)

Yield Strength
(MPa)

Number of
Active Coils

Yield Displacement
(mm)

6 40 580 4 19.5
8 40 400 4 10.1
8 60 650 4 34.4
10 60 580 4 25.3
6 60 400 5 35.4
8 50 650 5 30.4
10 50 580 5 22.0
6 50 400 6 30.2
8 40 650 6 23.7
10 40 580 6 17.0

Table 3. Input and output patterns of ANN2.

Wire Diameter
(mm)

Internal
Diameter (mm)

Yield Strength
(MPa)

Number of Active
Coils

First Stiffness
(n/mm)

6 40 580 4 46.1
8 40 400 4 145.8
8 60 650 4 44.9
10 60 580 4 109.7
6 60 400 5 11.5
8 50 650 5 61.9
10 50 580 5 151.5
6 50 400 6 16.4
8 40 650 6 100.4
10 40 580 6 246.0
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Table 4. Input and output patterns of ANN3.

Wire Diameter
(mm)

Internal
Diameter (mm)

Yield Strength
(MPa)

Number of
Active Coils

Second Stiffness
(n/mm)

6 40 580 4 0.28
8 40 400 4 0.36
8 60 650 4 1.93
10 60 580 4 1.47
6 60 400 5 0.51
8 50 650 5 1.59
10 50 580 5 1.35
6 50 400 6 0.38
8 40 650 6 1.11
10 40 580 6 1.10

Figure 13 shows the convergence process of MSE during the learning process for
estimation of the yield displacement. Although it did not converge to the target error
1.0 × 10−6, it can be seen that MSE is stably converged at epoch 100 or higher.
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4.2. Estimation Results Obtained with the ANN Models

In order to validate the ANN models for estimating the nonlinear response of the
elasto-plastic SCD, 21 patterns were randomly extracted from the 81 analysis results. The
extracted data (21 data sets) were used to test the performance of the ANN models.

Figures 14–16 show the results of predicted yield displacement, first stiffness, and
second stiffness of the SCD using ANNs. The blue bar graph in Figure 14a shows the target
yield displacement for 21 patterns, and the yellow bar graph represents the yield displace-
ment predicted by the ANN1. Figure 14b exhibits a bar graph showing the prediction error
for 21 patterns, which had a maximum error rate of 7%. Figures 15 and 16 show the result
and error for the first stiffness and second stiffness predictions, respectively.
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The predicted results for yield displacement, first stiffness, and second stiffness using
the ANN are summarized in Tables 5–7. Table 5 shows the test patterns, target yield
displacements, and estimated yield displacements from the ANNs. The errors for the target
yield displacements and the predicted yield displacements were about −0.4% to −7.5%.
Table 6 shows the prediction results for first stiffness. The errors of the target stiffness and
the predicted stiffness were 0% to 8.1%. Table 7 shows the prediction results for the second
stiffness and the errors 1.5% to −19.7%. The graphs indicate that the errors in Table 7 seem
to be relatively larger than those in Table 6. The reason is that the value of the second
stiffness is relatively small. For example, in the eighth result in Table 7, the error is −19.7%;
however, the target stiffness and the predicted stiffness are 0.87 n/mm and 1.04 n/mm,
respectively.

Table 5. Estimated results of ANN1.

Wire
Diameter (mm)

Internal
Diameter (mm)

Yield Strength
(MPa)

Number of
Active Coils

Yield Displacement (mm)

Target Estimation Error (%)

6 40 400 4 13.50 13.64 −1.0
6 60 650 4 43.60 44.68 −2.5
8 60 580 4 31.20 31.02 0.6
10 60 400 4 17.70 19.03 −7.5
6 50 650 5 39.20 38.89 0.8
8 50 580 5 27.40 26.25 4.2
10 50 400 5 15.40 15.46 −0.4
6 40 650 6 31.30 32.89 −5.1
8 40 580 6 21.30 21.46 −0.8
10 40 400 6 11.80 11.64 1.3

Table 6. Estimated results of ANN2.

Wire
Diameter (mm)

Internal
Diameter (mm)

Yield Strength
(MPa)

Number of
Active Coils

1st Stiffness (n/mm)

Target Estimation Error (%)

6 40 400 4 46.06 48.06 −4.3
6 60 650 4 14.24 13.45 5.5
8 60 580 4 44.90 45.58 −1.5
10 60 400 4 109.66 109.42 0.2
6 50 650 5 19.60 18.00 8.1
8 50 580 5 61.94 61.87 0.1
10 50 400 5 151.47 152.58 −0.7
6 40 650 6 31.71 31.71 0.0
8 40 580 6 100.43 99.81 0.6
10 40 400 6 246.00 245.64 0.1
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Table 7. Estimated results of ANN3.

Wire
Diameter (mm)

Internal
Diameter (mm)

Yield Strength
(MPa)

Number of
Active Coils

2nd Stiffness (n/mm)

Target Estimation Error (%)

6 40 400 4 0.15 0.17 −18.3
6 60 650 4 1.75 1.93 −10.0
8 60 580 4 1.27 1.25 1.7
10 60 400 4 0.53 0.56 −5.4
6 50 650 5 1.40 1.42 −1.2
8 50 580 5 1.07 0.94 11.8
10 50 400 5 0.55 0.58 −5.7
6 40 650 6 0.87 1.04 −19.7
8 40 580 6 0.79 0.76 3.8
10 40 400 6 0.66 0.65 1.5

4.3. Comparison of Nonlinear Response Results

Figures 17–20 show the load–displacement curves of the SCD obtained from ANSYS
and ANNs. The red line in the figures indicates the load test simulation result from the
ANSYS program. The blue line represents the estimated nonlinear response from the
ANN models. The predicted nonlinear response was calculated by combining the yield
displacement, the first stiffness, and the second stiffness estimated by ANNs. Figure 17
shows the load–displacement curves for the parameters (4 mm, 40 mm, 400 MPa, and 4) of
the first data in Tables 5–7. The errors for the predicted yield displacement, first stiffness,
and second stiffness were −1.0%, −4.3%, and −18.3%, respectively. Clearly, the errors for
the first and second stiffness were large relatively. Figure 18 shows the load–displacement
curves for parameters (6 mm, 50 mm, 650 MPa, and 5) of the fifth data in Tables 5–7. The
errors for the predicted yield displacement and first and second stiffnesses were 0.8%,
8.1%, and −1.2%, respectively. The error for the first stiffness was larger than the target
value. The yield displacement and the second stiffness were exactly predicted; however,
the estimated load–displacement curve did not match the target curve due to the influence
of the first stiffness. Figure 19 shows the results for the seventh data in Tables 5–7. The
errors for each predicted result were −0.4%, −0.7%, and −5.7%, respectively. The error for
the second stiffness was relatively large; however, it shows a trend highly similar to the
ANSYS results. Finally, Figure 20 shows the results of the elasto-plastic coil damper for the
ninth data in Tables 5–7. The errors of −0.8%, 0.6%, and 3.8% show they were accurately
predicted, and the load–displacement curves are also similar to the ANSYS results.
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From Tables 5–7, Figures 17–20, the overall behavior estimated by ANN tends to
be very close to the nonlinear behavior obtained using ANSYS, when the first stiffness
estimated by the ANN is accurately predicted. It is also noted that the entire nonlinear
stiffness of SCD could be matched with the numerical analysis results when the yield point
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is accurately estimated. Since the second stiffness is relatively small compared to the first
stiffness, it does not largely affect in the estimated response.

5. Conclusions

This study developed a nonlinear behavior prediction model for the design of elasto-
plastic SCDs, using ANNs. In order to construct patterns for the ANNs learning process,
the ANSYS program was used to model the elasto-plastic SCD. Then, a set of numerical
simulation was performed to confirm the nonlinear behavior of the SCDs. The design
parameters of the SCD, including wire diameter, internal diameter, the number of effective
windings, and yield strength were defined as the input patterns, while the yield displace-
ment (δy), first stiffness (k1st), and second stiffness (k2nd) of the elasto-plastic coil damper
were assumed to be the output patterns of the ANNs. For ANN model learning, from the
total 81 datasets, 60 elasto-plastic coil damper data were used as the learning patterns, and
the remaining 21 data were used for model verification.

Although relatively few learning patterns were used in this study, the results of the
ANNs showed precise prediction results for yield displacement, first stiffness, and second
stiffness. In addition, the performance of the ANN’s predicted nonlinear response was also
found to be sufficient compared to the ANSYS analysis results. These results confirmed
that the nonlinear behavior prediction model using ANNs proposed in this study could
predict the behavior of the elasto-plastic SCD coil damper.

In further study, the number of loading test data for the elasto-plastic dampers will be
increased to improve the accuracy of the ANN model.
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