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Abstract: Identifying the kinetic parameters of an industrial robot is the basis for designing a
controller for it. To solve the problems of the poor accuracy and easy premature convergence of
common bionic algorithms for identifying the dynamic parameters of such robots, this study proposed
simulated annealing with similar exponential changes based on the beetle swarm optimization
(SEDSABSO) algorithm. Expressions for the dynamics of the industrial robot were first obtained
through the SymPyBotics toolkit in Python, and the required trajectories of excitation were then
designed to identify its dynamic parameters. Following this, the search pattern of the global optimal
solution for the beetle swarm optimization algorithm was improved in the context of solving for
these parameters. The global convergence of the algorithm was improved by improving the iterative
form of the number N of skinks in it by considering random perturbations and the simulated
annealing algorithm, whereas its accuracy of convergence was improved through the class exponential
change model. The improved beetle swarm optimization algorithm was used to identify the kinetic
parameters of the Zhichang Kawasaki RS010N industrial robot. The results of experiments showed
that the proposed algorithm was fast and highly accurate in identifying the kinetic parameters of the
industrial robot.

Keywords: industrial robot; kinetic parameter identification; beetle swarm optimization algorithm;
stochastic perturbation

1. Introduction

Kinetic parameters are the main factor influencing the control of fast and highly precise
movements of industrial robots [1]. The process of identifying of their kinetic parameters
is usually divided into a number of steps, such as kinetic modeling, designing the excita-
tion trajectory, data acquisition, and identifying and verifying the kinetic parameters [2].
Gautier et al. used a two degree-of-freedom (DOF) robot as the object of study and ap-
plied the extended Kalman filter and the least-squares method to identify its parameters.
Memar used the SCHUNK Powerball LWA 4P as an experimental object, constructed a
dynamics model for it, and implemented the least-squares method to identify the dynamic
parameters of the industrial robot [3]. However, the least-squares method is susceptible
to measurement noise that lowers its accuracy [4]. Fu et al. [5] used the particle swarm
optimization (PSO) algorithm with least squares to identify the kinetic parameters of a
seven-DOF collaborative robot in Xinsong, but PSO can easily fall into the local optimum
owing to poor population diversity in the late stage of processing that reduces the accuracy
of identification of the parameters. Ding et al. [6] identified the dynamics of the robot by
using the genetic algorithm, but the process of coding of the algorithm is cumbersome.

Summarizing the existing research, it is found that the identification of robot dynamics
parameters is a high-dimensional function problem. Common algorithms are either the
PSO accuracy is not high enough, or the genetic algorithm coding is more complicated,
so a simple programming, strong anti-interference ability, and convergence accuracy are
needed. High algorithm. BSO is a bionic algorithm recently proposed, which mainly
uses the principles of PSO and the Beetle Antenna Search (BAS) algorithm, so it has the

Actuators 2022, 11, 2. https://doi.org/10.3390/act11010002 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act11010002
https://doi.org/10.3390/act11010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-1387-931X
https://doi.org/10.3390/act11010002
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act11010002?type=check_update&version=3


Actuators 2022, 11, 2 2 of 13

advantage of simple programming [7–9]. This article proposes SEDSABSO on the basis
of BSO.SEDSABSO combined random perturbation-based behavior and the simulated
annealing (SA) algorithm with the global optimal solution of the BSO [10,11] to improve its
ability to search for global optimal particles as well as the manner of changes in N particles
through an exponential decay model. This improved the convergence of BSO without
affecting its computational complexity. Therefore, using the SEDSABSO algorithm for robot
dynamic parameter identification will have the advantages of simple programming, high
convergence accuracy, and fast iteration speed.

The rest of the paper is organized as follows. Section 2 describes the D-H and the dy-
namic parameters of the RS010N robot and then linearized them through the SymPyBotics
toolkit in Python. In Section 3, the genetic algorithm toolbox in MATLAB was used to
design the excitation trajectories required to identify the dynamic parameters of the robot.
Section 4 describes the principle of the SEDSABSO algorithm and its process for the identi-
fication of robot dynamics parameters. In Section 5, the minimum set of parameters for the
dynamics of the RS010N robot was identified and was used to compare the per-formance
of the SEDSABSO, BSO, and LDWPSO algorithms. The results verified the accuracy and
effectiveness of the proposed algorithm [12].

2. Robotic arm Dynamics Model
2.1. RS010N Industrial Robots

In this paper, we used the Zhichang Kawasaki RS010N robot as the research object.
Figure 1 shows its structural configuration, and Figure 2 shows the configuration of its DH
coordinates. The RS010N robot is a typical six-DOF industrial robot. Because the kinetic
parameters of its three rear joints are much smaller than those of its three front joints, the
former have a smaller influence on the accuracy of control of the robot’s motion. Thus, we
considered only the first three joints of the RS010N industrial robot here [13].
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Figure 2. RS010N Robot DH coordinate system. 
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2.2. Dynamics Modeling

For an n-link robotic arm, the dynamics as modeled by the Newton-Euler method can
be described as

τ = D(q) · ..
q + C(q,

.
q) + G(q) (1)

In Equation (1), τ denotes the driving moment, q denotes the vector of the position
of the joints, and

.
q and

..
q denote vectors of the velocity and acceleration of the joints,

respectively. D(q) denotes the inertial matrix, C(q,
.
q) denotes the Koch and centrifugal force

terms, respectively, and G(q) denotes the gravitational force term [14].
According to the improved Newtonian–Eulerian dynamics, the above equation can be

transformed into
τ = Φ(q,

.
q,

..
q)P (2)

where Φ is the observation matrix with a size of n ∗ 12n, and P denotes the vector of the
inertial parameters of the robot arm.

2.3. Minimum Set of Parameters for the Dynamical Model

The parameters of the first three joint linkages of the RS010N six-freedom robot are
shown in Table 1 below. a0 = 350 mm, a1 = 1035 mm.

Table 1. RS010N connecting rod parameters.

i αi−1/rad ai−1/mm di/mm θi/rad

1 pi/2 a0 0 θ1
2 −pi/2 a1 0 θ2
3 0 0 0 θ3

The kinetic parameters are shown in Table 2.
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Table 2. Actual kinetic parameters.

Member Number 1 2 3

Ixx/(kg·m2) 36.33 −10.02 7.74
Iyy/(kg·m2) 40.61 7.05 1.02
Izz/(kg·m2) 36.33 11.61 9.81
Ixy/(kg·m2) 0.00 6.14 3.34
Ixz/(kg·m2) 0.00 5.93 −3.42
Iyz/(kg·m2) 0.00 −7.82 −0.29

m/(kg) 18.33 25.18 20.47
x/(mm) 0.00 122.41 152.34
y/(mm) 110.11 163.81 90.24
z/(mm) 0.00 73.36 −34.21
Fc (N·m) 0.00 0.00 0.00
Fv (N·m) 0.00 0.00 0.00

We obtained the minimum set of parameters and related expressions for them through
the SymPyBotics toolkit in Python.

I1xx
I1yy
I1zz
I1xy
I1xz
I1yz
m1
x1
y1
z1
F1c
F1v
I2xx
I2yy
I2zz
I2xy
I2xz
I2yz
m2
x2
y2
z2
F2c
F2v
I3xx
I3yy
I3zz
I3xy
I3xz
I3yz
m3
x3
y3
z3
F3c
F3v



Linearization→



I1zz + I2zz + I3zz+2 ∗ a1∗I1x + m1∗a1
2−(

m2 + m3) ∗ (a 2
2−a1

2)
F1c
F1v

I2xx − I2yy − (m2 + m3) ∗ a2
2

I2xy
I2x − a2 ∗ (I2z − I3y)

I2yz
I2zz − (m2 + m3) ∗ a2

2

I2x + (m2 + m3) ∗ a2
I2y
F2c
F2v

I3xx − I3zz
I3xy
I3xz
I3yy
I3yz
I3x
I3z
F3c
F3v



(3)
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According to Equation (3) above, the 36 kinetic parameters of the robot were linearized
to 21, and the kinetic model can be written in the following form

τ = Φb(q,
.
q,

..
q)pb (4)

where Φb is the full-rank observation matrix and Pb denotes the underlying parameter
vector of the robotic arm.

3. Incentive Track Design

The commonly used excitation trajectory when identifying the kinetic parameters of indus-
trial robots is the finite-term Fourier series [15,16]. It can be expressed in the following form:

..
θi(t) = −

N

∑
n=1

annw f sin(nw f t)− bnnw f cos(nw f t) (5)

.
θi(t) =

N

∑
n=1

ancos(nw f t)− bnsin(nw f t) (6)

θi(t) = θ0 +
N

∑
n=1

an

nw f
sin(nw f t)− bn

nw f
cos(nw f t) (7)

wf denotes the fundamental frequency of the Fourier series. Each Fourier series
contains an, bn, and θ0. N represents the number of harmonic terms of the Fourier series.
Because each Fourier series has 2N + 1 parameters, n represents the number of 1 . . . 2N + 1.

The constraints on the RS010N robot are shown in Table 3.

Table 3. RS010N robot joint constraints.

Parameter Joint i Min Max

1 −180 180
Angle 2 −60 140

3 −180 80
1 −125 125

Angle velocity 2 −100 100
3 −165 165
1 −45 45

Angle acceleration 2 −40 40
3 −75 75

When the robot moved, the observation matrix w was obtained by recording the angle,
velocity, and acceleration of the joints of the robot in Φb. n denotes the nth sample.

w =

 Φb(q1,
.
q1,

..
q1)

. . .
Φb(qn,

.
qn,

..
qn)

 (8)

Adaptation function of the incentive trajectory.

y = Cond(w) + P (9)

where P denotes a penalty function and Cond denotes the number of conditions of the
acquisition matrix. When the trajectory of the industrial robot satisfies the above constraint,
P = 0, and P = 108 otherwise. The excitation of the first three joints of the RS010N was
obtained by the genetic algorithm toolbox in MATLAB as shown in Figure 3.
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4. SEDSABSO for the Identification of Industrial Robot Dynamics Parameters
4.1. Improving Global Optimal Search

Owing to the large number of dynamic parameters of the industrial robot that needed
to be identified, their solution was a high-dimensional function optimization problem with
certain constraints. The BSO used to obtain the kinetic parameter identification of industrial
robots easily falls into the premature phenomenon, so the global optimal solution search
mode of BSO and the iterative change form of the number N of tennies in the iterative
process of BSO are improved in this paper.

BSO

BSO was proposed by Wang et al. based on the PSO and the Aspen whisker algorithm.
The position of a body in BSO represents a feasible solution to the optimization problem.
The formula to update BSO is:

xij
(
t+1) =xij

(
t)+λvij(t+1) + (1−λ)ξij(t) (10)

where t denotes the number of iterations of the skink, i denotes the number of skinks in
the skink population, j denotes the dimensionality of the problem to be solved, λ denotes
xij(t + 1) denotes the position of skink i in the skink population at t + 1 iterations, ξij(t)
denotes the position of the ith skink moving autonomously, and vij(t + 1) denotes the
velocity of the ith skink. It is expressed as:

vij
(
t+1) =wvij

(
t)+c1r1

(
pij
(
t)−xij

(
t))+c2r2

(
gij
(
t)−xij(t)) (11)

w denotes inertial weight, pij(t) denotes the optimal position of individual i after t iterations
of the Aspen population, xij(t) denotes the given position of i after t iterations, gij(t) denotes
the optimal position of the Aspen population after t iterations, c1 and c2 denote adjustment
factors, and r1 and r2 denote random numbers within the interval [0,1]

ξij(t + 1) = δ(t) ∗Vij(t) ∗ sign
(

f
(

xl j(t)
)
− f

(
xrj(t)

))
(1)

In Equation (12), sign(.) denotes the sign function, ξij(t + 1) denotes the t + 1th motion
position searched by Aspen autonomously, δ(t) denotes the step size of the Aspen individual
after t iterations, and f (xlj(t)) and f (xrj(t)) denote the fitness values of the left and right
whiskers of the Aspen, respectively.

The positions of the left and right whiskers of the Aspen are indicated by:

xl j(t + 1) = xl j
(
t)+Vij(t)d0/2

xrj(t + 1) = xrj
(
t)−Vij(t)d0/2

(13)

xlj(t + 1) denotes the position of the left whisker in iteration t + 1, xrj(t + 1) is the t + 1 right
whisker position, and d0 denotes the distance between the whiskers.

4.2. Improving BSO
4.2.1. Improved Global Optimal Solution

The global optimal particle Pg of BSO is randomly perturbed. Then, the new solution
after perturbation is selected by the metropolis criterion of SA to improve the global
convergence of BSO.

(1) Simulated annealing algorithm

The simulated annealing algorithm controls the probability of jumping out of the local
optimum by setting the temperature. The algorithm evaluates whether to jump out of the
worse solution by the metropolis criterion. The procedure is as follows:

a. The algorithm is initialized, and an initial solution x is randomly generated as the
optimal solution.
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b. A new solution xt is obtained in the vicinity of the initial solution, denoted by
∆f = f (xt) − f (x).

c. The new solution xt is accepted according to min{1,exp(−∆f /Tk)}>random. Tk de-
notes the temperature and exp denotes the exponential function, with natural number
e as the base.

(2) Random behavior

Stochastic behavior is a search behavior that can improve the diversity of algorithmic
populations and is widely used in a variety of intelligent algorithms, such as in the foraging
behavior within the fish swarm algorithm to search for food and the wandering behavior
of the wolf pack algorithm to sense the scent of prey in the air in a random pattern [17,18].
Inspired by this, we incorporated stochastic behavior into BSO, and the optimal particles in
it were randomly perturbed during each iteration to enhance its ability to escape from the
local optimal solution to improve global convergence:

Pg
new = Pg ∗ (1 + rand) (14)

where Pg
new denotes the new solution after the random perturbation of the optimal particle

of the Aspen swarm, and rand represents a random number from zero to one. The fitness
value of the optimal particle pg of BSO was compared with that of the global optimal
particle Pg

new for random perturbation; then, the new solution was accepted according to
the metropolis criterion of SA. BSO performed q random perturbations of its global optimal
solution in each iteration.

4.2.2. Improved Iterative Approach to N Particles of the Aspen Swarm

Each skyline of BSO represents a potential solution to the problem. Assuming that the
number of skylines in each iteration of BSO is N, the maximum number of its iterations
is Maxdt, and the duration of the iteration of a single skyline is t, the total complexity
of iterations of BSO is N∗Maxdt∗t [19]. In solving a high-dimensional function problem,
similar to determining the dynamic parameters of the industrial robot, the number of
particles N at the moment of each iteration of BSO is constant. BSO is based on PSO, and a
larger number of particles in PSO yields a higher accuracy of the convergence, but the time
needed for convergence also increases.

For example, in previous work, we proposed a two-stage dynamic PSO that changed
the number of particles in the swarm by linearly reducing the number of iterations. The
experimental results showed that the accuracy of convergence of the algorithm was similar
to that of the classical PSO algorithm, which also reflects a side-effect of the latter. The
algorithm proposed here also had this property of a high initial accuracy of convergence [20].
Inspired by this, the number N of skinks in the skink swarm was changed dynamically.
The number was larger in the early stage of the skink swarm algorithm and smaller in the
later stage, such that the total number of skinks did not differ by much and the gap in the
durations of their iterations was not large. We fully exploited the high efficiency of the early
iterations of the skink swarm algorithm for the accuracy of its solution. The exponentially
decreasing rate of curtailment was used for the number of cows N of the Aspen swarm
algorithm by drawing on the idea proposed by Wang et al. [21]. That is, the particle swarm
algorithm used a larger number of particles to search in the initial stage. With the increase
of the number of iterations, the exponentially decreasing number of particle was used to
reduce the Aspen number, so as to improve the search efficiency, and the improved iterative
formula for the Aspen number is as follows:

N = round(eα ∗ Nstart) (15)

α = t
In fmax − In fmin

Maxdt
− In fmax (16)
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where Nstart denotes the initial number of skinks of the improved skink herd, i denotes the
number of iterations of the skink herd algorithm, Maxdt denotes the maximum number of
iterations, and fmax and fmin are the respective maximum and minimum values of the search
factor set used to control the number of skinks N.

4.3. Robot Dynamic Parameter Identification Based on SEDSABSO

The SEDSABSO process is illustrated below:
From Figure 4, the flow of SEDSABSO for industrial robot dynamics parameter identi-

fication is:

(1) Initialization of the algorithm.
(2) Obtain SEDSABSO individual and group best-fit values.
(3) Update the position, velocity, and number of skinks N
(4) Perform a random perturbation search for the global optimal solution and then accept

the searched solution with SA’s Metropolis criterion and cycle through q searches.
(5) Compare with the global optimal solution obtained in step 3 after passing q times of

search and proceed to the next step of the search by merit.
(6) Determine whether the algorithm ends, and if the termination condition is not satis-

fied, return to step 3. If it is satisfied, the global optimal solution is output. In turn,
the parameters related to industrial robot dynamics are obtained.Actuators 2022, 11, x FOR PEER REVIEW 11 of 16 
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5. Simulation Experiments and Results Analysis
5.1. Adaptation Function

The sum of the absolute values of the difference between the torque of joint recognition
and the theoretical torque of the RS010N robot when sampled i times was used as the
objective function, as in Equation (17)

N

∑
i=1

abs( fk1(i)− f 1(i)) + abs( fk2(i)− f 2(i)) + abs( fk3(i)− f 3(i)) (17)

i = 1, 2, . . . , N denotes the ith sample of the robot, fk1(i), fk2(i), and fk3(i) denote values
of the first, second, and third moments of the joints values for the i robot recognition f 1(i),
f 2(i), f 3(i) denotes the theoretical value of the three joint moments sampled by the robot.

5.2. Analysis of Experimental Results
Experimental Parameter Setting

To improve the accuracy of identification of the kinetic parameters, the individual
algorithms were initialized uniformly by using a small interval [22]. Then, the dynamic
parameters of the robot were solved for by using the SEDSABSO algorithm, BSO algorithm,
and linearly decreasing particle swarm algorithm (LDWPSO), where the number of particles
N was set to 50 for the BSO and LDWPSO algorithms. The initial population Nstart for
SEDSABSO was set to 90, the learning factor was c1 = c2 = 2.0, and the inertial weight w
was 0.8. The maximum number of iterations was set to 600. The initial temperature T for
simulated annealing was set to 10,000, the decay scale of the annealing coefficient was set
to 0.93, the step δ(t) was set to a constant value of 0.05, the adjustment factor λ was 0.9,
and the ratio of the Aspen step to the distance between the whiskers, c, was set to two.
After many trials, the optimal number of particle perturbations for the population was
set to q = 3, fmax was 0.9, and fmin was 0.3. The iteration curves of the Aspen number for
SEDSABSO and BSO are shown below:

Figure 5 shows that the number of particles N was constant during iterations of the BSO
algorithm. Assuming that the maximum number of iterations was Maxdt and the duration
of iteration of each particle was t, the total duration of iterations of BSO was N∗Maxdt∗t,
and N∗Maxdt is equal to Area1+Area2 in the figure. For the SEDSABSO algorithm, the total
iteration time was approximately the product of Figure 5. For the SEDSABSO algorithm,
the total iteration time was approximately the product of the area of the class trapezoid
enclosed by the dash and the horizontal axis and the time t, i.e., (Area3 + Area1) ∗ t, and
since the area of Area3 was not much different from that of Area2, the computational
complexity of the improved Amanita group algorithm was approximately the same as that
of the standard Amanita group algorithm.
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Figure 6 below shows the adaptation iteration curves of each algorithm on an Intel(R)
Core(TM) i7-8550U main frequency 4.00 GHz computer with 600 iterations through Matlab 9.1:
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From Figure 6, we can see that the SEDSABSO algorithm proposed in this paper
converges faster and has smaller fitness values than the BSO and LDWPSO algorithms. It
is clear that the SEDSABSO algorithm proposed in this paper performs best.

In order to further verify the advanced level of the SEDSABSO algorithm, this paper
ran each of the above three algorithms ten times and found the average fitness and average
time as follows in Table 4:

Table 4. Comparison of average fitness values.

Algorithm Average Fitness Average Time/s

SDESABSO 0.95 16.93
BSO 1.12 17.31

LDWPSO 1.18 12.73

From Table 4, we can see that the average fitness values of the three algorithms after ten
runs were only 0.95 for SEDSABSO, 1.12 for BSO, and 1.18 for LDWPSO, further confirming
the stability and effectiveness of the proposed SEDSABSO algorithm. It can be seen that
the average time of SEDSABSO was better than that of BSO, further proving the analysis in
Figure 5. The difference with LDWPSO was not significant, and combined with the average
fitness value, it can be seen that SEDSABSO performed optimally.

The linearized kinetic parameters of the RS010N industrial robot had a total of 21 minimum
parameter sets, and the results of the kinetic parameters identified by SEDSABSO, BSO, and
LDWPSO are shown in Table 5 below; the absolute errors between the identified kinetic
parameters and the actual parameters were also obtained.
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Table 5. Identification of dynamic parameters.

Dynamic Minimum
Parameters

Theoretica
Value

SEDSABSO
Identification

Value

BSO
Identification

Value

LDWPSO
Identification

Value

SEDSABSO
Absolute

Error

BSO
Absolute

Error

LDWPSO
Absolute

Error

I1yy + I2yy + I3zz + 2 ∗ a1 ∗ I1x +
m1 ∗ a1

2 − (m2 + m3) ∗ a2
2 16.41 16.80 16.89 16.82 −0.39 −0.48 −0.41

F1c 0 0.01 0.35 −0.20 −0.01 −0.35 0.2
F1v 0 −0.07 −0.21 0.22 0.07 0.21 −0.22

I2xx − I2yy + (m2 + m3) ∗ a2
2 31.83 31.77 31.92 32.21 0.06 −0.09 −0.38

I2xy 6.14 5.78 5.12 6.12 0.36 1.02 0.02
I2x − a2 ∗ (I2z − I3y) 5.76 5.54 6.22 5.83 0.22 −0.46 −0.07

I2yz −7.82 −7.84 −7.72 −8.10 0.02 −0.1 0.28
I2zz − (m2 + m3) ∗ a2

2 −37.29 −37.11 −37.30 −37.94 −0.18 0.01 0.65
I2x + (m2 + m3) ∗ a2

2 47.37 47.29 47.52 47.27 0.08 −0.15 0.1
I2y 0.16 0.13 0.09 0.27 0.03 0.07 −0.11
F2c 0 0.14 −0.02 −0.08 −0.14 0.02 0.08
F2v 0 −0.21 −0.23 −0.03 0.21 0.23 0.03

I3xx − I3zz −2.07 −2.20 −2.40 −1.51 0.13 0.33 −0.56
I3xy 3.34 3.24 3.25 4.57 0.10 0.09 −1.23
I3xz −3.42 −3.34 −2.95 −4.10 −0.08 −0.47 0.68
I3yy 1.02 0.77 1.12 −0.85 0.25 −0.1 1.87
I3yz −0.29 0.10 −0.34 −1.42 −0.39 0.05 1.13
I3x 0.15 0.11 0.12 −0.04 0.04 0.03 0.19
I3z −0.034 0.00 −0.16 0.04 −0.034 0.126 −0.074
F3c 0 0.18 −0.13 −1.20 −0.18 0.13 1.2
F3v 0 0.06 −0.34 −0.1 −0.06 0.34 0.1

Taking the second parameter F1c of the set of minimum parameters of the industrial
robot in Table 5 as an example, the absolute errors identified by BSO and LDWPSO were
−0.35 and 0.2, respectively, while the absolute error of SEDSABSO was−0.01. On the whole,
the SEDSABSO algorithm yielded the smallest error in identifying the kinetic parameters
of the industrial robot, while BSO and LDWPSO The kinetic parameters identified by the
SEDSABSO algorithm deviated from the theoretical kinetic parameter values, which further
reflects the superiority of the SEDSABSO algorithm. The maximum absolute error in the
kinetic parameters as identified by the SEDSABSO algorithm was −0.39. The overall error
in identification was thus small. The SEDSABSO algorithm can thus identify the kinetic
parameters of the robot.

6. Conclusions

(1) In this paper, a new improved Beetle Antennae Search-QEDSABSO is proposed, which
makes a class exponential change to the number of skinks in the iterative process
of Beetle Antennae Search and effectively improved the utilization rate of Beetle
Antennae Search skinks while the total number of skinks was basically unchanged.
Simulation experiments showed that the proposed algorithm is more accurate and
faster than the common particle swarm and Beetle Antennae Search in identifying the
dynamics parameters of robots. The simulations showed that the proposed algorithm
can identify the dynamical parameters of the robot with higher accuracy and faster
speed than the common particle swarm and Beetle Antennae Search.

(2) The difficulty in identifying the kinetic parameters of industrial robots lies in the
sheer number of variables that need to be determined and the selection of reasonable
excitation trajectories. This paper designed the relevant excitation trajectories by using
the genetic algorithm and linearized the kinetic parameters of the industrial robot to
improve the accuracy of their recognition.

(3) The work provided the foundation for experiments compensating for the kinetic
moments of the industrial robot. The minimum set of parameters of the kinetics could
first be obtained by SymPyBotics. Then, the excitation trajectory of the industrial robot
was designed by using the genetic algorithm, the data on its kinetic moments were
collected, and the moments were identified by the SEDSABSO algorithm. Following
this, the theoretical kinetic moments of the robot were calculated and compared with
empirically sampled moments to obtain the error. Finally, this error was used to
compensate for the kinetic moment of the robot.
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