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Abstract: Until the 1970s, hydraulic actuators were widely used in many mechanical systems;
however, recently, electric motors have become mainstream by virtue of their improved performance,
and hydraulic motors have largely been replaced by electric motors in many applications. Although
this trend is expected to continue into the future, it is important to comprehensively evaluate which
motor is most suitable when designing mechanical systems. This paper presents the results of a
survey of the performance of electric and hydraulic servo motors and aims to provide quantitative
data that can be used as a reference for selecting appropriate motors. We surveyed AC, AC direct,
brushless DC, and brushed DC electric motors and swash plate-type axial piston, bent axis-type axial
piston, crank-type radial piston, and multistroke-type radial piston hydraulic motors. Performance
data were collected from catalogs and nonpublic data. We compared and evaluated the characteristics
of these diverse servo motors using indexes such as torque, rotating speed, output power, power
density, and power rate.

Keywords: electric motor; hydraulic motor; power density; power rate

1. Introduction

Hydraulic systems provide high power and a rapid response and have been widely
used in many industrial fields. However, the partial or full electrification of hydraulic
systems has been increasingly implemented—for example, in aircraft, off-highway ma-
chines, commercial vehicles, and automobiles—in order to reduce their environmental
impact [1–7]. On the other hand, some industries continue to actively use hydraulic sys-
tems. Although many humanoid robots and legged robots used electric actuators with high
performance, a recent increase in the output power and toughness of hydraulic actuators
has attracted attention. Powerful hydraulic-driven robots, such as BigDog [8], Atlas [9],
and HyQreal [10], have been developed [11], and many studies have been conducted on
elemental technologies for hydraulic robots, including elemental equipment and control
technologies [12–15]. Hydraulic systems have been also utilized in the renewable energy
industry. Some wind and wave power generators use hydraulic systems to transfer power
because hydraulic power transmissions enable easier maintenance and downsizing of
systems relative to other types of transmission [16–22].

It is important for engineers and designers to select appropriate actuation systems
for servo applications. The choice of using electric, hydraulic, or other motion systems
is a fundamental decision that affects performance, cost, maintenance, safety, ease of use,
flexibility, and reliability. Much research has been conducted over the past few decades
to help evaluate the characteristics of these systems and determine the most appropriate
choice for a particular use. In 1944, W. C. Trautman and R. E. Middleton compared the
weight per power of hydraulic and electric components in aircraft and compared the total
weight of these systems by listing the weights of each component [23]. M. H. Geyer and
R. C. Treseder, in 1952, also compared the weights of hydraulic, electric, and pneumatic
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systems in aircraft, evaluating the advantages of each [24]. In 1960, P. H. Southwell noted
differences between mechanical systems and other systems, i.e., hydraulic, pneumatic,
and electric systems. In addition, the features of hydraulic and electric systems were
described, and the relative performances of mechanical and hydrostatic transmissions were
compared [25]. K. Foster and L. Fenney evaluated the dynamic characteristics of electric
and hydraulic servo-drives by examining their power rates and conducting mathematical
analyses of each servo-loop, in 1989 [26]. P. Dansfield, in 1990, surveyed several studies
on the response of electric, hydraulic, and pneumatic actuators, evaluating their response
characteristics to specific conditions [27]. W. Backé, in 1993, described progress in fluid
power technologies, considering differences between the weight–power ratios of hydraulic
and electric motors and showing that hydraulic motors had several advantages [28]. In 1997,
K. Nakano and Y. Konno surveyed the performance of hydraulic and electric servo motors
and evaluated relationships among the performance indexes and dimensional parameters
of these motors [29]. To provide a means to select the appropriate actuator for a given
mechanical task, J. E. Huber et al. presented and compared the performance characteristics
of many types of linear actuators, including those driven by material shape changes, such
as piezoelectric, shape memory alloy, thermal expansion, and magnetostrictive actuators,
as well as electric and fluid power actuators, in 1997 [30]. W. Durfee et al., in 2011,
considered whether hydraulic systems are appropriate for powered orthotics and compared
the weights of hydraulic systems, which were found to be smaller than commonly used
electromechanical systems [31]. In 2013, Y. Tanaka and S. Sakama et al. surveyed and
compared the performances of electric, hydraulic, and pneumatic motors [32] based on the
work of Nakano [29]. T. Kazama, in 2019, unlike many previous studies, focused on power
transmission elements (hoses in hydraulic systems, tubes in pneumatic systems, and wires
in electric drive systems) and conducted a comparison of the relationship between their
weight and transmission power [33]. Previous studies have compared and evaluated the
characteristics of various driving systems and components; however, it is unclear if the data
in these studies are sufficient. In addition, the characteristics of the studied systems are
likely to have changed significantly over the last several decades. Therefore, they might not
always help in selecting the appropriate system to use. It is therefore important to expand
the scope of the survey as much as possible and update survey data on a regular basis.

Although every component of a motion system and every type of drive system should
ideally be investigated, it is difficult to survey and fairly evaluate all these systems because
the amount of information available varies by system. In this paper, we focus on one of the
most important components of the motion system, i.e., the servo motor. Furthermore, we
focus on two drive systems, hydraulic and electric, which were surveyed as common drive
systems in many previous studies. Although the target of this investigation is confined to
hydraulic and electric servo motors, we have collected as wide a dataset as possible regarding
these servo motors in order to present useful information for engineers and designers.

2. Survey Target

Table 1 shows the surveyed motors. We collected data based on specifications listed
in motor product catalogs, documents, and nonpublic data. It should be noted that some
information about these materials is omitted in the references since the number of materials
is large: more than 300 catalogs and dozens of other documents were collected. We divided
the electric motors into AC, AC direct, brushless DC, and brushed DC motors and hydraulic
motors into swash plate-type axial piston, bent axis-type axial piston, crank-type radial
piston, and multistroke-type radial piston motors. Among these, the brushless DC motor
data were added relative to our previous study [32]. Moreover, we collected data on motors
of various sizes and from different years. The total amount of data for each motor includes
the same type of motor irrespective of the publication year of the catalog, resulting in a
total amount of data for hydraulic and electric motors that was over ten times greater than
that in previous studies. In that regard, this paper not only compares the performance of
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motors by differences in their drive system but also shows the transition of the performance
of each motor.

Table 1. Survey targets for the comparison of servo motor characteristics.

Motor Type Number of
Companies

Total Number
of Data

Number of Data Listed in Currently
Available Catalogs (as of May 2020)

Electric

AC 9 3844 1013
AC direct 4 599 308

Brushless DC 8 3954 705
Brushed DC 6 2333 611

Hydraulic

Swash plate-type axial piston 12 485 60
Bent axis-type axial piston 6 726 192
Crank-type radial piston 4 929 488

Multistroke-type radial piston 3 954 296

In this paper, Section 4 shows the transition of motor characteristics using all collected
data, and Section 5 shows the results of the comparison of the characteristics of motors
listed in catalogs available in May 2020.

3. Performance Indexes

Hydraulic motors and electromagnetic motors differ in their actuation principles. In
this paper, we evaluated their performance using data listed in catalogs, such as rated
torque, output power, and rotating speed, and some indexes calculated from catalog data,
similar to the evaluation methods used in previous studies [29]. Here, we introduce some
of the performance evaluation indexes used in this paper.

To compare motor output power, we used the index of power density, Pd. Since the
output power of many motors increases as the size of the motor increases, it can be difficult
to accurately compare the output of variously sized motors using only the rated output of
the motor, Pr. To compare different types of motors considering their size differences, we
used not only the rated power Pr but also the power density Pd, which is defined by the
ratio of Pr to the weight m of the motor, as shown in Equation (1):

Pd = Pr/m (1)

For a high power density, the motor can be evaluated as relatively compact and with
high output power.

For evaluating motor responsiveness, we also used specific indexes. One of these
indexes is the power rate, Q. Another index is termed the torque–inertia ratio Tj, and it
is defined as the ratio of the rated torque Tr to the polar moment of inertia Jm and can
thus also evaluate responsiveness. However, the torque–inertia ratio of the motor changes
according to its reduction ratio; therefore, it is not suitable for evaluating geared motors.
Although we also collected data for gearless motors, this paper uses the power rate Q,
which is more commonly used to evaluate motor responsiveness. The power rate Q is
defined as the ratio of the square of the rated torque Tr to the moment of inertia Jm, as
shown in Equation (2):

Q = Tr
2/Jm (2)

This equation shows that the power rate increases as torque increases. Moreover, since
larger motors generally have higher torque, it can be inferred that larger motors have higher
power rates. Therefore, when it is necessary to compare responsiveness while taking into
consideration the influence of differences in motor size, the power rate density Qd is used,
which is defined as the ratio of power rate Q to weight m, as shown in Equation (3):

Qd = Q/m (3)
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Unfortunately, data regarding the moment of inertia of some motors have not been
published in catalogs. Therefore, it is not possible to evaluate the performance of these
motors since the moment of inertia cannot be calculated.

4. Trends of Motor Characteristics
4.1. Power Density

Figure 1 shows the transition of the power densities of hydraulic and electric motors.
The horizontal and vertical axes indicate the year in which the motor data were published
and the power density of the motor, respectively. Note that the scale of the power density
is logarithmic.
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Figure 1. Transition of power density in electric and hydraulic motors.

Hydraulic motors have a higher power density than electric motors; however, this
difference has become progressively smaller over time. Before the 1990s, the power density
of hydraulic motors was approximately two orders of magnitude greater than that of
electric motors, but the performance of electric motors has dramatically improved over
the decades; thus, nowadays, the difference between hydraulic and electric motors is only
around one order of magnitude.

One of the main factors accounting for the improved performance of electric motors
is the increase in the strength of permanent magnets. The transition of the maximum
energy products of permanent magnets, together with the power density of electric motors,
is shown in Figure 2. It is clear that the power density of the electric motors increased
following the development of permanent magnets with high-maximum-energy products.
In particular, the advent of the neodymium magnet, developed by Sagawa in 1984 [34],
resulted in major improvements in motor performance. Since the 1970s, the performance
of electric motors has increased as social needs, such as resource and energy conservation
and improved productivity, have increased, accelerating the shift away from hydraulic
motors, which had previously been mainstream, to electric motors. In addition, although
the brushed DC motor had initially been widely used, AC motors became more common
because of improvements in the performance of microcomputers and circuit elements used
in inverters during the 1980s [35]. Moreover, during the 1990s, the power density of the
AC motors was further enhanced by improvement of the winding method and innovative
changes in the design and structure of motors [36]. Another remarkable point in this
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figure is the development of the brushless DC motor. The power density of brushless DC
motors, which have been popular since the 1990s, has increased more than ten times in
approximately 20 years, and brushless DC motors are now the electric motors with the
highest power density.
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Figure 2. Transition of power density in electric motors and maximum energy products of
permanent magnets.

Although the progress in electric motors is remarkable, the power density of hydraulic
motors has also increased over the last few decades. The increased power density of
hydraulic motors is linked to their increasing rated pressure. Figure 3 shows the power
density of the hydraulic motors plotted in Figure 1, along with their 10-year average rated
pressure. In this figure, the scale is not logarithmic. The rated pressures of hydraulic
motors have increased by approximately three times since the 1940s, and this has been
accompanied by an increase in power density.

Although the power densities of electric and hydraulic motors have increased over the
past several decades, it is also clear that the performance of electric motors has not changed
significantly in the last 10 years, whereas hydraulic motor performance has changed little
in the last 30 years.

4.2. Weight and Torque

The transitions of motor weight and torque are shown in Figures 4 and 5, respectively.
Since the 1990s, electric motors, especially brushless DC motors, have become signifi-
cantly lighter. It is clear that the aforementioned technological improvements in electric
motors have substantively contributed to their miniaturization, and, consequently, the
power density of electric motors has increased. In addition, with regard to AC motors,
their weights have become both lighter and heavier; indeed, some are comparable to the
heaviest hydraulic motors. It can thus be inferred that one of the major factors behind
the development of heavy electric motors was an increased demand for the electrification
of hydraulic systems. However, heavy electric motors have less torque than comparable
hydraulic motors. Although large electric motors with high power have been developed,
it remains difficult for modern electric motors to produce as much force as comparable
hydraulic motors. Regarding hydraulic motors, the use of such relatively large motors
has not changed for many years, and their weight and rated torque have not changed
significantly. Small hydraulic motors less than 1 kg in weight have also been developed
but are relatively few.
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4.3. Power Rate and Power Rate Density

Figures 6 and 7 show the advancement of the power rate and power rate density,
respectively, of electric and hydraulic motors.
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Figure 7. Transition of power rate density.

The power rate of hydraulic motors has not changed significantly with time, although
that of radial piston motors has increased slightly. On the other hand, the power rate
of electric motors has tended to increase, with the exception of DC motors. Moreover,
differences in the transitions between hydraulic and electric motors become clearer when
compared by power rate density. Although the power rate density of hydraulic motors
has remained higher than that of electric motors for many years, the increased power rate
density of electric motors is higher than that of hydraulic motors. It can be inferred that the
improved performance of permanent magnets has also contributed to the increased power
rate density in electric motors. The maximum power rate density of hydraulic motors is
an order of magnitude greater than that of electric motors, but the power rate density of
hydraulic motors has not changed since the 1990s. Therefore, the difference between these
types of motor may be smaller in the future.

5. Trends of Motor Characteristics
5.1. Weight–Torque

To evaluate motor characteristics in more detail, we compared the relationships be-
tween two parameters related to motor performance. Here, the comparison targets are
narrowed down to currently available motors. The relationship between motor weight m
and rated torque Tr is shown in Figure 8.

Considering motor weight, electric motors show a wide range of weight distributions,
from less than 1 g to several tons. On the other hand, the range of weight distribution of
hydraulic motors is relatively small, and most hydraulic motors weigh more than 1 kg.
However, when comparing the torques of motors with the same weight, the torque of
hydraulic motors is found to be larger than that of electric motors at the same weights.

Nakano et al. [29] inferred, from the structure of the motors, that the torque of DC
servo motors is proportional to 4/3 of the power of motor weight, whereas the torque of
hydraulic motors is proportional to motor weight. Their survey results demonstrate that
these inferences are valid. In addition, they confirmed that AC and DC servo motors show
similar trends. On the other hand, some of the survey results shown in Figure 8 differ from
the results of previous studies. For example, electric motors smaller than approximately
1 kg and hydraulic motors larger than around 20–30 kg agree with the above relationship,
but some AC and small-sized hydraulic motors do not. The slope of the AC motors is
smaller than that of the other electric motors, whereas that of hydraulic motors smaller
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than approximately 20 kg is almost proportional to the 4/3 power of motor weight. This
suggests that, even for the same type of motor, characteristics may differ between large and
small examples. However, the torque of AC direct-drive motors is proportional to the 4/3
power of the motor weight and is larger than that of AC servo motors of similar weight.
Therefore, direct-drive motors are considered to be more suitable when a large torque is
required to be generated by electric motors.
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Figure 8. Correlation between weight and rated torque.

Comparing hydraulic motors by type shows that although axial piston and crank
piston-type radial piston motors plot almost along the same straight line, multistroke-type
radial piston motors plot significantly higher. The multistroke-type radial piston motors
can generate the largest torque of all the motors surveyed, nearly two orders of magnitude
greater than that of the AC servo motors.

5.2. Rated Rotating Speed–Torque

Next, we compared the relationship between rated rotating speed Nr and rated torque
Tr. These data are plotted in Figure 9. Since motor output power is calculated as the product
of torque and rotating speed, it can be observed that the motors plotted in the upper right
of Figure 9 have larger output powers.

Motor torque decreases as rotating speed increases in both hydraulic and electric
motors. Moreover, the torque of hydraulic motors tends to be higher than that of electric
motors, although some electric motors are comparable to hydraulic motors.

Considering this relationship in more detail, the torque of certain high-torque hy-
draulic motors is roughly inversely proportional to their rotating speed, but most motors
have a larger slope. In other words, the faster the motor speed, the more noticeable the
decrease in torque, and it becomes difficult to output a large power. Focusing on brushless
DC motors, some can drive more than an order of magnitude faster than can other motors.
However, the torque of brushless DC motors that rotate at the same speed as other motors
is smaller than that of both AC and hydraulic motors.
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Figure 9. Correlation between rated rotating speed and rated torque.

Characterizing the relationship between the rotating speed and torque of motors allows
an indirect evaluation of the relationship between speed and output power. Although
motor weight was not considered in this evaluation, as can be seen from the evaluation in
the previous section, the output power of the motor varies greatly depending on its weight.
For example, the hydraulic motor plotted in the red circle in Figure 9 weighs approximately
200–400 kg, but the weight of the AC motor is around 4000 kg. In other words, electric
motors are required to be ten times larger in size than hydraulic motors to output the same
power at the speed of a hydraulic motor. In the next section, to evaluate this point, the
relationship between motor weight and output power is considered.

5.3. Weight, Rotating Speed–Power, Power Density

The relationship between motor weight m and output power Pr is shown in Figure 10.
Nakano et al. [29] showed that this relationship tends to be similar to the relationship
between motor weight and torque, i.e., that the output power of electric motors is propor-
tional to the 4/3 power of motor weight, whereas that of hydraulic motors is proportional
to the weight. However, in Figure 10, similar to the relationship between the motor weight
and torque, the tendency of AC motors and some hydraulic motors is shown to be slightly
different from previous studies. The slope of the output power of AC servo motors with
respect to weight is slightly smaller than that of other electric motors; indeed, it is close to
linear. For hydraulic motors, output power is roughly proportional to weight, but for axial
piston motors, the slope decreases above 20–30 kg. Although the slope of the output power
to the weight of hydraulic motors is smaller than that of electric motors, it also can be seen
that the output power of hydraulic motors is larger than that of electric motors at all sizes.

The ratio of output power to weight represents the power density of motors defined
by Equation (1). Figure 11 shows the power density relative to the weight of the motors.
This figure also indicates that the power density of hydraulic motors is higher than that
of electric motors. In particular, the difference in the power density of motors with a
weight of around 10 kg is noticeable, since this difference is approximately two orders of
magnitude. However, as motor size increases, the difference in power density between
electric and hydraulic motors decreases. To clarify differences in these large-sized motors,
we considered the relationship between the rated rotating speed and power density in
Figure 12a. Therefore, the plotted positions of each motor can be separated by type.
Comparing the motor speeds of electric and hydraulic motors of similar power density, the
speeds of electric motors are found to be faster than those of hydraulic motors. The same
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tendency can be seen in Figure 12b, which extracts data in the range surrounded by the
red square in Figure 11, i.e., where many plots of electric and hydraulic motors overlap.
The output power of the motor is calculated as the product of its speed and torque; this
indicates that when the power densities of electric and hydraulic motors are similar, the
choice of the most suitable motor depends on whether speed or torque is more important.
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Figure 10. Correlation between motor weight and rated output power.
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Figure 12. Correlation between rated rotating speed and power density: (a) all plots; (b) data in the
range surrounded by the red square in Figure 11.

5.4. Power Rate and Power Rate Density

Figure 13 shows the relationship between motor weight m and power rate Q calculated
by Equation (2). The power rate of hydraulic motors is larger than that of electric motors
of the same weight. Moreover, although the power rate of hydraulic motors tends to be
proportional to the weight of the motor, the slope is smaller when viewed by motor type.
Nakano et al. [29] demonstrated that the power rate of hydraulic motors is proportional to
the 1/3 power of the motor weight. In the case of electric motors, the power rate is roughly
proportional to the weight, which is consistent with the trend shown by Nakano et al. [29].

K. Foster et al. [26] defined an index calculated by the product of the angular velocity and
the square root of inertia of motors; they used this to indicate motor capacity and compared
the relationship of this index with the power rate. Herein, we also organize data according to
this relationship and compare motor characteristics. Figure 14 shows the relationship between
the index ωJm

1/2 and the power rate Q. The angular velocity ω is calculated from the rated
rotating speed Nr. As can be seen by the variables used in this index, a large amount of energy
can be generated when index ωJm

1/2 is increased. It is clear that the power rate increases as
the output energy generated by the motors increases, such that the power rate of hydraulic
motors is larger than that of electric motors; this result is similar to that reported in Figure 13.
The lines in Figure 14 represent the results of the survey by K. Foster et al. [26] and confirm
that the power rate to output energy of hydraulic motors has increased significantly, although
the corresponding change in electric motors is smaller.
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Figure 13. Correlation between motor weight and power rate.
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Figure 14. Correlation between output energy and power rate.

The relationship between rated output power Pr and power rate density Qd calculated
by Equation (3) is shown in Figure 15. The overall tendency of hydraulic and electric
motors shows that the power rate density decreases as the rated output power increases,
although the power rate density of some motors tends to slightly increase in each series.
However, it is important to note that the power rate densities of hydraulic motors are
10-fold or one-hundred-fold those of electric AC servo motors. We can thus evaluate that
the responsiveness of hydraulic motors is higher than that of electric motors with similar
weight or output power.
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6. Comparison of Electric and Hydraulic Drive Systems

Several hydraulic motors have large torque, high power density, and a high power
rate (Figure 16). Therefore, when high output power with the smallest possible size or high
responsiveness is required, hydraulic motors are preferable to electric motors. However,
electric motors have various sizes and can be driven at a higher speed. Although hydraulic
motors have a high power density and are suitable for miniaturization and high output
power, electric motors are preferred when a small size is required or when speed is more
important than generated torque.

We compared electric and hydraulic systems focusing exclusively on the motor, but
the analysis of the entire system is necessary before choosing between both systems. The
schematic of the electric and hydraulic drive systems’ configuration is shown in Figure 17.

Hydraulic motors can generate a large force with a small size; however, they require
reservoirs, pumps, etc., and the power source for hydraulic systems is typically larger than
that for electric systems. Therefore, electric drive systems are appropriate when the size
of the power source affects the entire design of the system. However, when the size of
the power source has a minor effect on the entire system’s performance, such as when
several actuators are used in a system with a high degree of freedom or when the actuators
are moved remotely, a hydraulic drive system can be more suitable because the actuator
sizes are crucial for the system performance. Additionally, although reduction gears are
used with electric actuators, their use reduces the back drivability and impact resistance.
Therefore, constructing the direct-drive system using hydraulic actuators is appropriate
when high back drivability and impact resistance are required of the actuator.

Furthermore, when evaluating the entire system, one should consider the influence
of the power transmission element. Reducing the hydraulic lines of an aircraft by adopt-
ing electro-hydrostatic actuators reduces its weight. Therefore, when the weight of the
hydraulic lines has a significant effect on the entire system’s weight, it may be possible to
reduce the entire system’s weight by replacing the hydraulic lines with wires [37]. How-
ever, Kazama compared the power densities of electric wires and hydraulic hoses and
reported that hydraulic hoses have a higher power density than electric wires for high
power transmission [33]. Thus, selecting the means of energy transmission by considering
the power density of transmission elements is necessary.
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7. Conclusions

This paper presents the results of a comparison between the characteristics of commer-
cially available electric and hydraulic servo motors.

We collected data about the characteristics of these two types of servo motor based on
both specifications found in catalogs and nonpublic data. Our survey targets included AC,
AC direct, brushless DC, and brushed DC electric servo motors and swash plate-type axial
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piston, bent axis-type axial piston, crank-type radial piston, and multistroke-type radial
piston hydraulic servo motors.

We compared the transition of servo motor performance and clarified that hydraulic
motors are superior in terms of their power density and power rate density. However,
electric motors have rapidly become smaller, more responsive, and with higher outputs.
For this reason, differences in power density and power rate between electric and hydraulic
motors have decreased.

Furthermore, we narrowed down the targets of comparison to motors available as
of May 2020 and compared their characteristics. It was confirmed that the rated torque,
output power, power density, and power rate of hydraulic motors are larger than the
corresponding values of electric motors of similar weight. However, such performance
differences between hydraulic and electric motors depend on motor size. Moreover, electric
motors are faster than hydraulic motors when compared for similar power densities.

From the above considerations, hydraulic motors showed excellent performance in
many indexes; however, the performance improvement of electric motors is particularly
advantageous compared to the hydraulic motor, and the performance of electric motors
is expected to be close to that of the hydraulic motors in the future. Regarding hydraulic
motors, the performance has not changed significantly since the 1990s, and small-sized
motors of approximately several tens of grams, such as electric motors, have not been
developed. If the size of hydraulic motors is significantly reduced in the future, it will
be possible to generate a larger force than that in conventional small electric motors and
construct small mechanical systems that can perform work that requires a certain amount
of force, which is difficult with fully electric systems.

In this study, the characteristics of actuators and electric and hydraulic drive systems
are discussed. To determine whether an electric or hydraulic drive system is suitable,
understanding the differences between electric and hydraulic drive systems in terms of the
power source, power transmission element, and actuator, as well as the extent to which
each element affects the entire system’s performance, is important.
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