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Abstract: Dynamic modeling of soft pneumatic actuators are a challenging research field. In this paper,
a dynamic modeling method used for a bi-directionaly soft pneumatic actuator with symmetrical
chambers is proposed. In this dynamic model, the effect of uninflated rubber block on bending
deformation is considered. The errors resulting from the proposed dynamic equilibrium equation
are analyzed, and a compensation method for the dynamic equilibrium equation is proposed. The
equation can be solved quickly after simplification. The results show that the proposed dynamic
model can describe the motion process of the bi-directional pneumatic actuator effectively.

Keywords: soft pneumatic actuator; symmetrical structure; dynamic modeling; dynamic equilibrium
equation

1. Introduction

With the development of robotics, robotic applications are becoming more and more
widespread. However, in many applications, traditional rigid robots have a lot of limitations,
such as safety in human-robot interaction [1,2]. Soft robotics technologies can significantly
solve these problems. The actuation of soft robots is an important part in the research of
soft robotics. There are many ways to actuate soft robots, such as pneumatic methods [3],
tendon-driven systems [4,5], shape memory materials [6], etc. The tendon-driven systems
simulate human muscles with good flexibility and easier control but have higher structural
requirements. Shape memory materials rely on material properties for deformation; they
do not require a complex actuation system, but the actuation force is smaller. Among
them, the pneumatic methods are frequently used, due to their easy design and the simple
fabrication of their actuator [3,7]. They can also provide relatively large driving forces.

The control of pneumatic soft actuators presents great challenges because many con-
trol methods, such as Model Predictive Control, rely heavily on suitable and sufficiently
accurate model representations of the system dynamics [8]. Due to the materials of the
actuators, the large deformability and infinite degrees of freedom bring extreme difficulties
when modeling the actuators [9]. Researchers have produced many works with the aim of
establishing a general modeling method for soft actuators [10,11]. Most of these methods
are static or quasi-static modeling, but control of actuators requires accurate dynamic
modeling. Dynamic modeling of soft actuators remains challenging. The conventional
mass–spring–damper model is often used for dynamic modeling [12,13]. However, due
to the complexity of soft actuators, such a modeling approach requires a combination
of system identification and fitting techniques. Lagrangian methods are also a common
modeling approach, but their modeling process is relatively complex, and model solving is
usually difficult. In order to reduce the difficulty of the solution, the proposed model is
often simplified or reduced in order [14].

Data driven approaches can effectively solve these problems [8]. One of the most
common approaches is to use neural networks. Neural networks are widely used in soft
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actuators modeling [15–17]. However, it is well known that neural networks require a large
amount of training data, and the accuracy of the model is dependent on the quality of
the training set. In addition, the neural network approaches are time consuming, making
it impossible to use a high control frequency while controlling the actuator, which also
greatly limits the control accuracy. Therefore, model-based modeling methods still have
advantages. They are used in the control of soft robots and have good results [18].

This paper proposed a dynamic modeling method for the pneumatic soft actuator.
The method utilizes D’Alembert’s principle and realizes the dynamic model of the actuator
based on the static model using the dynamic equilibrium equation. The errors result-
ing from the proposed dynamic equilibrium equation are analyzed, and a compensation
method for the dynamic equilibrium equation is proposed. The model obtained by this
method is easy to solve, and the model accuracy is high after compensation. As a result,
the model can be used in applications where the soft actuator is controlled in real time.
The bi-directional motion experiments are performed for validating the proposed dynamic
model, and the experimental results prove that the model has good accuracy and can de-
scribe the motion process of the bi-directional pneumatic soft actuator effectively. Section 2
presents the methodology of the dynamic equilibrium equation. Section 3 presents the
description of the experiment. Section 4 presents the experimental results and discussion.

2. Methodology

According to D’Alembert’s principle, the dynamic equilibrium equation of the soft
actuator can be presented as

Mi + Min − M f = 0 (1)

In this equation, Mi is the moment generated by the inertia force, that is, dynamic moment.
M f is the moment generated by the driving force, which is mainly generated by the pressure.
Min is the moment generated by the internal force of the actuator. Min and M f are static
moments. When the driving force keep constant, the equation becomes Min − M f = 0
when the actuator reaches the equilibrium position.

2.1. Static Moment

The dimension of the soft actuator can be shown in Figure 1. B is the width of the chamber,
h0 is the height of the chamber after inflation, tn is the thickness of the neutral layer, tw is the
thickness of the chamber, and tr is the thickness of the rib.

Figure 1. The dimensions of the bi-directionally pneumatic actuator.

For analytical purposes, the static moment study is carried out with the end of the
neutral layer of the actuator. The driving force comes from the pressure in the chambers,
and the torque produced by it can be expressed as

M f =
∫ h0

0
pBydy (2)
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where p is the pressure in the inflated side of the actuator, and y is the direction shown
in Figure 1. A resistive moment Mres is generated in the neutral layer during the bending
motion of the actuator. It can be presented as

Mres =
EIθ

L
(3)

where E is the Young modulus of ABS, I is the moment of inertia about z-axis of the neutral
layer. θ is the bending angle of the actuator, and L is the length of the actuator. The ABS
plate has a Young’s modulus of 2 GPa and a Poisson ratio of 0.395, and I can be calculated as

I =
(B + 2tw)t3

n
12

(4)

In addition, the tensile, compressive and shear stresses are generated by the deforma-
tion of the actuator. The circumferential stress of the actuator’s upper wall on the inflated
side is denoted by σuc, the circumferential stress of the actuator’s sidewall on the inflated
side is denoted by σsc, the compressive stress of the upper wall on the uninflated side is
denoted by σs, and the compressive stress of the side wall on the uninflated side is denoted
by σm. They can induce moments Muc, Msc, Ms and Mm, respectively. These moments can
be presented as

Muc = σuctw(B + 2tw)

(
h0 +

tw

2

)
Msc = 2

∫ h0

0
σscytwdy

Ms = σstw(B + 2tw)

(
h0 +

tw

2

)
Mm = 2

∫ h0

0
σmytwdy

(5)

The derivation process for all these moments can be found in our previous work on the
static analysis [11]. These moments, as well as Mres, prevent the soft pneumatic actuator
from bending. These moments are defined as the moment generated by the internal force of
the actuator. Then the Min can be presented as

Min = Msc + Muc + Ms + Mm + Mres (6)

2.2. Dynamic Moment

Based on the analysis of static moments, the dynamic moment balancing study is also
carried out with the end of the neutral layer of the actuator. The moment of inertia, that is
Mi, consists of two moments, the rotational moment and the bending moment.

Assume that the static equilibrium position of the neutral layer of the actuator under
the pressure p condition is S. A and B are the two transient positions of the actuator during
the motion when the pressure in the chambers is p, respectively. The acceleration of the
mass point M generated by the inertia force and its direction are shown in Figure 2.

Then the bending moment generated by the inertia force can be presented as

Mb = −∆maxLy + ∆mayLx (7)

where Mb is the bending moment, ∆m is the mass of the mass point, ax and ay are the
accelerations of the mass point, and Lx and Ly are the projections of the distance from the
mass point to O on the x and y axes.
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Figure 2. The acceleration of the mass point generated by the inertia force

If the length of the arc from the point in the Figure 2 to O is r, the accelerations ax and
ay can be presented as

ax =−
r2θ̇2 sin

(
rθ
l0

)
l0θ

−
l0θ̈ sin

(
rθ
l0

)
θ2 +

rθ̈ cos
(

rθ
l0

)
θ

+
2l0θ̇2 sin

(
rθ
l0

)
θ3 −

2rθ̇2 cos
(

rθ
l0

)
θ2

ay =
r2θ̇2 cos

(
rθ
l0

)
l0θ

+
rθ̈ sin

(
rθ
l0

)
θ

−
l0θ̈
(

1 − cos
(

rθ
l0

))
θ2

−
2rθ̇2 sin

(
rθ
l0

)
θ2 +

2l0θ̇2
(

1 − cos
(

rθ
l0

))
θ3

(8)

Since the actuator itself is a symmetrical structure, the center of mass of the whole actuator is
on the neutral layer. In order to simplify the calculation, the height change on the inflatable
side and the mass shift due to shear deformation are ignored. The form of mass distribution
of the actuator is simplified to a distribution along the midline of the constrained layer. It
can be expressed by the line density. The density of the actuator is different at the chamber
and ribbed positions, so using ρc and ρr denotes the linear density at the air cavity and rib
plate, respectively.

ρc =(B + 2tw)tnρabs + 2tw(B + 2h0 + 2tw)ρ

ρr =(B + 2tw)[2ρ(h0 + tw) + ρabstn]
(9)

Then, the bending moment can be obtained by integrating Equation (10) over the length.
Due to the density being different at the chamber and ribbed positions, the integrations are
performed at different positions and finally summed.

Mb =−
N

∑
i=0

∫ ia+(i+1)tr

ia+itr
äxyrρrdr +

N

∑
i=0

∫ ia+(i+1)tr

ia+itr
äyxrρrdr

−
N

∑
j=1

∫ ja+jtr

(j−1)a+jtr
äxyrρcdr +

N

∑
j=1

∫ ja+jtr

(j−1)a+jtr
äyxrρcdr

(10)

where N is the number of the chambers.
From the density distribution, it can also be concluded that the rotational moment of

the actuator differs for different positions on the neutral layer with respect to the rotation
axis. They are expressed as Jc and Jr.
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Jc =
1
12

[2Bρtw(12h2
0 + 12h0(tn + tw) + 3t2

n + 6tntw + 4t2
w)

+ Bρabst3
n + 4h0ρtw(4h2

0 + 6h0tn + 3t2
n)]

Jr =
1
12

B[8h3
0ρ + 12h2

0ρ(tn + 2tw) + 6h0ρ(tn + 2tw)
2

2ρtw(3t2
n + 6tntw + 4t2

w) + ρabst3
n]

(11)

Assume that the distance from a mass point of the actuator to the origin is r. When
the actuator is bent to θ, the angular velocity of each point of the actuator is rθ̇/lo, and
the angular acceleration is rθ̈/lo. By integrating the rotational inertia of the mass point over
the entire length of the actuator, the rotational moment of the actuator can be expressed

Mr =
N+1

∑
i=1

∫ (i−1)a+itr

(i−1)a+(i−1)tr
Jr

rθ̈

l0
dr +

N

∑
j

∫ ja+jtr

(j−1)a+jtr
Jc

rθ̈

l0
dr (12)

The final dynamic equilibrium equation can be obtained by substituting the Equations (2),
(6), (10) and (12) into Equation (1), and the state of motion of the actuator can be obtained
by solving this equation.

2.3. Compensation and Solution of the Dynamic Equilibrium Equation

Although the dynamic equilibrium equation has been established, this equation is
very complex and difficult to solve. The equilibrium equation can be expanded to obtain
the following form

M(θ)θ̈ + D(θ)θ̇2 + K(θ) + C − F(p) = 0 (13)

where M(·) and D(·) are the function with respect to θ; C is a constant, and F(·) is a function
with respect to p. In this equation, the expression for the coefficient of the θ̈ term is more
complex, mainly due to the sin and cos functions. In order to facilitate the solution and
improve the computational efficiency, it is necessary to make appropriate simplifications to
the equation. Taylor expansions are performed for the sin and cos functions in Equation (8),
respectively, and the fourth order terms are retained. The dynamic equilibrium equation is
simplified. This equation can be solved with the Runge–Kutta methods.

By solving this differential equation, it is shown that the process of motion solved by
this model is oscillatory and cannot eventually reach the equilibrium state. This is mainly
because the damping of the system is not considered, so the damping of the model needs to
be compensated. The compensation is performed by adding a Cd(θ̇) term to the dynamic
equilibrium equation. Due to the material properties, the movement of the actuator causes a
change in the mass distribution. However, the mass distribution of the actuator is simplified
to a distribution along the midline of the constrained layer, which is expressed by the line
density. This can lead to errors in the dynamic moment calculation, so the changes in the
mass distribution need to be compensated. Cm(θ) is added into the dynamic equilibrium
equation. The equilibrium equation after adding compensation can expressed as

[M(θ)θ̈ + D(θ)θ̇2]Cm(θ) + Cd(θ̇) + K(θ) + C − F(p) = 0 (14)

The Cd(θ̇) can be presented as Cd(θ̇) = Cθ̇, and the Cm(θ) can be presented as Cm(θ) =
aθ2 + bθ + c.

3. Dynamic Model Validating Experiment of the Soft Pneumatic Actuator

A pneumatic control system was established for the bi-directional pneumatic actuator
in our previous work [15]. This system is used to validate the proposed dynamic model.
The dynamic data of the bending motion are obtained from this system, and the structure
of the system is shown in Figure 3.
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Figure 3. The schematic of control system for the bi-directionally pneumatic actuator.

The air valves shown in the figure are controlled by a microcontroller unit (MCU).
By controlling the air to inflate the chambers on one side of the actuator, the actuator bends
in the corresponding direction. The pressure sensors are used to collected the pressure in
the chambers of on each side of the actuator. The proposed dynamic model considers both
the expansion side and compression side of the actuator. In order to validate the dynamic
model, we inflate the chambers on one side of the actuator to a determined pressure and
hold it. The actuator is bent from the starting position and stabilized in the equilibrium
position. The dynamic data of the whole process are obtained. The bending angle is
measured by the gyroscope which is mounted on the end of the neutral layer. The air
pressure is measured by the pressure sensors after the inlet valves. Figure 4 is a photograph
of the experimental bench, which shows the state of the actuator reaching the equilibrium
position after bending motion.

Actuator

Controller

gyroscope

Valves

Figure 4. The experimental setup of the pneumatic actuator.

4. Results and Discussion

In the experiment, we inflate the chambers to 20 kPa on one side of the actuator and hold
it, and the actuator bends to one side to reach the equilibrium position after several oscillations.
According to the experimental conditions, the results by solving the dynamic equilibrium
equation of the actuator are shown in Figure 5. In order to verify the compensation effect of
the model, the results for different damping compensation were calculated separately, and
the results were compared with the experimental data.
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(a) C = 0 (b) C = 1

(c) C = 19 (d) C = 2.73

Figure 5. Comparison of the results with the experimental data under different damping compensation.

In Figure 5a, damping compensation is not performed, and it can be seen that the
calculated motion curve does not converge, which also indirectly indicates that the system
will oscillate without considering damping in the proposed dynamic model. Figure 5b–d
shows compensated damping. The motion curve converges after damping compensation. As
C increases, the system changes from an underdamped state to an overdamped state, and the
number of system oscillations is directly related to the different damping compensation. Its
final equilibrium position remains consistent with the experimental results regardless of how
the system oscillates. This also proves the correctness of the static part of the proposed model.
From the results, it can be seen that Figure 5b is the underdamped state, Figure 5c is the
over-damped state, and Figure 5d shows the optimal compensation coefficient, the number
of its oscillations is basically consistent with the experimental data. It can be seen that there
is a small error between the experimental data and the calculated results after the actuator
reaches the equilibrium position in the figure. This is due to the drift of the gyroscope that
measures the angle, i.e., the angle shows a small linear increase with time. This phenomenon
has little effect on the measurement results.

With the damping compensation, the number of system oscillations is generally consistent
with the experiment, but the frequency of oscillation still has an error. Therefore, it is necessary
to compensate for the mass, which is also explained in the previous section. Figure 6 shows
the comparison of the results of mass compensation. Figure 6a shows that the frequency
of oscillation is much different from the experimental data without compensation, while
Figure 6b shows that the frequency of oscillation is generally the same as the experimental
data after adding mass compensation. In Figure 6b, we can see that although the error of the
model becomes smaller after compensation, there is still a little overshoot, which is caused
by the hysteresis of the pneumatic circuit, and the actual response is smaller than the result
calculated by the model. The results show that the proposed dynamic model can describe the
motion process of this bi-directional pneumatic actuator effectively.
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(a) Without mass compensation (b) With mass compensation

Figure 6. Comparison of results with experimental data under different damping compensation (after
damping compensation).

5. Conclusions

This paper proposed a dynamic modeling method for a bi-directional pneumatic
actuator. The method utilizes D’Alembert’s principle and proposes a dynamic model of
the actuator based on the static model. The errors resulting from the proposed dynamic
equilibrium equation are analyzed, and a compensation method for the dynamic equilib-
rium equation is proposed. The solution process of the equation is also analyzed, and the
equation can be calculated very quickly by using the Runge–Kutta method. According to
the calculating tests, solving the model can be controlled within 1ms, so the actual control
frequency can reach 1khz, which can meet the requirements of real-time control. At the
end of this paper, the bi-directional motion experiments are performed for validating the
proposed dynamic model, and the experimental results prove that the model still has a
good accuracy. This model will also be applied to the actuator trajectory tracking control in
our future work.
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