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Abstract: Dense scanning is an effective solution for refined geometrical modeling applications. The
previous studies in dense environment modeling mostly focused on data acquisition techniques
without emphasizing autonomous target recognition and accurate 3D localization. Therefore, they
lacked the capability to output semantic information in the scenes. This article aims to make com-
plementation in this aspect. The critical problems we solved are mainly in two aspects: (1) system
calibration to ensure detail-fidelity for the 3D objects with fine structures, (2) fast outlier exclusion
to improve 3D boxing accuracy. A lightweight fuzzy neural network is proposed to remove most
background outliers, which was proven in experiments to be effective for various objects in different
situations. With precise and clean data ensured by the two abovementioned techniques, our system
can extract target objects from the original point clouds, and more importantly, accurately estimate
their center locations and orientations.

Keywords: 3D Lidar scanning; Lidar calibration; 3D object localization; fuzzy neural network

1. Introduction

With the rapid development of LiDAR (light detection and ranging) technology, it
has become the primary environment modeling tool to obtain the 3D geometry of a large-
scale space in the form of point clouds. Though with much higher accuracy in range
measurement, general commercial scanning system has inferior performance in resolution
compared to camera systems. Researchers developed various dense scanning systems
with additional DOFs (degree of freedom) of motion and applied them in geological explo-
ration [1], building reconstruction [2], virtual city modeling [3], landslide monitoring [4],
and quality inspection for constructions [5]. However, most of the abovementioned work
only focused on gaining geometric information, and little has been done to interpret the se-
mantic elements in the space. For some applications, such as the hazards auto-detection in
landslide monitoring or the autonomous searching and resecuring with UGVs (unmanned
ground vehicle), the recognition and localization for critical targets are beneficial, if not
necessary. This paper provides a systematic solution for discovering and localizing the
vital targets in the surrounding space by dense laser scanning.

The mechanical structure of our system is similar to the previous studies [1,6–9].
A node mechanism is added, which changes an original 16-line laser scanner to a system
with hundreds of lines, which provides a resolution comparable to camera systems. As
pointed out [10,11], the accuracy of the intrinsic and extrinsic parameters of the scanner in
this kind of system determines its 3D measurement accuracy. The intrinsic parameter error
is the deviation of the lines in the laser scanner from the ideal homocentric assumption, and
the extrinsic parameter errors are generally caused by the manufacturing error in the dense
scanning system. Together they could induce observable misalignments among scanning
lines, which leads to shape deformation of the objects. Therefore, we designed a calibration
method to diminish both intrinsic and extrinsic parameter errors all at once.
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The 3D object recognition and localization methods can be categorized into three kinds
based on how the point cloud data is processed. The first kind is the volumetric-based
method. The space is divided into 3D grids, and usually, a 3D convolution neural network
is used for shape analysis [12]. Early studies used voxel grids to store the occupancy map
of the point cloud [13], and some of the later works adopted octree to save memory and
computational cost [14,15]. The occupancy map failed to capture detailed local geometric
features, which are replaced by a learned feature map [16]. Despite the abovementioned
efforts, volumetric-based methods still suffer from their inherent confliction between high
resolution and low computation efficiency.

The second kind is the point-based methods. They break the grid pattern represen-
tation and focus on feature extraction at each point. The most representative work is the
Pointnet [17], which used several multilayer perceptron (MLP) layers to extract global
and local features for each point. Many works have been done to further improve the
PointNet on its sampling techniques and feature optimization methods [18]. Another way
to address the irregular point distribution is to use the 3D convolution methods directly
on points [19,20] with redefined kernels on local neighbor points. They output the classifi-
cation results of each point. The calculation cost of point-based methods is much higher,
especially for dense point clouds, so they are generally used on a small dataset for object
classification, instead of a large dataset for instance segmentation.

The third kind is to project the point cloud into a virtual plane, which results in a 2D
image. In this way, the traditional 2D image object detection and instance segmentation
methods can be utilized, and the running time is much shorter than the previous two kinds.
The point cloud was projected in a bird view [21] or a range view [22,23]. The distance
of the object with respect to the sensor has less impact on recognition accuracy in bird
view than in range view, but the latter usually is faster due to its smaller image size. The
object recognition accuracy of this kind of method is limited with sparse data. Previous
researchers added camera images to assist in object recognition to solve this problem [24,25].
They used a high-resolution camera image for the object detection and segmentation, then
found the corresponding points in the point cloud using the camera-to-laser geometric
transformation. As a result, the recognition accuracy is much improved with additional
sensing resources.

Though many approaches have been developed, they mainly focused on sparse LiDAR
sensing, such as on the 64-line KITTI dataset [26]. In the case of dense scanning, as we deal
with in this paper, there are two aspects to be addressed compared to previous research.
The first one is fast object recognition. As analyzed above, the 2D image projection method
is a proper choice for dense data. With the dense scanning system, we can obtain image
resolution comparable to a camera, so a similar recognition accuracy using only one sensor
compared to the camera and Lidar combination can be expected. The second aspect we
need to address is the complicated outlier situations in dense scanning. Previous research
divided radius sections on the sparse frustum data and removed the sections which are
less likely to have the target object using deep learning methods [27,28]. Outlier exclusion
is already challenging in sparse data [25,29], and the problems become more severe for the
dense scanning case if the same deep learning method is applied. First, the background
distribution is very complicated, and full coverage of all possible situations in the training
set is difficult, if not impossible. As a result, there is no guarantee of deep learning results.
Second, the exclusion process can be very time-consuming. In this paper, we proposed to
use a lightweight fuzzy logic neural network to assist in data truncation, which achieved
fast and desirable outlier exclusion results. The refined data helped accurate 3D localization
of the target, as testified in different scenes. The statistical results show that the system
provides a stable and precise estimation of the heading directions and 3D locations for
various test subjects. The contributions of the paper are summarized as follows:

• A low-cost dense Lidar scanning system is designed, and a new calibration approach is
proposed to correct the intrinsic and external parameters of the system simultaneously.
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The method ensures constraints in all 6 DOFs, which fully considers all effects in the
3D space induced by parameter drifts.

• A lightweight fuzzy network is designed to assist in outlier exclusion, achieving much
faster computation speed than a deep learning network. The refined data helped
accurate 3D localization of the target, as testified in various scenes.

• A new criterion is proposed to estimate the location and orientation accuracy of the
detected target, which is more suitable for mobile robot applications than the rough
estimation by IoU (intersection over union). Under the new criterion, the algorithms
above are tested in experiments and proven to provide precise target information for
mobile robot operations.

The pipeline of the paper is shown in Figure 1. The dense scanning system and its
calibration method are introduced in Section 2. The image generation and corresponding
2D instance segmentation are presented in Section 3, which results in a direct reconstruction
of the 3D point cloud of the object. We proposed a fuzzy neural network to remove the
background outliers in Section 4, which helps generate an accurate 3D box for the object.
The experimental results are presented and discussed in Section 5, and the paper concludes
in Section 6.
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Figure 1. The pipeline of the paper.

2. Dense LiDAR Scanning System

General commercial LiDAR sensors can only obtain sparse point clouds, which leads
to tremendous difficulties in identifying objects at a long distance. The custom-made
dense scanning system in this paper aims to provide more abundant geometric information
comparable to the resolution of an RGB camera.

Figure 2 shows the comparison of the point clouds for the same scene by the 16-line laser
sensor and our dense scanning system, respectively. With dense scanning, the geometric
details of distant objects can be obtained. In the following content, the dense scanning
system design and calibration are introduced, which ensures sufficient and accurate data
resources as the fundament for the rest work in this paper.
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2.1. System Introduction

The mechanical structure of the dense scan system is shown in Figure 3. The system
consists of a laser sensor, a motion generation subsystem, a power transmission subsystem,
and a support frame. The laser sensor used is a VLP-16 LiDAR with a vertical field of view
of 30◦ and a horizontal field of view of 360◦, attached to a rotational axle with a holder.
The motion generation subsystem is driven by a stepping motor connected to a gearbox to
generate high-precision controllable rotary motion output. Two synchronous belt systems
connect the power transmission subsystem to transfer the rotation motion from the gearbox
axle to the sensor bearing axle with a 1:1 ratio.
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The laser beams from the VLP-16 have a fixed gap of 2◦ between each other from −15◦

to 15◦ in the vertical direction. The additional head node rotation from the mechanical
system helps to fill the gap with a resolution of 0.1◦. The original data from the VLP-16
at each nod position needs to be transformed and combined in a static coordinate system
with respect to the scanning system since the pose of the LiDAR coordinate system varies
with the nod angle.

The coordinate systems are defined in Figure 3. The origin of the LiDAR coordinate
system {A} is located at the optical center of the sensor, the Y-axis points forward, and
the Z-axis points upward with respect to the sensor. The origin of the scanner coordinate
system is set as the center of the rotation axle, the X-axis is the center axis of the axle, and
the Z-axis is vertically upward.

The measurements of each point include horizontal angle (α), vertical angle (β), range
(d), and reflectivity (ref ). Through the first three values, we can get the three-dimensional co-
ordinates of the scanned object in {A}. As illustrated by Figure 4, the coordinates (xA, yA, zA)
of a scanned point can be calculated with Equation (1).

xA = d cos β cos α
yA = d cos β sin α
zA = d sin β

(1)
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Figure 4. The point in coordinate system {A}.

For a point P in the space, AP, BP are its coordinates in {A} and {B}, respectively. When
the stepping motor rotates the laser sensor, the origin of {A} rotates around the X-axis of {B}
by an angle of θ. The transformation of the point coordinates between {A} and {B} can be
written as

BP = BRx(θ)
(

B
ARAP + B

AT
)

(2)

where B
AR and B

AT are the rotation matrix and translation vector between the coordinate {A}
and {B}, respectively, which are determined by the mechanical design of the system.

2.2. Intrinsic and External Parameters Calibration

Each beam is a ray emanating from a laser sensor in a multi-beam scanner. Ideally,
they lie in a vertical plane and intersect at an origin. However, each sensor deviates from its
ideal pose due to intrinsic parameter errors [10]. Such error could cause shape distortion in
3D models of the environments. An example is shown in Figure 5, where the measurement
of a plane wall by the dense scan system clearly splits into discontinuous blocks. The
inconsistency in surface modeling is mainly caused by inaccurate alignments of the point
clouds from different beams. The shape deviation could be more damaging due to the
destruction of their surface shapes. In addition, the extrinsic parameter error, which is due
to the manufacturing error by our customized nodding mechanism, causes extra location
and orientation displacements of the measured points [11].
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To diminish the effect of such parameter inaccuracy, we propose a full-constrained
calibration method. When parameter errors exist, the alignment of the coordinate systems
for different beams deviate from their theoretical conditions. A general description of such
deviation is modeled as additional rotational and translational matrices between each other.
Choose the coordinate system of the first laser beam as a reference; the coordinate system
deviations of other beams are defined as iRerr and iTerr, where i = 1, 2, . . . , 15 is the index
difference of the beam with respect to the reference. Correspondingly, the relationship
between AP and BP in Equation (2) is modified as Equation (3).

BPi =
BRx

[
B
AR
(

iRerr
APi +

iRerr

)
B
AT
]

(3)

The iRerr and iTerr in 3D space have 6 error parameters corresponding to the rotation
and translation on the X, Y, and Z axis, respectively, as shown in Equations (4) and (5).

iRerr = Rz(γi)Ry(βi)Rx(αi) =

 cos αi cos γi − cos βi sin αi sin γi − cos βi cos γi sin αi − cos αi sin γi sin αi sin βi
cos γi sin αi + cos αi cos βi sin γi cos αi cos βiγi − sin αi sin γi − cos αi sin βi

sin βi sin γi cos γi sin βi cos βi

 (4)

iTerr =
[

Txi Tyi Tzi

]
(5)

where αi, βi, γi, Txi , Tyi , Tzi are rational angle error parameters and translation error param-
eters of X axis, Y axis, and Z axis, respectively.

Calibration needs to constrain 6 degrees of freedom in the 3D space. To fully consider
the 6 DOF constraints, the calibration scene is designed as in Figure 6. The scanner is placed
in front of a U-shape wall, which provides three planes as the calibration references. There
are three kinds of constraints to be considered: (1) The flatness of the point clouds for all
three planes, (2) the continuity of the blocks in plane 1 generated by neighbor beams, and
(3) the asymmetry of the relative location relationship between the blocks on plane 2 and
3. The corresponding errors are denoted as Wj errPi ,

Wj errCi ,
W23 errSi , respectively, where

j = 1, 2, 3 is the plane index. Inherently, the three kinds of constraints limit the 6 DOF
motion of one coordinate system to another, as listed in Table 1. In the following content,
we present the error cost formulation for each constraint.
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Table 1. Motion restrictions by the calibration constraints.

Constraint Restricted DOFs
W1 errPi

Ty & Rz
W2 errPi

Tx & Rz
W3 errPi

Tx & Rz
W1 errCi

Tz & Rz
W23 errSi

Ry
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The cost function for the calibration is defined in Equation (6). Since the calibration
parameters have the same effect on each plane, the constraint weights of the planes are
equal. However, there are two constraints related to plane 1: flatness constraint W1 errPi
and continuity constraint W1 errCi . We define a weight k to assign the emphasis between the
two. In the following content, we present the error cost formulation for each constraint.

errt
(
αi, βi, γi, Txi , Tyi , Tzi

)
= kW1 errCi + (1− k)W1 errPi +

W2 errPi +
W3 errPi +

W23 errSi (6)

For the constraints of plane flatness, the point clouds belonging to the same plane
are fitted with a function of a plane, and the fitting error is used as the calibration cost.
We use the principal component analysis (PCA) [30] method to realize the plane fitness
since there are no significant outliers in the calibration data and PCA is proven to be
robust to measurement noise. The detailed procedure to obtain the plane cost Wj errPi is
presented below.

1. Input the plane point cloud set Wj Pi, where Wj Pi is the combination of the point
clouds by the first and the (i + 1)th beam, and nPi is the number of elements in Wj Pi;

2. Define the fitted plane function as Equation (7), where
→
n is the normal vector of the

plane, and Wj P0 = (x0, y0, z0) is the center coordinates of Wj Pi;

→
n

 x
y
z

−→n Wj P0 = 0 (7)

3. Define the mean distance of the points to the fitted plane as the fitting error Wj errPi

in Equation (8), which is a function of
→
n , where (xi, yi, zi) are the coordinates of each

point in Wj Pi;

Wj errPi

(→
n
)
=

1
nPi

nPi

∑
i=1

∣∣∣∣∣∣ a(xi − x0) + b(yi − y0) + c(zi − z0)∣∣∣→n ∣∣∣
∣∣∣∣∣∣ (8)

4. Using the PCA [30] method to estimate an initial normal vector
→
n0. Define a covariance

matrix Pi CWj in Equation (9) and
→
n 0 is the minimal eigenvalue of Pi CWj ;

Pi CWj =
1

nPi

nPi

∑
i=1

(Pi − P0)(Pi − P0)
T (9)

5. Minimize Wj errPi in Equation (8) using OQNLP iterative algorithm [31] with the initial

value of
→
n as

→
n 0. The resulting optimal normal vector is denoted as

→
n
∗
. The final

fitted plane and the corresponding flatness error Wj errPi are obtained by Equation (7)

with
→
n =

→
n
∗
.

For the constraint of plane continuity in plane 1, we use curve distance to quantify the
splits between two adjacent beam blocks. The scanner rotates downward 20 times with a
resolution of 0.1◦, which provides a total of 21 scan curves for each beam. The cone of each
beam intersects with the three walls with a parabolic curve, as shown in Figure 7. Since
the gap between the original beams from the VLP-16 is 2◦, the very first curve of the lower
beam block should overlap with the last one of the upper beam blocks in the front plane
(plane 1), as shown in Figure 8.
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The detailed procedure to obtain the continuity cost W1 errCi is presented below.

1. Input the point set Ci, which is the last scanned line of the ith block, and mCi is the
number of elements in Ci;

2. Define the fitted curve function in the YZ plane as Equation (10), where Y and Z are
the coordinates matrix in YZ plane. For the ith block, i = 1, 2, . . . , 15, its last beam
curve can be fitted with a quadratic curve in the YZ plane, as in Equation (11).

Y
[

t r s
]T − Z = 0 (10)

Y =


1 y1 y1

2

1 y1 y1
2

. . .
1 ymCi

ymCi
2

, Z =


z1
z2

. . .
zmCi

 (11)

3. Use the least square method with Equation (12) to calculate the coefficient
[

t r s
]T.

[
t r s

]T
=
(

YTY
)−1

YTZ (12)

4. Input the point set Ci+1, where Ci+1 is the first scanned line of the (i + 1)th block, and
mCi+1 is the number of elements in Ci+1;

5. The error of distance constraint is the average distance of points in Ci+1 to the fitted
curve in Equation (10). The corresponding continuity cost W1 errCi are obtained by
Equation (13), where (yi, zi) are the coordinates of each point in YZ plane in Ci+1.

W1 errCi =
1

nCi+1

nCi+1

∑
i=1
|di| =

1
nCi+1

nCi+1

∑
i=1

∣∣∣zi −
(

t + syi + ryi
2
)∣∣∣ (13)
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For the asymmetry constraint, we quantify the error by examining the difference of the
gap widths of adjacent blocks between the left and right walls. Using the same procedure
of calculating W1 errCi , we can obtain the gap distance between any two blocks on planes
2&3, denoted as W2 errCi and W3 errCi . Then the symmetry error W23 errSi is defined as

W23 errSi =
∣∣∣W1 errCi −

W1 errCi

∣∣∣ (14)

The experimental scene is shown in Figure 9a, which is a corner of a stairwell. The
data generated for calibration is shown in Figure 9b, which provides the U-shape geometry
we need. Minimize errt

(
αi, βi, γi, Txi , Tyi , Tzi

)
in Equation (14) using OQNLP iterative

algorithm [31], with the initial value set as zero matrices. The resulting optimal calibration
parameters results are shown in Table 2. Both the rotational and translational corrections
of the beam coordinate systems are minor, which is reasonable considering the small
dimensions of the light components in the scanner, the improvement for the environmental
modeling accuracy is evident.
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Table 2. Parameter Calibration Results (k = 0.2 in Equation (6)).

Laser ID αi/rad βi/rad γi/rad Txi/mm Tyi/mm Tzi/mm

1 0.000377 2.26 × 10−5 0.000659 −0.89445 −0.4671 −0.36628
2 0.004092 −0.0003 0.000416 −5.44071 −1.3504 −2.61062
3 0.005324 −0.00018 0.000924 −1.1268 −2.5268 −1.45165
4 0.004636 0.007249 0.002648 −2.3791 −1.0444 3.57043
5 0.005254 −0.00028 0.003374 −1.9334 −2.137 1.179039
6 0.005564 −0.00108 0.004352 −1.53332 −2.3258 −1.18372
7 0.004925 0.005848 0.004374 −2.357 −1.0122 3.49606
8 0.003797 −0.00323 0.037907 −1.7302 −1.6763 5.236154
9 0.007164 0.005035 0.038873 −1.8049 −3.9924 4.50977

10 0.010316 0.007089 0.039402 −1.9303 −5.9039 0.26249
11 0.011841 0.012014 0.042606 −1.75734 −2.2206 8.65139
12 0.006134 0.020335 0.044059 −1.53601 −2.7426 1.8605
13 0.01163 0.006123 0.049215 −1.6067 −3.0979 3.04924
14 −0.00213 −0.00772 0.049009 −2.104 −4.8593 4.25423
15 0.005891 −0.01073 0.049871 −2.317 −4.3012 4.80066

Table 3 shows the comparisons of the three planes before and after calibration from
two viewpoints. The flatness is much improved by the side views, and there are no overlaps
or unreasonable gaps between any two adjacent point cloud blocks. At the same time, the
calibration does not cause any unreasonable changes to plane shape by inspecting the front
views. The fitted curve distance constraints ensure the continuity between the blocks.
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Table 3. Comparison of the point clouds before and after the calibration.

Plane ID
Front View Side View

Before After Before After

1
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From the side views of the front plane, the inaccurate system parameters caused more
serious problems on plane flatness than continuity. Therefore, we set the value of k in
Equation (6) as k = 0.2 to emphasize more on flatness cost. The calibration results for the
two costs are shown in Figure 10. The large flatness errors have been vastly decreased, and
the continuity also improves. The calibration goal is fully accomplished. The readers can
tune the weight k according to their scanning system status.

In this section, we proposed a 3D Lidar calibration method using three U-shape
planes as reference. With all 6 DOF constraints restrained in the cost function, the internal
parameters and external parameters are combined in the model to be calibrated. It takes
30 min to optimize with 64,164 points in the data, which is acceptable because it is only
done once offline.
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3. 2D Segmentation with Lidar Images

The general pipeline of locating objects in 3D point clouds includes the tasks of
recognition, segmentation, and 3D boxing. As discussed above, it is convenient in our case
to accomplish object recognition and rough segmentation with 2D projected images.

3.1. Images Generation

The beams of the scanning system rotate in two directions, as illustrated in Section 2.
Therefore, the horizontal and vertical angles can serve as XY indexes to construct a projected
image, as shown in Figure 11. The pixel indexes of one point are calculated by discrete
angle index in the two directions:[

u
v

]
=

[
1

dα 0
0 1

dβ

][
α
β

]
(15)

where u and v are the horizontal and vertical pixel index, and dα and dβ are the angle
resolution in the two directions, respectively. dα = dβ = 10

◦
in our system.
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Figure 11. Schematic Diagram of the Projection Method.

A 1200 × 320 image can be obtained with the data in the front view of 120◦. The
intensity of the pixels can be obtained by either the depth or the reflectivity data, which are
named RV Image and ReV Image, respectively. For the RV image, the intensity of a certain
pixel is calculated with Equation (16). We choose to emphasize information closer to the
LiDAR so that most of the image has sufficient feature details.

RVIuv =

{ ⌊ 255
k duv

⌋
duv < kd

255 duv > kd
duv ∈ [0, rmax], kd < rmax (16)
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where rmax is the maximum measurable range of the current LiDAR, duv is the measured
range for the current pixel, kd is a user-specified parameter to define the white color
threshold, and RVIuv is the resulting pixel intensity for the RV image.

For the ReV image, the measured reflectivity is regulated by the cumulative distribu-
tion function (CDF). The projected intensity value is then calculated by Equation (17).

ReVIuv =

⌊
CDF(re fuv)− cd fmin

cd fmax − cd fmin
× 255

⌋
(17)

where cd fmax and cd fmin are the maximum and minimum values of the CDF for all the
points, respectively, and ReVIuv is the resulting pixel intensity for the ReV image.

The RV Image and ReV Image are compared with the camera images for the same
scene in Figure 12. When the illumination condition deteriorates, the camera is hard to
capture most of the details. In contrast, the weakened lighting causes almost no effect on the
LiDAR images. The ReV image obviously can obtain more subtle texture information than
the RV image, so we choose it as the object identification resource in the following work.
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Figure 12. Camera and LiDAR image comparison in an indoor scene: (a) the image by a camera
under normal lighting conditions; (b) the image by a camera under very weak lighting conditions;
(c) the RV Image by our dense scanning system under very weak lighting conditions; (d) the ReV.
Image by our dense scanning system under very weak lighting conditions.
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3.2. Convolution Network on Instance Segmentation

2D segmentation has been a mature technique in the computer vision field. In this
paper, we adopt the well-known Mask-RCNN [32] for this purpose. The dataset used in this
paper is pre-trained on the COCO dataset [33]. The reader can choose other segmentation
tools, which do not affect the general performance of the system.

However, there are still significant differences between a camera image and a Rev
image, as illustrated in Figure 12. Therefore, we need to do transfer learning for the pre-
trained network using a small dataset of Rev images. In order to ensure the reliability
of the training results, we use data enhancement methods to expand the data, including
adding gaussian noise, rotating a certain angle, randomly erasing part of the area, randomly
clipping part of the area and horizontal flipping. The transfer learning used the model
framework of Mask-RCNN [32] with pre-trained parameters on the COCO dataset [33]
as the learning start point. The effect of transfer learning on bike recognition is shown
in Figure 13, where the false positives are eliminated after re-training the network. It is
worth mentioning that the details of the bike are observably recovered in the images, which
benefit from the calibration technique introduced in Section 2. It largely improves the
recognition possibility of the objects, especially for those in relatively far distances.
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Figure 13. Bike segmentations using the Mask-RCNN before and after the transfer learning in the
indoor scene: (a) the RGB image in the indoor scene; (b) segmentation of bike before transfer learning;
(c) segmentation of bike after transfer learning.

Similar results can be obtained in the outdoor scene, such as the car segmentation
in Figure 14. Comparing the segmentation effects of the bike and the car, the object with
frame structure, such as the bike, inevitably includes more background pixels than the car.
This could lead to more difficulties in the following work of 3D localization.
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Figure 14. Segmentation result in outdoor experiment: (a) the RGB image in the outdoor scene;
(b) segmentation for the ReV image of a car in the outdoor scene.

4. ANFIS-Aided 3D Refinement and Localization

The 2D segmentation extracts the out-contour of the objects, and the encircled area
can be reprojected back to the 3D space to get the corresponding 3D point cloud. As it is
shown in Figure 15, the noises due to 2D segmentation inaccuracy are limited for objects
with minor holes, such as cars. However, for objects with many hollow areas, such as bikes,
the outliers can even outsize the object itself in some challenging scenarios. We call such
objects framed objects in the following content.
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Figure 15. Point clouds reconstruction under the Mask-RCNN masking: (a) 3D point clouds of the
2D segmented bike; (b) 3D point clouds of the 2D segmented car.

In the following content, a fuzzy logic network is used to further remove most of
the outliers in the background by adaptively choosing a truncation position in the Y
direction. As a result, lightweight networks can be directly used to estimate the location
of the 3D object. The outlier removal is equivalent to a Y axis truncation based on the
assumptions below:

1. There is a certain distance between the target object and the background on the Y axis;
2. There are no foreground noises.
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4.1. ANFIS Construction
4.1.1. ANFIS Structure Design

To find the truncating Y value Try for given point clouds of the target objects, we
first discretize the Y axis into multiple sections. The ANFIS outputs the likelihood of each
section to be the truncating position. The inputs of the network are chosen as statistically
influencing factors: the discretized section index yos, the number of points nos in the
sections of yos, the difference of nos along Y axis denoted as dnos, and the mean value of
the Z coordinates of the points in each section is denoted as mzos. The four inputs reflect
the properties of the point set in different aspects: yos gives the depth range of the point
sets, nos reflects the density distribution of the points in depth direction, dnos represents the
change of the distribution, and mzos reflects the height distribution. For the qth section, the
combination of the four

(
yos_q nos_q dnos_q mzos_q

)T constructs an input vector to the ANFIS.
With all the considerations above, the fuzzy logic network is able to output a quantified
value Qq indicating how likely the qth section should be the cutting-off place. With the
comparison of all the Qq, we can deduce a most possible section q corresponding to a
truncating Y value Try which is expected to remove most of the background outliers.

The framework of the ANFIS system is shown in Figure 16. The system consists of
four modules: fuzzification with membership function, rule-based inference, normalization,
and inference result, the details are presented as below.
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Figure 16. The framework of the ANFIS.

4.1.2. Membership Function for the Fuzzy Set

Membership functions in ANFIS fuzzify the inputs, and the fuzzy set is denoted as A.
We define two members in A for yos_q, which are close to the Lidar (A1), far away from the
Lidar (A2). Define two members for nos_q: small (A3) and large (A4), which correspond to
small and large numbers of points in every discretized section in the scene, respectively.
Define two members for dnos_q: small (A5) and large (A6), which correspond to small and
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large magnitudes of the number changes of points in every discretized section, respectively.
Define two members for mzos_q: small (A7) and large (A8), which correspond to the small
and large height of the points in Z direction, respectively. The relationship between the
fuzzy set and corresponding point situations is shown in Table 4.

Table 4. The relationship between the fuzzy sets and situations.

Fuzzy Set Variable Situation

A1 yos_q(large) Far away from the Lidar
A2 yos_q(small) Close to the Lidar
A3 nos_q(small) Small numbers of points
A4 nos_q(large) Large numbers of points
A5 dnos_q(small) Small changes of the point number
A6 dnos_q(large) Large changes of the point number
A7 mzos_q(small) Small average height of the points
A8 mzos_q(large) Large average height of the points

The membership functions are designed considering the smooth transitions between
the members in the fuzzy sets. For a pair of fuzzy set members, the membership functions
are defined as in Table 5, with two tunable parameters to shift the curve shapes. The
membership functions define the relationship between the inputs and their corresponding
fuzzy sets. Design a membership function for each member Ai in A, and denote it as
Am f _i(w) ∈ [0, 1]. The closer Am f _i(w) is to 1, the more possible that w belongs to Ai;
likewise, the closer is to 0, the more impossible that w belongs to Ai.

Table 5. The general membership functions of the ANFIS.

General Membership Function Diagram

F(x) =



0 x < k1

2
(

x−k1
k2−k1

)2
k1 ≤ x ≤ k1+k2

2

1− 2
(

x−k1
k2−k1

)2 k1+k2
2 < x < k2

1 x > k2
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For a pair of membership functions of a single input variable, their function formulas
and diagrams are shown in Table 5. There are two variables to be defined in the functions,
which can be tuned to shift the curve shapes better fitting the data.

Since each input has two variables in its membership functions, four inputs totally
induce eight adaptive variables, denoted as Awi , i = 1, 2, . . . , 8. The list of the variables
and their relationship with the fuzzy set and the corresponding membership functions are
shown in Table 6.
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Table 6. The relationship between the fuzzy sets and membership function.

Fuzzy Set Membership
Function Function Formula Variable

A1 Am f _1(yos_q) F(yos_q) k1 = Aw1, k2 = Aw2A2 Am f _2(yos_q) G(yos_q)

A3 Am f _3(nos_q) G(nos_q) k1 = Aw3, k2 = Aw4A4 Am f _4(nos_q) F(nos_q)

A5 Am f _5(dnos_q) G(dnos_q) k1 = Aw5, k2 = Aw6A6 Am f _6(dnos_q) F(dnos_q)

A7 Am f _7(mzos_q) F(mzos_q) k1 = Aw7, k2 = Aw8A8 Am f _8(mzos_q) G(mzos_q)

4.1.3. Fuzzy Rule Base

A fuzzy rule base defines the logical relationship between the fuzzy set and the output.
Particularly in this paper, it reasons the possibility Qq of the qth section to exclude most
of the outlier points according to different conditions of the inputs. The rule base we
establish in this paper and the corresponding measurement weights of each rule are listed
in Table 7. We use three variables WH , WM, and WL to specify three degrees of possibility
for a rule to be a truncating situation. For example, when the fuzzy set of the input(
yos_q nos_q dnos_q mzos_q

)T are πw1(A1, A3, A5, A7), the possibility for the qth section to be a
truncating position is high as WH . The physical interpretation is: the distance of the section
is far away enough from the object frontside; the point number is small, so it should not be
on the object; the change of the point number with its previous neighbor is small, so it is in
a stable range; the point height is low, so it is possible to be the ground.

Table 7. The rule base of the ANFIS.

yos_q nos_q dnos_q mzos_q Rule Base Weight

A1 A3 A5 A7 πw1 WH
A1 A3 A6 A7 πw2 WL
A1 A4 A6 A7 πw3 WL
A1 A4 A5 A7 πw4 WL
A1 A3 A5 A8 πw5 WM
A1 A3 A6 A8 πw6 WL
A1 A4 A5 A8 πw7 WM
A1 A4 A6 A8 πw8 WL
A2 A3 A5 A7 πw9 WL
A2 A3 A6 A7 πw10 WL
A2 A4 A6 A7 πw11 WL
A2 A4 A5 A7 πw12 WM
A2 A3 A5 A8 πw13 WL
A2 A3 A6 A8 πw14 WL
A2 A4 A5 A8 πw15 WL
A2 A4 A6 A8 πw16 WL

The degree of the membership for the rule πw1 is denoted as G1w and defined by the
minimum of the four membership outputs, as shown in Equation (18). Following the same
rule, we can obtain all the Gjw,j = 1, 2, . . . , 16.

G1w = min
(

Am f _1
(
yos_q

)
, Am f _3

(
nos_q

)
, Am f _5

(
dnos_q

)
, Am f _7

(
mzos_q

))
(18)
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4.1.4. Normalization and Inference Output

The normalized degree of membership for all the rules is calculated by Equation (19).

Gjw =
Gjw

∑16
j=1 Gjw

(19)

The inferred truncation possibility for a section is calculated by the combination of all
the rule conditions with their associated weights, as shown in Equation (20). Repeating the
process for all the sections, the ANFIS provides a vector Q =

[
Q1 . . . Qq . . . Qn

]
including

the possibility for all the sections to be the truncating place.

Qq =
16

∑
j=1

WjGjw (20)

It is straightforward to find Try with a given Q, which is simply the Y coordinate value
of the section with the maximum value in Q.

4.1.5. Parameters Training

There are 11 adaptive parameters XANFIS = [Awi WH WM WL]
T , i = 1, 2, . . . , 8, in the

ANFIS above, including eight membership function variables and three weight parameters.
They can be selected by experience but may not be optimal. The following describes how
to use experimental data for parameter training.

The ground truth of the truncating value Ery is user-marked in the training set. Ac-
cordingly, define the error function as Equation (21). Minimize the error function with
OQNLP iterative algorithm [31] and the initial experience value as input. The trained
parameters for the bike segmentation are shown in Table 8. It should be noted that for each
kind of object, we need to separately train the network parameters due to their distinct
geometric properties.

err(XANFIS) =
1
ns

ns

∑
k=1

∣∣∣kTry(XANFIS)− kEry

∣∣∣ (21)

where kEry is the ground truth cutoff distance in the kth scene in totally ns training scenes,
kTry is the cutoff distance estimated by the ANFIS.

Table 8. The relationship between the fuzzy sets and situations.

Variable Before Training After Training

Aw1 80 85.256
Aw2 180 181.263
Aw3 1 0.9584
Aw4 25 35.647
Aw5 0 0.1403
Aw6 1 1.3826
Aw7 50 36.08
Aw8 100 127.4
WH 100 102.765
WM 30 35.2615
WL 2 1.8621

For the case of bike training, we choose the section width as 10 mm, and the adaptive
variables before and after training are shown in Table 8. The initial selection of these values
is based on experimental experience. For example, regarding the truncating range for
the bike, it is initially set to be 80–180 according to the size of bikes (corresponding to
800–1800 mm) by the parameters Aw1 and Aw2. As for the point numbers in each section,
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the truncating section only contains a small number of noises or ground point clouds,
so we set the initial parameters of Aw3 and Aw4 as small numbers 1 and 25. As for the
changes of point numbers in adjacent sections, the truncating section should be in a minor
change condition, so 0 and 1 are chosen as the initial values of Aw5 and Aw6. Finally, the
average height in the Z direction for each section is set in the range of 50–100 by Aw7 and
Aw8, according to the height of a bike. For the weights of fuzzy output, we hope they
can distinguish the three conditions, so WH , WM, and WL are set to be with significant
differences as100, 30, and 2, respectively.

The last three input curves for the ANFIS are shown in Figure 17a–c, and the trained
network outputs a Q curve as in Figure 17d. The largest peak of the Q curve corresponds
to the 95th section, which gives a point set truncation place from the side view and bird
view in Figure 17e,f, respectively. It is chosen at a place right behind the bike and before
most of the background objects. Therefore, all the points on the bike are preserved, and
most of the outliers are removed successfully.
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4.2. 3D Boxing and Refinement

The point cloud of the target object is generally incomplete due to occlusions, so the
3D box is hard to calculate by only parts of the target object directly. The technique to
handle this problem is called Amodel Boxing and has been studied by previous researchers
with deep learning techniques [24,34]. Out of all the impressive work, we choose to use
the Amodel Boxing part of the Pointnet. The network contains two lightweight subnets, as
shown in Figure 18, for the centroid regression and 3D box estimation, respectively. Both
networks have a shared multilayer perceptron (MLP) on each point and then use a max-
pooling layer to get the global features of all the points. A fully connected layer outputs each
target’s residual center and box parameters using the stacked global features. The inputs of
the networks are the 3D point cloud matrices resulting from the point truncation above,
and the outputs are the centroid and 3D box of the object, respectively. The localization
result of the bike with localization networks is shown in Figure 19.
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5. Experimental Results and Discussion

In this section, we designed two kinds of experiments to evaluate the 3D object
localization performance of the device and the algorithms. The first experiment is to identify
and localize bikes with different distances, backgrounds, and locations. As discussed above,
the bike is a typically framed object, and the recognition and 3D segmentation from the
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background of such objects are always considered challenging tasks. The second experiment
is multi-kind object recognition and localization in different scenes. This is designed to
testify to the system performance in complex environments.

The experiments were conducted on the testbed shown in Figure 20. The dense
scanning system was installed on a mobile robot, so the techniques in this paper potentially
can provide rich environmental information for the robot’s automation operations.
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5.1. 3D Localization of Bikes

In the bike test, we leveled the difficulties of the bike instances with similar criteria as
the KITTI benchmark [26]:

• Easy: Minimum bounding box height: 60 Px; maximal occlusion level: fully visible;
maximal truncation: 15%;

• Moderate: Minimum bounding box height: 40 Px, maximal occlusion level: partly
occluded, maximal truncation: 25%;

• Hard: Minimum bounding box height: 35 Px, maximal occlusion level: difficult to see,
maximal truncation: 40%.

We collected 150 bikes with different sizes and appearances as the training dataset.
The dataset was enhanced by adding Gaussian noise, downsampling, flips, rotations, and
truncations, which ultimately provided 1500 images as the training set for the transfer
learning. Another 150 images were treated as the dataset for testing. The specific recognition
accuracy rate under each difficulty level is shown in Table 9. The average precision (AP) is
the precision averaged across all unique recall levels. Though the quality and resolution of
the images are limited, the AP of the bike recognition was still high. This indicates that the
image by the 3D dense LiDAR is effective in recognizing target objects.

Table 9. The AP of the Bike Recognition (IoU = 0.8).

Easy Middle Hard

AP 90.84 84.23 76.66

Some examples of the object recognition results are shown in Figures 21 and 22. The
masks with different highlight colors show recognized and segmented bikes. Though the
bikes were placed in various locations and poses, most of them were identified, and the
masks separated the bikes from the background with acceptable contours errors. There
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were still some failures for the hard cases, which are marked by red boxes in Figure 22a,b.
The missing bike in Figure 22a is due to its small image occupancy, and in Figure 22b due
to the lack of a large portion of the bike body in the image.
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Figure 22. The results of bike recognition and 2D segmentation with Mask-RCNN: (a–j) the corre-
sponding recognition results of ten scenes in Figure 21.

Several cases of ANFIS truncation results are shown in Figure 23. There are various
situations, including a close bike with lots of ground outliers, a close bike with few outliers,
a close bike with missing slices, a far bike with sparser points, a close bike with missing
parts and complex background outliers, a bike on the image edge with a big portion of
body missing. For all the easy, medium, and hard situations, the trained ANFIS made
reasonable decisions on the truncating locations and removed most of the outliers. The
same conclusion can be drawn from Figure 24, which shows the 3D localization results of
the examples in Figure 21. The yellow boxes are the ground truth of the bikes, and the red
boxes are the estimated box after outlier exclusion by the ANFIS and 3D box regression
by the T-Net. As long as the bike is recognized in the 2D image, the outliers are properly
removed and thus the center of the 3D box has no noticeable deviation from the true value.
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Figure 23. ANFIS truncation of bikes with different levels of difficulty: (a) the ANFIS results of one of
the bikes in Figure 21c; (b) the ANFIS results of one of the bikes in Figure 21b; (c) the ANFIS results
of one of the bikes in Figure 21g; (d) the ANFIS results of the bike in Figure 21i; (e) the ANFIS results
of one of the bikes in Figure 21e; (f) the ANFIS results of one of the bikes in Figure 21a.

Traditionally, the 3D localization accuracy is estimated by the IoU of the 3D bounding
box, which only provides box overlapping information between the result and the ground
truth. For mobile robots, the more critical criteria are the position and orientation accuracy
of the object. Therefore, we define two error terms errcenter and errangle in Equations (22)
and (23). DGT and θGT are the ground truths of the coordinates and heading angle of the
bikes, respectively. h, w, l are the height, width, and length of the bounding box of the bikes,
respectively. D f inal and θ f inal is the corresponding results output by the T-Nets, respectively.
errcenter describes the center deviation with respect to the dimension of the object, and the
errangle is the orientation estimation error. The two errors are critical for many mobile robot
operations but have never been carefully studied in previous research.

errcenter =

∣∣∣D f inal −DGT

∣∣∣
√

h2 + w2 + l2
× 100% (22)

errangle =
∣∣∣θ f inal − θGT

∣∣∣ (23)
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Figure 24. Localization results of the bikes. The yellow box is the ground truth of the bikes, and the
red box is the results estimated by T-Net: (a–j) the corresponding localization results of ten scenes in
Figure 21.

On the premise that the objects are recognized in the image, statistically, the 3D
localization accuracy and the difficulty level of the object are positively correlated. As it is
shown in Table 10, the average center location and heading direction errors are unnoticeable
for easy cases, small for middle-level cases, but much larger for hard cases. The accuracy
of 3D localization was seldomly analyzed in previous research. Some of them provide a
roughly correlated index, the intersection over union (IoU), to have a coarse estimation
of the 3D boxing accuracy. For cyclists, they had 0.5 in [23] and 0.34 in [28] as the IoU
threshold for all the tests. In our work, the IoU is high as 0.822 for easy cases, and fairly
high as 0.723 for middle difficulty level cases, which is much higher than previous studies.
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Even for hard cases, the average IoU is 0.519, which is comparable with previous studies.
The work in this paper presents an impressive improvement in localization accuracy.

Table 10. Localization error statistics for bikes.

Benchmark
err center/% errangle/rad Average 3D IoU

Easy Middle Hard Easy Middle Hard Easy Middle Hard

Bike 0.831 3.55 10.425 0.021 0.246 0.815 0.822 0.723 0.519

5.2. Indoor and Outdoor Tests with Various Targets

In order to verify that the algorithm mentioned above is also applicable to other kinds
of objects, outdoor and indoor experiments proceeded. The targets extended to be bikes
and cars in the outdoor scene and chairs and balls in the indoor scene.

The outdoor scene is shown in Figure 25, where four cars and two bikes are the target
objects to be recognized and localized. The 2D segmentation result is shown in Figure 26.
The two bikes, though one of them is far and to some extent blended in the background, are
both found and properly segmented from the background. Three out of the four cars are
found. The one under the pink mask is discovered even though part of the car is occluded.
Interestingly, we found that even for the cars, the original point cloud after 2D segmentation
could be in a very undesirable situation, as seen in Figure 27c,d. It is due to the transparency
of the glass window and the inevitable inaccuracy of the 2D segmentation at the edge of
the objects. The ANFIS truncation essentially helped to decrease the influence from the
outliers, which provided high accuracy in object 3D localization, as seen in Table 11. For the
car in Figure 27e, the distance is 25m, and the point cloud has become sparse, but the center
location estimation is still in highly accurate, and the orientation error is in an acceptable
range. It is worth mentioning that this is an undetectable object if a sparse 64-line Laser
scanner, like the one in KITTI [26] dataset, is used. In an ideal case, the whole car would
only have less than 200 points, and in the actual KITTI [26] dataset, this number is down
to be around 100. The information preserved by such a small number of points is hard to
provide sufficient information for either object detection or location estimation.
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Figure 27. The ANFIS results in the outdoor test scene: (a–e) the ANFIS results of recognized targets
with the same mask color in Figure 26.

Table 11. Localization error statistics in the outdoor test scene.

Benchmark err center/% errangle/rad

Car 4.32 0.528
Bike 2.56 0.024

There is still one failure case, which is the car in the red box as illustrated in Figure 26.
The reason is clearly shown in Figure 27. The car is far, and its reflectivity data lack standard
vehicle features in the ReV image. As a result, it is missed by the Mask-RCNN. It is evident
that the weak spot in the pipeline of this paper is the object detection performance in
2D images. Once the object is detected, the outsider exclusion and 3D boxing technique
generally function well in all our tests as shown in Figure 28.

The result for the indoor tests is very similar to the outdoor tests. The indoor test
scene is shown in Figure 29. There are seven chairs and three balls scattered in the room,
and all of them are recognized and properly segmented by the Mask-RCNN, as shown in
Figure 30. The ANFIS helps remove most of the background outliers, as shown by the two
examples in Figure 31. The 3D localization results are shown in Figure 32, with minimal
errors as listed in Table 12. The distances of the objects with respect to the dense scanner
are limited in the indoor scene, so the difficulty level is generally low, and the accuracy is
thus higher than the outdoor cases.
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Table 12. Localization error statistics in the indoor test scene.

Benchmark err center/% errangle/rad

Chair 0.33 0.0122
Sports ball 1.45 NULL

5.3. Comparision with Frustum-PointNet

In this section, we mainly discuss the performance comparison with state-of-the-
art work in 3D object recognition and localization, the Frustum-Pointnet [24]. As stated
above, the main improvement of this paper is to replace the original deep 3D segmentation
network with a lightweight fuzzy logic network for the purpose of low computational
cost. The codes for our algorithm and Frustum-Pointnet both ran on NVIDIA TX2 using
the dense data in this paper. On average, it takes 3.3 s for one object segmentation by
Frustum-Pointnet and only 0.13 s with the ANFIS in this paper as shown in Figure 33.
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Figure 33. The comparison on time costs of different targets: (a) Time cost in the outdoor scene in
Figure 25; (b) Time cost in the indoor scene in Figure 29.

As for the outlier exclusion effect, we selected cars to compare the performance because
cars are originally included in the KITTI dataset used by Frustum-Pointnet. An example
is shown in Figure 34. The ANFIS and Frustum-Pointnet have similar outlier exclusion
capabilities. The Frustum-Pointnet is slightly better because it eliminates all the ground
points, and the ANFIS still preserves a few due to its truncation mechanism. However,
the influence on the 3D localization is limited, as shown in Figure 34. The car localization
errors are quantitatively compared in Table 13, and the two methods have very similar
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localization accuracies. Therefore, we can conclude that the ANFIS essentially improves
the computation efficiency with neglectable sacrifice on the localization accuracy.
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6. Conclusions 

This paper presents a dense scanning system that recognizes and localizes targets 

from its 3D scanning cloud points. The system is capable of obtaining accurate geometric 

measurements for the surrounding environment. The fidelity of the data is ensured by a 

carefully designed system calibration process. As a result, the fine details of the objects 

are preserved without shape deformations, which helped to improve the recognition ac-

curacy by 2D segmentation techniques applied on projected Lidar images. 

In addition, an ANFIS is proposed to exclude the background noises, which is inevi-

tably introduced by edge inaccuracy in the segmentation step. The method has the merits 

of low computation cost and performance robustness. It has been proven that the ANFISs 

can output clean 3D points of the objects with different features and placed in different 

situations. As a result, the system achieved high 3D localization accuracies in both center 

location and orientation estimations. 

It is worth mentioning, though, that our method currently can only process the back-

ground outliers. When there are foreground outliers, the current ANFIS needs to be mod-

ified to provide both front and back truncations. In addition, though the object segmenta-

tion time is largely decreased, the amodel 3D boxing still uses deep networks, which 

might cause undesirable delays for mobile robots in real applications. Therefore, more 

research is needed to give fast and accurate estimations on the centroid and orientation of 

the targets, even with an incomplete point cloud. 
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Figure 34. Comparison between the ANFIS method and Frustum-Pointnet [24], where the blue box
is the ground truth, and the red box is the estimated results: (a) with outlier exclusion by ANFIS;
(b) with the segmentation by Frustum-Pointnet.

Table 13. Localization error of the cars.

Benchmark err center/% err angel/rad

ANFIS 1.42 0.021
Frustum-Pointnet [24] 1.40 0.019

6. Conclusions

This paper presents a dense scanning system that recognizes and localizes targets
from its 3D scanning cloud points. The system is capable of obtaining accurate geometric
measurements for the surrounding environment. The fidelity of the data is ensured by a
carefully designed system calibration process. As a result, the fine details of the objects are
preserved without shape deformations, which helped to improve the recognition accuracy
by 2D segmentation techniques applied on projected Lidar images.

In addition, an ANFIS is proposed to exclude the background noises, which is in-
evitably introduced by edge inaccuracy in the segmentation step. The method has the
merits of low computation cost and performance robustness. It has been proven that the
ANFISs can output clean 3D points of the objects with different features and placed in
different situations. As a result, the system achieved high 3D localization accuracies in both
center location and orientation estimations.

It is worth mentioning, though, that our method currently can only process the
background outliers. When there are foreground outliers, the current ANFIS needs to
be modified to provide both front and back truncations. In addition, though the object
segmentation time is largely decreased, the amodel 3D boxing still uses deep networks,
which might cause undesirable delays for mobile robots in real applications. Therefore,
more research is needed to give fast and accurate estimations on the centroid and orientation
of the targets, even with an incomplete point cloud.
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