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Abstract: In wind turbine systems, the state of the generator is always disturbed by various unknown
perturbances, which leads to system instability and inaccurate state estimation. In this paper, an
intermediate-variable-based distributed fusion estimation method is proposed for the state estimation
problem in wind turbine systems. By constructing an augmented state error system and using the
idea of bounded recursive optimization, the local estimators and distributed fusion criterion are
designed, which can be used to estimate the disturbance signals and system states. Then, the local
estimator gains and the distributed weighting fusion matrices are obtained by solving the established
convex optimization problems. Furthermore, a compensation strategy is designed by using the
estimated disturbance signals, which can potentially reduce the influence of the disturbance signals
on the system state. Finally, a numerical simulation is provided to show that the proposed method
can effectively improve the accuracy of the estimation of the wind turbine state and disturbance, and
the superiority of the proposed method is illustrated as a comparison to the Kalman fusion method.

Keywords: wind turbine; intermediate variable; distributed fusion estimation; convex optimization

1. Introduction

As a new, eco-friendly, low-cost power generation technology, wind power generation
not only fills up the energy demand gap, but also reduces the use of fossil energy. Recently,
wind power technology has been widely applied worldwide [1]. To utilize the abundant
and flexible wind energy resources, wind turbines are often installed in mountainous or
offshore areas, where wind resources are rich [2]. It is important to note that the working
environment for the turbines is relatively harsher. Therefore, wind turbines are frequently
disturbed by random variables, such as changes in wind speed, wind profile variations and
so on. Meanwhile, these disturbances will affect the operation of the generator through
the transmission system and can cause an unstable status of the generator, resulting in
fluctuations of the output current, voltage and power of the generator, and subsequently
affecting the stability of the entire power generation system. As a result of the remote
location of the wind farm and the harsh working environment, the control centers are
ordinarily away from the wind farms, and thus various sensors are installed inside the
generator to detect its status. In this sense, this paper will focus on the multi-sensor fusion
estimation problem for the wind turbine state and disturbance signals.

In previous works, various estimation algorithms and models have been proposed
to estimate the state of wind turbines [3–8]. For the unknown nonlinear input signal in
the wind generator model, a dynamic state estimation method based on Kalman filtering
was proposed in [3], which could accurately estimate the state of the generator under the
condition of uncertain wind speed. Moreover, for the local phasor measurement units
(PMUs) of a doubly fed induction generator (DFIG) connected to a multi-area power system,
an unscented particle filter was developed in [4]. The unscented particle filter could more
accurately track the state of the power system when it was disturbed, and solved the particle
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degradation problem. Particularly, combined with the Newton–Raphson method and the
Kalman filter, an new estimation algorithm was proposed in [5] to estimate the aerodynamic
torque acting on the rotor of the turbine. For doubly fed induction generators connected
to complex power systems, where electric faults occur in the power system, an unscented
Kalman filter with a bad data detection scheme was proposed in [6] to estimate the state
of the DFIG. Furthermore, a data-driven method based on multivariate state estimation
technology (MSET) that could recognize fault warnings of the wind turbines was used to
monitor their state in [7]. Based on the historical data of the normal wind turbine gearbox,
nonlinear state estimation technology was proposed in [8] to model the gearbox, and then,
combined with time series filtering and Welch’s t-test in the fault detection algorithm,
the abnormal condition of the wind turbine could be detected. However, the disturbance
estimation was not considered in the above work. In reality, the wind turbine is usually
interfered with by the disturbance signals during operation. When the disturbance is too
large, the system state estimation will be impacted, causing damages to the generator.

In response to the problems of the disturbance signal during the operation of the
wind turbine system, assorted approaches were proposed in the literature. A disturbance
observer for an aerodynamic moment estimation, as well as subsequent compensation,
was proposed in [9] to eliminate unstable factors, such as the instability of the small-signal
model under high wind speeds in the wind turbine system. The Kalman filter was used
to estimate the harmonic signal of the turbine side angular velocity, in addition, a new
empirical mode decomposition method was introduced to separate the harmonics caused
by the interference [10]. The unknown input observer was combined with the linear
parameter varying approach in [11], which was used to estimate the disturbance in the
input aerodynamic torque caused by the wind shear and tower shadow. In addition, based
on the linear variable parameter model, an unknown input observer was designed to
estimate the actuator and sensor fault signals of the wind power system by constructing
an augmented system [12]. Particularly, the disturbance estimation problem based on the
wind turbine transmission system was investigated in [13], where the estimation accuracy
of the extended Kalman filter and the unknown input observer were presented, respectively.
Though many state estimation algorithms have been developed and applied in various
fields [14–16], the robustness, reliability and fault tolerance are not displayed well in the
single sensor estimation. Thus, multi-sensor information fusion technology [17,18] was
presented, which could overcome the limitations of single sensor estimation in order to
integrate redundant information of multiple sensors and then to obtain a better estimation
performance. It is worth noting that the distributed multi-sensor fusion estimation problems
of the wind power systems were not widely studied in the past research works. At present,
the well-known fusion estimation method is Kalman fusion filtering, and extended research
has been carried out regarding this method [17,19]. The major limitation of this method
is that it requires the statistical characteristics of the system noises in advance. However,
the noises and disturbances in the actual system are always random but bounded, and the
statistical information cannot be accurately obtained. Therefore, the bounded recursion
idea, which does not require the statistical information of the disturbances or noises, will
be used to design a fusion estimation method based on intermediate variables in this paper.

Although certain achievements have been made in the wind turbine state estimation
and disturbance estimation, respectively, the area of the fusion estimation of the wind
turbine system state with disturbance has not been well studied. Motivated by the above
analysis, a real-time fusion estimation algorithm is proposed to jointly estimate the system
state and disturbance signals for wind turbine systems. Firstly, the relationship between
state and disturbance is established by constructing an intermediate variable. Then, both
the local gain of the observer and the distributed fusion weighting matrices are determined
by solving two convex optimization problems based on the idea of bounded recursive
optimizations. Particularly, a compensation control strategy based on the estimated signal
of the intermediate observer in order to reduce the impact of disturbance that occurs during
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operation is proposed in this paper. Finally, the effectiveness and the advantages of the
proposed method are verified by a numerical simulation.

2. Model Building

Generally, wind power plants are situated in remote areas that are far away from
towns, such as mountains or coastlines, where the control centers are often not nearby.
Therefore, to determine the status of operating wind turbines, various sensors are equipped
in the turbines to accurately detect the running conditions and to then transmit the collected
data to the control center through the communication network. Recently, the most widely
used wind power generation system is the doubly fed induction generator, its structure is
shown in Figure 1 [20]. The wind power generation system consists of wind wheel, gearbox,
induction generator and back-to-back converter. The stator of DFIG is directly connected to
the grid, whereas the rotor is connected to the grid by two AC/DC IGBT-based voltage
source converters, and two converters are connected by a DC-link. The converter provides
a variable frequency power supply for the rotor, and when the mechanical speed of the
rotor or the load of the motor changes, the frequency and phase of the rotor current can be
adjusted by the converter to keep the voltage and frequency output stable, thus realizing
the variable speed operation of the wind turbine.

Figure 1. Structure diagram of doubly fed induction generator.

Based on the characteristics of the induction generator model, which are non-linearity,
high-order and strong coupling, the following hypotheses are made before modelling:
1. Ignoring the spatial harmonics, the magnetomotive force is distributed sinusoidally
along the circumference of the air gap; 2. Ignoring the saturation of the magnetic circuit, the
self-inductance and mutual inductance of each winding are linear; 3. Ignoring the influence
of the frequency, temperature changes on the winding resistance are not considered. Based
on the above assumptions, the voltage equation of the generator in the two-phase coordinate
system [20] is listed as 

vds = −Rsids −ωsψqs + ψ̇ds/ωb
vqs = −Rsiqs + ωsψds + ψ̇qs/ωb
vdr = Rridr − sωsψqr + ψ̇dr/ωb
vqr = Rriqr + sωsψdr + ψ̇qr/ωb

(1)

and the flux linkage equation is
ψds = −Lsids + Lmidr
ψqs = −Lsiqs + Lmiqr
ψdr = Lridr − Lmids
ψqr = Lriqr − Lmiqs

(2)
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where ids and idr are the component of the stator current and the rotor current on the d axis;
iqs and iqr are the component of the stator current and the rotor current on the q axis; vds
and vqs are the stator voltages in the d and q axes, respectively; vdr and vqr are the rotor
voltages in the d and q axes, respectively; ϕds and ϕqs are the stator flux linkage in the d and
q axes, respectively; ϕdr and ϕqr are the rotor flux linkage in the d and q axes, respectively;
Rs and Rr are the stator and rotor resistances, respectively; Ls, Lr, Lm are the stator, rotor
and magnetizing reactances, respectively; ωb, ωs, ωr are the base, stator and rotor angular
velocity, respectively, s = (ωs −ωr)/ωs.

Selecting the generator current x = [ ids iqs idr iqr ]T as the state variable and
voltage u = [ vds vqs vdr vqr ]T as the input variable, and then combining the voltage
in Equation (1) and the flux in Equation (2), the state space model can be expressed by [21]

ẋ(t) = Acx(t) + Bcu(t) + Ecw(t) (3)

where w(t) is a disturbance signal, Ec is a constant matrix and Ac and Bc are the system
transfer matrix and control matrix, respectively,

Ac = γ


−LrRs αωs −LmRr −LmLrωr
−αωs −LrRs LmLrωr −LmRr
−LmRs LmLsωr −LsRr −βωs
−LmLsωr −LmRs βωs −LsRr



Bc = γ


−Lr 0 Lm 0

0 −Lr 0 Lm
−Lm 0 Ls 0

0 −Lm 0 Ls


where α = LsLr − sL2

m, β = L2
m − sLsLr, γ = ωb/(LrLs − L2

m).
By discretizing the continuous system (3), one has

x(k + 1) = Ax(k) + Bu(k) + Ew(k) (4)

whereA = eAcT , B =
∫ T

0 eAτ Bcdτ, E =
∫ T

0 eAτEcdτ, and T is the sampling period.
For the purposes of monitoring and maintenance, a variety of sensors are embedded

in the wind turbine to measure different information of the generator, such as the motor
speed, current, voltage, etc. Let yi(k) be the measurement output of the ith sensor, and
define the observation equation as

yi(k) = Cix(k) + Divi(k)(i = 1, 2, ..., L) (5)

where Ci is the measurement matrix of the ith sensor, vi(k) is the measurement noise
and Di is the constant matrix of the measurement noise of the ith sensor. Generally, the
measurement data of each sensor are sent to the control center through the communication
network. Thus, the engineer can remotely monitor the running status of the generator. A
distributed fusion estimation algorithm based on the measurement information will be
developed in the next section to jointly estimate the states and disturbance signals of the
wind turbine.

3. Distributed Fusion Estimation Based on Intermediate Variable

In this section, an intermediate observer is developed to estimate the wind turbine
state and disturbance simultaneously [22]. Firstly, an intermediate variable is introduced
as follows:

τ(k) = w(k− 1)− µETx(k) (6)

where µ > 0 is a predefined parameter that can affect the estimation performance of the
intermediate observer. Combining (4) and (6), we have
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τ(k + 1) =(I − µETE)∆w(k) + (I − µETE)τ(k)

+ (µET − µ2ETEET − µET A)x(k)− µET Bu(k)
(7)

where ∆w(k) = w(k)− w(k− 1).

Define z(k) ∆
= [ xT(k) τT(k) ]T . Then, from (4)–(7), an augmented system can be

written as {
z(k + 1) = Āz(k) + B̄u(k) + Ē∆w(k)
yi(k) = C̄iz(k) + Divi(k)

(8)

where Ā =

[
A + µEET E

µET − µ2ETEET − µET A I − µETE

]
, B̄ =

[
B

−µET B

]
, Ē =

[
E

I − µETE

]
,

C̄i =
[

Ci 0
]
.

In this case, an intermediate observer for System (8) is proposed to be
ŷi(k + 1) = C̄i Āẑi(k) + C̄i B̄u(k)
ẑi(k + 1) = Āẑi(k) + B̄u(k) + Li(k)(yi(k + 1)− ŷi(k + 1))
ŵi(k) = Mẑi(k + 1)

(9)

where M = [ µET I ]. ŷi(k + 1), ẑi(k + 1), ŵi(k) are the local estimates of yi(k + 1),
zi(k + 1) and w(k), respectively. Li(k) is the intermediate observer gain of the ith sensor.

Then, based on local state estimates (LSEs) ẑi(k + 1), the distributed fusion estimate
(DFE) of z(k + 1) is given by

ẑF(k + 1) =
L

∑
i=1

Ωi(k + 1)ẑi(k + 1) (10)

where ∑L
i=1 Ωi(k) = I, Ωi(k) is the distributed weighting fusion matrix, and the DFE of the

disturbance is given by
ŵF(k) = MẑF(k + 1) (11)

Consequently, the goal of this section is to design the local intermediate observer gain
and the distributed weighting matrix, such that the upper bound of the local estimation
error and the fusion estimation error is minimal at each moment.

Theorem 1. Each local intermediate observer gain Li(k) can be obtained by solving the following
optimization problem:

min
Θi(k)>0,αi(k),βi(k),γi(k)>0

Tr{βi(k)}+ Tr{γi(k)}

s.t. :




−I ALi(k) ELi(k) FLi(k)
∗ −αi(k) −νi(k) −ξi(k)
∗ ∗ −βi(k) −oi(k)
∗ ∗ ∗ −γi(k)

 < 0

αi(k)−Θi(k)I < 0
Θi(k) < 1

(12)

where 
ALi(k)

∆
= Ā− Li(k)C̄i Ā

ELi(k)
∆
= Ē− Li(k)Ci Ē

FLi(k)
∆
= −Li(k)Di

(13)
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Moreover, the weighting fusion matrix Ω(k) can be obtained by solving the following opti-
mization problem:

min
ε(k),ζ(k),η(k)>0

Tr{ε(k)}+ Tr{ζ(k)}+ Tr{η(k)}

s.t. :


−I Ω(k)Az(k) Ω(k)Ez(k) Ω(k)Fz(k)
∗ −ε(k) −θ(k) −ι(k)
∗ ∗ −ζ(k) −κ(k)
∗ ∗ ∗ −η(k)

 < 0
(14)

where 
Az(k)

∆
= diag{Ā− L1(k)C1 Ā, ..., Ā− LL(k)CL Ā}

Ez(k)
∆
= col{Ē− L1(k)C1Ē, . . . , Ē− LL(k)CLĒ}

Fz(k)
∆
= diag{−L1(k)D1, ...,−LL(k)DL)}

Ω(k) ∆
= [Ω1(k), ..., ΩL−1(k), I −∑L−1

i=1 Ωi(k)]

(15)

Proof of Theorem 1. Define ezi(k)
∆
= z(k)− ẑi(k). Then, the local estimation error can be

written as
ezi(k + 1) = ALi(k)ezi(k) + ELi(k)∆w(k) + FLi(k)vi(k + 1) (16)

whereALi(k), ELi(k) and FLi(k) are defined in (13). Then, a performance index is introduced [23]

Ji(k + 1) ∆
=eT

zi(k + 1)ezi(k + 1)− eT
zi(k)αi(k)ezi(k)− 2eT

zi(k)νi(k)∆w(k)

− 2eT
zi(k)ξi(k)vi(k + 1)− ∆wT(k)βi(k)∆w(k)− 2∆wT(k)oi(k)vi(k + 1)

− vT
i (k + 1)γi(k)vi(k + 1)

(17)

According to (17), the inequality can be expressed by

Ji(k + 1) =

 ezi(k)
∆w(k)

vi(k + 1)

T  Ξ1(k) Ξ2(k) Ξ3(k)
∗ Ξ4(k) Ξ5(k)
∗ ∗ Ξ6(k)


︸ ︷︷ ︸

Ξ(k)

 ezi(k)
∆w(k)

vi(k + 1)

 (18)

where Ξ1(k) = AT
Li(k)Az(k)− αi(k), Ξ2(k) = AT

Li(k)ELi(k)− νi(k), Ξ3(k) = AT
Li(k)FLi(k)−

ξi(k), Ξ4(k) = ET
Li(k)ELi(k)− βi(k), Ξ5(k) = ET

Li(k)FLi(k)− oi(k) and Ξ6(k) = FT
Li(k)FLi(k)−

γi(k). It can be seen from the Schur complement lemma [24] that Ξ(k) < 0 is equivalent to
the first inequality in (12). Therefore, one has

eT
zi
(k + 1)ezi (k + 1) <eT

zi
(k)αi(k)ezi (k)

+

[
∆w(k)

vi(k + 1)

]T[
βi(k) oi(k)
∗ γi(k)

][
∆w(k)

vi(k + 1)

] (19)

In addition, the second inequality αi(k) − Θi(k)I < 0 in (12) holds, and one has
λmax(αi(k)) < Θi(k). Then, (19) can be written as

eT
zi
(k + 1)ezi (k + 1) <Θi(k)eT

zi
(k)ezi (k)

+

[
∆w(k)

vi(k + 1)

]T[
βi(k) oi(k)
∗ γi(k)

][
∆w(k)

vi(k + 1)

] (20)

Hence, it is derived from (20) that [23]
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eT
zi
(k + 1)ezi (k + 1) <

(
k

∏
ϑ=0

Θi(k− ϑ)

)
eT

zi
(0)ezi (0) +

k

∑
ϑ=0

{(
ϑ

∏
ρ=0

Θi(k− ρ)

)

×
[

∆w(k− ϑ)
vi(k + 1− ϑ)

]T[
βi(k− ϑ) oi(k− ϑ)
∗ γi(k− ϑ)

][
∆w(k− ϑ)

vi(k + 1− ϑ)

]} (21)

Since the third inequality Θi(k) < 1 in (12) holds, it is easy to see that

lim
k→∞

k

∏
ϑ=0

Θi(k− ϑ) = 0 (22)

lim
ϑ→∞

ϑ

∏
ρ=0

Θi(k− ρ)= 0 (23)

Then, it can be concluded from (21)–(23) that lim
k→∞

eT
zi
(k + 1)ezi (k + 1) is bounded.

Meanwhile, it can easily be verified that
[

∆w(k)
vi(k + 1)

]T[
βi(k) oi(k)
∗ γi(k)

][
∆w(k)

vi(k + 1)

]
< λmax(

[
∆w(k)

v(k + 1)

][
∆w(k)

v(k + 1)

]T

)(Tr{βi(k)}+Tr{γi(k)}). Hence, the following inequal-

ity holds

eT
zi
(k + 1)ezi (k + 1) <αi(k)eT

zi
(k)ezi (k) + λmax(

[
∆w(k)

v(k + 1)

][
∆w(k)

v(k + 1)

]T

)

× (Tr{βi(k)}+Tr{γi(k)})
(24)

Under this case, the right term of inequality (24) can be viewed as an upper bound of
eT

zi(k + 1)ezi(k + 1) , and “min Tr{βi(k)}+ Tr{γi(k)}” can be treated as the optimization
objective to solve the local intermediate observer gain Li(k).

Now, the distributed weighting matrix Ω(k) is determined by solving the convex

optimization problem (14). Define eF(k)
∆
= z(k) − ẑ(k). The fusion estimation error is

written as

eF(k) =
L

∑
i=1

Ωi(k)ezi(k) (25)

To calculate the optimal weighting matrices, substituting (16) into fusion estimation
error (25), the fusion estimation error system can be written as{

eZ(k + 1) = Az(k)eZ(k) + Ez(k)∆w(k) + Fz(k)V(k + 1)
eF(k + 1) = Ω(k)eZ(k + 1)

(26)

where eZ(k) = col{ez1(k), ..., ezL(k)}, V(k) = col{v1(k), ..., vL(k)}, while Az(k), Ez(k) and
Fz(k) are defined in (15). Then, introduce the matrices ε(k) > 0, ζ(k) > 0, η(k) > 0 such that

eT
F (k + 1)eF(k + 1) <

 eZ(k)
∆w(k)

V(k + 1)

T ε(k) θ(k) ι(k)
∗ ζ(k) κ(k)
∗ ∗ η(k)

 eZ(k)
∆w(k)

V(k + 1)

 (27)

In this case, the right term of inequality (27) can be regarded as the upper bound of
eT

F (k)eF(k), and the following inequality should be satisfied
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 eF(k)
∆w(k)

V(k + 1)

T  O1(k) O2(k) O3(k)
∗ O4(k) O5(k)
∗ ∗ O6(k)


︸ ︷︷ ︸

O(k)

 eF(k)
∆w(k)

V(k + 1)

 < 0 (28)

where O1(k) = AT
z (k)ΩT(k)Ω(k)Az(k) − ε(k), O2(k) = AT

z (k)ΩT(k)Ω(k)Ez(k) − θ(k),
O3(k) = AT

z (k)ΩT(k)Ω(k)Fz(k) − ι(k), O4(k) = ET
z (k)ΩT(k)Ω(k)Ez(k) − ζ(k), O5(k) =

ET
z (k)ΩT(k)Ω(k)Fz(k)− κ(k) and O6(k) = FT

z (k)ΩT(k)Ω(k)Fz(k)− η(k).
According to the Schur complement lemma [24], O(k) < 0 is equivalent to the inequal-

ity in (13). Moreover, Tr{

 ε(k) θ(k) ι(k)
∗ ζ(k) κ(k)
∗ ∗ η(k)

} is equivalent to Tr{ε(k)} + Tr{ζ(k)} +

Tr{η(k)}. Thus,

eT
F (k + 1)eF(k + 1) <λmax(

 eZ(k)
∆w(k)

V(k + 1)

 eZ(k)
∆w(k)

V(k + 1)

T

)(Tr{ε(k)}

+ Tr{ζ(k)}+ Tr{η(k)})

(29)

Therefore, “min Tr{ε(k)} + Tr{ζ(k)} + Tr{η(k)}” can be regarded as the optimiza-
tion objective for determining the weighting fusion matrices of the state. The proof is
completed.

Remark 1. The convex optimization problems in (12) and (14) are constructed by linear matrix
inequalities (LMIs), which can be solved by the “mincx” function in the MATLAB LMI Toolbox.
On the other hand, the disturbance signal may lead to system performance degradation, and even
system instability. However, the intermediate variable fusion algorithm proposed in this paper can
be used to reconstruct the disturbance signals, and then the compensation controller can be designed
as follows:

u1(k) = −B† AEŵF(k− 1) (30)

where B† is the generalized inverse matrix of B. Then, the state space model of the System (4) after
compensation can be described as follows:

x(k + 1) = Ax(k) + B(u(k) + u1(k)) + Ew(k) (31)

Since the intermediate observer can estimate disturbance signals in real time, the
controller is designed by using the estimated disturbance signal to compensate for the
system deviation caused by the disturbance. Meanwhile, it reduces the influence of the
disturbance signals during the operation of the wind turbine. In particular, when the
disturbance signal continues to affect the operation of the generator, it will increase the
fatigue of the generator, and can even cause irreversible damage to the internal components.
Thus, the compensation strategy introduced in this paper has great significance for the safe
operation of the wind turbine.

To summarize, the implementation steps of the fusion estimation algorithm and
compensation strategy are given in Algorithm 1.
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Algorithm 1. Intermediate-variable-based distributed fusion estimation.

1: Given µ, initialize state vector x0 for each time step: k = 1, 2..., end;
2: Solve the convex optimization problem through the LMI toolbox to obtain the local

intermediate observer gain matrix Li(k)
min

Θi(k),αi(k),βi(k),γi(k)>0
Tr{βi(k)}+ Tr{γi(k)}

s.t. :




−I ALi(k) ELi(k) FLi(k)
∗ −αi(k) −νi(k) −ξi(k)
∗ ∗ −βi(k) −oi(k)
∗ ∗ ∗ −γi(k)

 < 0

αi(k)−Θi(k)I < 0
Θi(k) < 1

3: Calculate the local state and disturbance estimate
ẑi(k + 1) = Āẑi(k) + B̄u(k) + Li(k)(yi(k + 1)− ŷi(k + 1))
ŵi(k) = Mẑi(k + 1)

4: Obtain the distributed weighted fusion matrix Ωi(k + 1) by solving convex opti-
mization problem

min
ε(k+1),ζ(k+1),η(k+1)>0

Tr{ε(k + 1)}+ Tr{ζ(k + 1)}+ Tr{η(k + 1)}

s.t. :


−I Ω(k + 1)Az(k + 1) Ω(k + 1)Ez(k + 1) Ω(k + 1)Fz(k + 1)
∗ −ε(k + 1) −θ(k + 1) −ι(k + 1)
∗ ∗ −ζ(k + 1) −κ(k + 1)
∗ ∗ ∗ −η(k + 1)

 < 0

5: Calculate the distribute fusion estimate of state and disturbance

ẑF(k + 1) =
L
∑

i=1
Ωi(k + 1)ẑi(k + 1)

ŵF(k) = MẑF(k + 1)
6: Calculate the compensation control input

u1(k + 1) = −B† AEŵF(k)

4. Simulation Examples

In this section, the estimation performance of the proposed method was verified
by a numerical simulation of a wind turbine. The parameters of the generator [21] are
shown in Table 1. Three sensors are used to measure the state of the generator, and the
measurement matrices are C1 = [0, 0, 0, 1; 0, 0, 1, 0; 1, 0, 0, 1], C2 = [0, 0, 0, 1; 0, 0, 1, 0; 1, 0, 1, 0],
C3 = [1, 0, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1], respectively. The constant matrix is E= [0, 0, 1, 1], D1 =
[0, 1; 1, 0; 0, 1], D2 = [0, 1; 1, 0; 1, 1], D3 = [1, 0; 0, 1; 1, 1]. The disturbance signal and measure-
ment noises are given by

w(k) = 0.2σ1(k)− 0.2σ2(k)
v1(k) = [0.12σ3(k)− 0.1σ4(k); 0.11σ5(k)− 0.12σ6(k)]
v2(k) = [0.18σ7(k)− 0.2σ8(k); 0.19σ9(k)− 0.17σ10(k)]
v3(k) = [0.16σ11(k)− 0.14σ12(k); 0.15σ13(k)− 0.16σ14(k)]

(32)

where σl(k) ∈ [0, 1](l = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) are random variables that can
be generated by the function “rand” of MATLAB. The parameter µ of the intermediate
observer is 1.

By using Algorithm 1, the distributed fusion estimation trajectory and the system
actual state trajectory are plotted in Figure 2. It can be seen from these figures that the
fusion estimators could follow the trajectory of the system state in each dimension. Notice
that the matrix E= [0, 0, 1, 1] represents the fact that the rotor current is interfered by the
disturbance signals, and the current idr(k) and iqr(k) will exceed the per unit (P.U.), as
shown in Figure 2c,d, which cause the generator to be in a dangerous working state. Since
the disturbance signal have a great impact on the stable operation of the system, the
accurate estimation of the disturbance signal can provide effective information for the
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further control of the generator. In particular, the fusion estimator designed in this paper
can jointly estimate the system state and disturbance signal, and the disturbance fusion
estimation also has a higher accuracy, as shown in Figure 3.

Table 1. The parameters of wind generator.

Parameter Value (p.u.)

Rotor frequency 1.29
Stator resistance 0.00488
Rotor resistance 0.00549
Stator reactance 0.09241
Rotor reactance 0.09955

Excitation reactance 3.9527
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Figure 2. The trajectories of x(k) and x̂F(k). (a) d-axis stator current estimation trajectories. (b) q-axis
stator current estimation trajectories. (c) d-axis rotor current estimation trajectories. (d) q-axis rotor
current estimation trajectories.
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Figure 3. The trajectories of the system disturbance w(k).

In general, the larger working current of the generator will cause the coil to heat up,
while the high temperature will damage the insulation layer of the coil, and eventually burn
the generator. From Figure 2c,d, the disturbance signals cause the current to increase, which
will cause serious harm to the generator operation. However, the proposed intermediate-
variable-based fusion estimation method can effectively estimate the disturbance signal
of the system. Based on the fusion estimation of the disturbance, a compensation con-
trol strategy is designed to compensate the system performance wastage caused by the
disturbance, and the compensated state trajectory is shown in Figure 4. Obviously, the
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compensated current is smaller than the original, and it is stable in the safe operation range.
This result indicates that the designed compensation controller can effectively ensure the
safe operation of the generator under disturbance.
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10 20 30 40 50 60 70 80 90 100 110
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0

1
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Figure 4. Trajectories of rotor current under the controller without compensation and with compensa-
tion. (a) Comparison of estimated mean square error of state. (b) Comparison of the estimated mean
square error of disturbance.

In order to prove the ascendancy of the proposed fusion estimation method, the mean
square error (MSE) of the local state estimates (LSEs) and distributed fusion estimate (DFE)
calculated by the Monte Carlo method, with an average of 100 runs, is shown in Figure 5. It
can be seen that the error trajectory of each local estimator is different. However, the sensor
fusion algorithm can use the redundant information and complementary information
between multiple sensors to optimize the combination, and then obtain the state and
disturbance fusion estimation of the system. Moreover, the fusion estimation accuracy of
the state and disturbance is better than the local estimator, verifying that the intermediate-
variable-based distributed fusion estimation method is better than the estimation method
based on a single sensor. Therefore, this algorithm can more accurately monitor the current
state and disturbance of the wind turbine.

Furthermore, to further demonstrate the superiority of the proposed algorithm, the
method is compared with the classic Kalman fusion estimation method [19]. The state
estimation performance of the two fusion estimation methods is shown in Figure 6. The
estimation accuracy of the fusion estimator designed in this paper was found to be better
than the Kalman fusion estimator. This is mainly because the Kalman filter is mostly used to
process Gaussian white noise with known covariance. However, the process noises and the
measurement noises are usually bounded in practice [18], and the statistical characteristics
of the noise are difficult to accurately obtain. The fusion estimation method based on
the intermediate variable proposed in this paper is independent of the noise statistical
characteristics, which is more suitable for actual wind power systems.
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Figure 5. The performance comparison between local estimators and distributed fusion estimator.
(a) Comparison of estimated mean square error of state. (b) Comparison of the estimated mean
square error of disturbance.
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Figure 6. The performance comparison between the intermediate-variable-based fusion estimator
and Kalman fusion estimator.

5. Discussion

The proposed work mainly investigated the application of distributed fusion estima-
tion methods based on intermediate variables in wind turbine systems. The results shown
are from simulations carried out in a MATLAB environment with a mathematical model of
the DFIG system. When the system is influenced by disturbance signals during operation,
and when the measurements of the sensors are affected by the noises, the fusion estimator
designed in this paper can still reconstruct the state information and disturbance signals of
the system.

In order to verify the performance of the designed fusion estimator, comparative
experiments were given in the simulation section. The performance comparison between
the local estimators and the distributed fusion estimator was shown in Figure 5; it can be
seen that the MSE of the fusion estimation is smaller than that of the local estimators. Com-
pared with Kalman fusion filtering—the estimation performances are given in Figure 6—a
superiority of the proposed method was shown. Generally, the Kalman filter [25] is a highly
efficient recursive filter that can generate an estimate of the system state based on the joint
distribution of measurement information at each time. However, the Kalman filter needs
the known noise covariance information to calculate the gain of the local estimator [3,15],
and the fusion weighting matrix also needs to calculate the cross covariance between every
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pair of sensors [16,19], whereas the relevant statistical information about the disturbance
signals or noises of the actual wind turbine system cannot be easily obtained because of the
various internal or external reasons. Therefore, when the disturbance signal or noise covari-
ance information of the system is inaccurate, the estimation performance of the Kalamn
filter is not ideal [23]. The estimator designed in this paper is based on the idea of bounded
recursion optimization, which does not require knowing the statistical information of the
disturbance signals and noises. Then, the gains and weighting matrix of the estimator were
solved by constructing convex optimization problems, and the state and disturbance can
be estimated at the same time through intermediate variables.

In addition, many complex wind turbine systems are modeled by nonlinear dynamics.
However, the proposed algorithm in this paper is limited to linear dynamics, and applica-
tions in nonlinear systems need to be further explored. It is of great practical significance
to study the cooperative design of the disturbance signal estimator and the real-time com-
pensation strategy in a nonlinear wind energy system to reduce the system performance
loss caused by disturbance signals. Moreover, since the wide application of the internet of
things technology in logistics, industry, home furnishing and other fields, it has received
widespread attention. Soon, wind turbines will be connected to the internet of things, and
engineers will be able to monitor and control the operation of the wind turbines anytime
and anywhere through their smart phone. However, the introduction of the communica-
tion network will cause new security risks to the system. For example, hackers invade
the system through the communication network and launch network attacks. Therefore,
investigating how to design detection algorithms for false data injection attack signals and
corresponding defense strategies is one of the important directions of future research.

6. Conclusions

In this paper, a distributed fusion estimation method based on the intermediate
variable was designed to estimate the state and unknown disturbance signals of the doubly
fed induction generator system. By constructing the connection between the state and
the disturbance signals through the intermediate variable, the intermediate variable was
treated as a part of the state variable of the augmented system, and then the local estimators
and a distributed fusion criterion based on the intermediate observer were developed. The
proposed estimated method can obtain the estimator gains and distributed weighted fusion
matrices by solving the convex optimization problem based on linear matrix inequality.
Meanwhile, the estimated disturbance signal was used to design a compensation controller
that can reduce the influence of disturbance and keep the generator operation stable. Finally,
a wind turbine system was used to verify the proposed approach, and the simulation results
demonstrated the effectiveness of the proposed fusion estimation algorithm. By comparing
with the traditional Kalman fusion estimator, the superiority of the proposed method was
also shown.
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Abbreviations
PMUs Phasor Measurement Units
DFIG Doubly Fed Induction Generator
MSET Multivariate State Estimation Technology
AC Alternating Current
DC Direct Current
IGBT Insulated Gate Bipolar Transistor
MSET Multivariate State Estimation Technology
LSEs Local State Estimates
DFE Distributed Fusion Estimate
LMIs Linear Matrix Inequalities
MSE Mean Square Error

Symbols/Variables
vds The stator voltages in the d axes (V)
vqs The stator voltages in the q axes (V)
vdr The rotor voltages in the d axes (V)
vqr The rotor voltages in the q axes (V)
ids The stator current in the d axes (A)
iqs The stator current in the q axes (A)
idr The rotor current in the d axes (A)
iqr The rotor current in the q axes (A)
ϕds The stator flux linkage in the d axes (Wb)
ϕqs The stator flux linkage in the q axes (Wb)
ϕdr The rotor flux linkage in the d axes (Wb)
ϕqr The rotor flux linkage in the q axes (Wb)
Rs Stator resistances (Ω)
Rr Rotor resistances (Ω)
Lm Magnetizing reactances (Ω)
Ls Stator reactances (Ω)
Lr Rotor reactances (Ω)
ωb Base angular speeds (rad/s)
ωs Stator angular speeds (rad/s)
ωr Rotor angular speeds (rad/s)
A System matrix
B Control matrix
Ci Measurement matrix
Di Constant matrix of the measurement noise
E Constant matrix of the disturbance signal
k Step
x(k) State variable
u(k) Control input variable
w(t) Disturbance signal
vi(k) Measurement noise
yi(k) Measurement output
τ(k) Intermediate variable
zi(k) Augmented state
x̂i(k) The ith local estimate of x(k)
ŵi(k) The ith local estimate of w(k)
ẑi(k) The ith local estimate of z(k)
ezi(k) The local estimation error of ẑi(k)
Li(k) The intermediate observer gain of the ith sensor
x̂F(k) The distributed fusion estimate of x(k)
ŵF(k) The distributed fusion estimate of w(k)
ẑF(k) The distributed fusion estimate of z(k)
eF(k) The fusion estimation error of ẑF(k)
Ωi(k) The distributed weighting fusion matrix
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