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Abstract: Stable maneuverability is extremely important for the overall safety and robustness of
autonomous vehicles under extreme conditions, and automated drift is able to ensure the widest
possible range of maneuverability. However, due to the strong nonlinearity and fast vehicle dynamics
occurring during the drift process, drift control is challenging. In view of the drift parking scenario,
this paper proposes a segmented drift parking method to improve the handling ability of vehicles
under extreme conditions. The whole process is divided into two parts: the location approach
part and the drift part. The model predictive control (MPC) method was used in the approach
to achieve consistency between the actual state and the expected state. For drift, the open-loop
control law was designed on the basis of drift trajectories obtained by professional drivers. The drift
monitoring strategy aims to monitor the whole drift process and improve the success rate of the
drift. A simulation and an actual vehicle test platform were built, and the test results show that the
proposed algorithm can be used to achieve accurate vehicle drift to the parking position.

Keywords: autonomous vehicles; drift parking; open-loop control; supervision mechanism

1. Introduction

The stability of the vehicle chassis has always been a matter of concern. Chassis
design can be divided into different classifications for different groups of people [1]. For
professional drivers, the chassis usually exhibits a reduced margin of stability in the system
when completing specific driving actions. This usually causes tire adhesion to reach
saturation, also referred to as the limit condition. By studying the dynamic characteristics
of the vehicle under extreme states, it is possible to better adapt the dynamic control
boundaries of the vehicle. When the vehicle is driving on a low-adhesion road, with a
low friction coefficient, it is easy for turning to cause the rear wheels to reach the adhesion
limit ahead of the other wheels, and the tail of the vehicle will swing out, that is, the drift
phenomenon will occur. When the vehicle drifts, it causes the vehicle’s heading angle,
mass center sideslip angle, and other states to change with time, accelerating, and the
vehicle will be in an unstable state. Goh et al., performed experiments on the full-scale
MARTY test vehicle to confirm the effectiveness of the controller on a trajectory with a
curvature varying from 1/7 to 1/20 m. The vehicle speed was varied from 25 to 45 km/h [2].
Driverless vehicles are able to perform correct decision making by sensing the surrounding
environmental conditions, and accurately tracking their trajectory. In addition, driverless
vehicles are able to ignore driver factors such that nonprofessional drivers are able to
experience the fun of the drift.

The trajectory tracking control of intelligent vehicles has developed rapidly in the
last ten years. Due to the strong nonlinearity, internal dynamic instability, and under-
drive of the vehicle system, achieving trajectory tracking control with high precision
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and high robustness remains a difficult problem. Therefore, various control methods are
constantly emerging.

The linear quadratic regulator (LQR) is one of the most commonly used optimal
control methods for trajectory tracking and has a small real-time calculation burden and a
simple structure. Alcala et al. [3] used the Lyapunov-based control method to reconstruct
the closed-loop system in the form of linear variable parameters and used the linear
quadratic regulator–linear matrix inequalities (LQR-LMI) to adjust the parameters of the
Lyapunov controller. The sliding mode control (SMC) method has good robustness, and
still possesses a good control effect in systems with high model uncertainty. Tagne et al. [4]
introduced a high-order sliding mode controller to control the steering wheel angle of
autonomous vehicles in response to the current lateral displacement error. Hu et al. [5]
adopted nonlinear feedback (integral sliding mode–composite nonlinear feedback) based
on sliding mode control to weaken the chattering of the system in consideration of the
stability of the system under tire saturation conditions. Funke et al. [6] comprehensively
considered trajectory tracking, vehicle stability, and collision avoidance as the three control
objectives by adjusting the weight coefficient in the MPC method, with priority being given
to avoiding obstacles and maintaining vehicle stability. Liu et al. [7] used the MPC method
to realize lane changing control in unmanned vehicles at high speed, while assessing
vehicle stability on the basis of the phase diagram, and developed a stability envelope
constraint on this basis to ensure the stability of the vehicle under high lateral conditions.
Guo et al. [8] realized trajectory tracking control of four-wheel distributed-drive electric
vehicles through hierarchical control. The upper layer calculates the expected front wheel
angle and the direct yaw moment through the MPC method, while the lower controller
assigns the direct yaw moment to each wheel motor. Kim et al. [9] considered the dynamic
characteristics of the steering system in a control model and added actuator characteristic
constraints to the MPC controller.

In recent years, scholars at home and abroad have performed a lot of research on
vehicle drift control. Velenis et al. [10] studied the drift stability of rear-wheel-drive vehicles
and demonstrated that a vehicle can only maintain an unstable balance if the vehicle’s
throttle and steering are controlled simultaneously. A set of backstepping controllers was
designed, and these were combined with the driver’s input commands to achieve control of
the stability of vehicle drift along a steady circle in the simulation environment. In line with
the preview control theory, Nakano et al. [11] designed a full-state feedback controller based
on the linearization of a nonlinear system and tracked a steady-state circular trajectory
with a drift attitude. Goh et al. [12] studied lateral displacement control, calculating the
lateral force of the front and rear wheels while simultaneously controlling the stability
of the sideslip angle of the mass center and directly solving the longitudinal force on the
basis of the saturation of the rear tires, thus allowing a vehicle to drive along a steady
circle in a state of drift balance. The control scheme proposed by Jelavic et al., switches
between nonlinear model predictive control and linear feedforward feedback strategy
to achieve drift [13]. An RC vehicle with a ratio of 1/10 was used for test verification.
Kolter et al. [14,15] designed a set of open-loop and closed-loop fusion control algorithms.
Firstly, a closed-loop controller based on the LQR algorithm was designed according to the
vehicle dynamics model, which can realize the trajectory tracking control under normal
working conditions. Secondly, an open-loop controller was designed according to the
analysis of a data library of the motion control actions of professional drivers during drifts.
At each moment of the control process, the two are switched independently according to
the control effect of the controller.

In traditional research, when the vehicle is in e extreme emergency conditions on
the low-adhesion roads, it becomes more likely to experience problems with poor control
accuracy, which makes the vehicle lose stability or even abruptly sideslip. These algorithms
have poor self-adaptability in complex environments, so it is difficult to ensure overall
control stability [16,17]. Currently, research on trajectory tracking control under extreme
conditions in terms of driverless vehicle motion control remains immature, and drift control
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is rarely studied. Based on research on the control of driverless vehicles drifting into a
storage warehouse, this paper aims to achieve limited controllability of rear wheel brake
lock, a state which is regarded as unstable in traditional motion tracking control The present
study thus plays a role in technical exploration within the field.

This paper further explores the control of unmanned drift into a storage warehouse.
The main contributions are as follows:

(1) A segment drift control strategy is designed. The depot approach section ensures that
the vehicle enters the drift state when it reaches the drift trigger point. Drift in depot
ensures that vehicles can complete the drift in operation with high precision.

(2) The drift monitoring strategy is proposed, including a path planning monitoring
strategy, a drift-triggered state monitoring strategy, and a drift process monitoring
strategy. Since the drift results are greatly affected by external disturbance factors, the
proposed monitoring strategy can increase the success rate of drifts and ensure the
safety and integrity of the test.

(3) Based on Simulink and CarSim, simulation experiments are carried out to verify the
drift parking and monitoring strategy. Actual vehicle verification is carried out to
provide the basis for the research under typical limit conditions.

The schematic diagram of the segmented drift control designed in this paper is shown
in Figure 1. The OD segment is the location approaching segment, D is the drift trigger
point, and the DP segment is the drift parking segment.

Figure 1. Schematic diagram of drift parking.

The difficulties of segment drift parking control include the following: (1) The trigger-
ing drift state of the vehicle should be consistent with the expected vehicle state. (2) The
entire control system is greatly affected by external disturbance. (3) As a complex control
system, the vehicle has strong parameter uncertainty and nonlinearity. Efforts to control
costs impose limits on the type and quantity of onboard sensors available, so it is difficult
to obtain vehicle dynamics parameters accurately and in real-time.

The rest of the article is arranged as follows: Section 2 covers the location approaching
process; Section 3 covers the drift parking process; Section 4 covers the drift control
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supervision strategy; and Sections 5 and 6 cover both the simulation test and actual vehicle
test, including a summary.

2. The Location Approaching Process
2.1. Path Planning

A Bezier curve, with as little curvature change as possible, is made between the current
position of the vehicle and the drift trigger point, to serve as the travel path. The Bessel
curve can be expressed as [18]:

q(τi) =
m

∑
k=0

(
m
k

)
Pk(1− τi)

m−kτi
k, τi ∈ [0, 1] (1)

where m is the order of the Bezier curve, q(τi) is the interpolation point at the parameter,
and τi, Pk is the control point with k sequence on the trajectory. By taking the value of the
parameter τi, any interpolation point can be generated in the first control point and the last
control point. A cubic Bezier curve is commonly used, where m = 3, and the cubic Bezier
curve can be expressed as:

q(τi) = (1− τi)
3P0 + 3τi(1− τi)

2P1 + 3τi
2(1− τi)P2 + τi

3P3 (2)

The least-squares method is selected to fit the middle point of each reference path of
the cubic Bezier curve. The sum of the squares of the fitting residuals can be expressed as:

S =
n

∑
i=1

[pi − q(τi)]
2 (3)

where n is the number of discrete path points contained in the cubic Bezier curve, and pi
are the discrete path points given by the cubic Bezier curve. According to the least squares
method, by solving ∂S

∂P1
= 0, ∂S

∂P2
= 0, the two control points P1 and P2 in the middle of the

cubic Bezier curve can be obtained. The equation can be expressed as:

P1 =
A2C1 − A12C2

A1 A2 − A2
12

, P2 =
A1C2 − A12C1

A1 A2 − A2
12

(4)

where: A1 = 9
n
∑

i=1
τ2

i (1− τi)
4, A2 = 9

n
∑

i=1
τ4

i (1− τi)
2, A12 = 9

n
∑

i=1
τ3

i (1− τi)
3,

C1 =
n
∑

i=1
3τi(1− τi)

2[pi − (1− τi)
3P0 − τ3

i P3], C2 =
n
∑

i=1
3τ2

i (1− τi)[pi − (1− τi)
3P0 − τ3

i P3].

In the initial stage of path fitting, the vehicle starting point and the drift trigger point
are regarded as the first and last control points of the cubic Bezier curve, respectively. In
each iteration of curve fitting, the position of the middle control point is solved according
to Equation (4), and then the interpolation point corresponding to the original path point
can be obtained according to Equation (2).

2.2. Trajectory Tracking

The vehicle kinematics model is shown in Figure 2. The definitions of the main terms
appearing in the following equation are shown in Table 1.
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Figure 2. Kinematic model.

Table 1. Symbols and Definitions.

Symbols Definitions

ϕ Vehicle heading angle
δ Vehicle front wheel angle
v Vehicle speed
l Wheel base

ur System reference input
χr Vehicle reference status
T Sampling time
Q Weight matrix
R Weight matrix

Np Prediction time domain
Nc Control time domain
ρ Weight coefficient
ε Relaxation factor
η Dimension of state quantity

umin System reference input minimum
umax System reference input maximum

(XD, YD) Drift trigger point position
ψD Heading angle of drift trigger point

dthres Drift trigger distance threshold
∆ψthres Drift trigger heading angle threshold
∆vthres Drift trigger speed threshold

l f Distance from centroid to front axle
lr Distance from centroid to rear axle
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In the ground fixed coordinate system, the vehicle kinematics equation can be ex-
pressed as:  .

x
.
y
.
ϕ

 =

 cos ϕ
sin ϕ
tan δ

l

v (5)

where (x, y) is the coordinate of the center of the rear axle of the vehicle, ϕ is the vehicle
heading angle, δ is the front wheel angle, v is the longitudinal speed of the vehicle, and l is
the wheelbase of the vehicle.

Defining u(v, δ) as the system input, the state variable is (x, y, ϕ). The system can be
expressed as:

.
χ = f (χ, u) (6)

Each point on the cubic Bessel curve obtained by planning satisfies the above kinematic
equation. The reference value is r. The reference trajectory can be expressed as:

.
χr = f (χr, ur) (7)

The system equation is expanded by the Taylor series at the reference trajectory point:

.
χr = f (χr, ur) +

∂ f (χ, u)
∂x

∣∣∣∣χ− χr +
∂ f (χ, u)

∂u

∣∣∣∣(u− ur) (8)

where χr = (xr, yr, ϕr), and ur = (vr, δr). The error of the vehicle tracking model can be
expressed as:

.
χ̃ =

 .
x− .

xr.
y− .

yr.
ϕ− .

ϕr

 =

 0 0 −vr sin ϕr
0 0 vr cos ϕr

0 0 0

 x− xr
y− yr
ϕ− ϕr

+

 cos ϕr
sin ϕr
tan δr

l

0
0
vr

l cos2 δr

[ v− vr
δ− δr

]
(9)

We can discretize this equation as:

χ̃(k + 1) = Ak,tχ̃(k) + Bk,tũ(k) (10)

where Ak,t =

 1 0 − vr sin ϕrT
0 1 vr cos ϕrT

0 0 1

, Bk,t =

 cos ϕrT 0
sin ϕrT 0

tan δr
l

vrT
l cos2 δr

, T is the sampling time.

In order to ensure that the vehicle can track the cubic Bezier curve quickly and smoothly,
the objective function is designed in the following form:

J(k) =
Np

∑
i=1
‖η(k + i|t)− ηre f (k + i|t)‖2

Q +
Nc−1

∑
i=1
‖∆U(k + i|t)‖2

R + ρε2 (11)

where Q and R are weight matrices, Np is the prediction time domain, Nc is the control
time domain, ρ is the weight coefficient, and ε is the relaxation factor. The vehicle linear
error model is transformed as follows:

ξ(k|t) =
[

x̃(k|t)
ũ(k− 1|t)

]
(12)

State-space expressions can be expressed as:

ξ(k + 1|t) = Ãk,tξ(k|t) + B̃k,t∆U(k|t) (13)

η(k|t) = C̃k,tξ(k|t) (14)
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where Ãk,t =

[
Ak,t Bk,t
0m×n Im

]
,B̃k,t =

[
Bk,t
Im

]
. n is the state quantity dimension and m is the

control quantity dimension. The output expression of system prediction can be expressed as:

Y(t) = ψtξ(t|t) + Θt∆U(t) (15)

where Yt =


η(t + 1|t)
η(t + 2|t)
η(t + 3|t)

. . . . . .
η(t + Np

∣∣t)

, ψt =


C̃t,t Ãt,t

C̃t,t Ã2
t,t

C̃t,t Ã3
t,t

. . . . .
C̃t,t Ã

Np
t,t

, ∆Ut =


∆u(t|t)

∆u(t + 1|t)
∆u(t + 2|t)

. . . . . .
∆u(t + Nc|t)

,

Θt =



C̃t,t B̃t,t 0 0 0
C̃t,t Ãt,t B̃t,t C̃t,t B̃t,t 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
C̃t,t ÃNc

t,t B̃t,t C̃t,t ÃNc−1
t,t B̃t,t . . . . . . C̃t,t Ãt,t B̃t,t

. . . . . . . . . . . . . . . . . . . . . . . .
C̃t,t Ã

Np−1
t,t B̃t,t C̃t,t Ã

Np−2
t,t B̃t,t . . . . . . C̃t,t Ã

Np−Nc−1
t,t B̃t,t


.

The constraint conditions of both the control quantity and increment are specified.
The control quantity includes the wheel angle and the longitudinal speed of the vehicle.
The control quantity constraint can be expressed as:

umin(t + k) ≤ u(t + k) ≤ umax(t + k), k = 0, 1, 2 . . . Nc − 1 (16)

The control increment constraint can be expressed as:

∆umin(t + k) ≤ ∆u(t + k) ≤ ∆umax(t + k), k = 0, 1, 2 . . . Nc − 1 (17)

The constraint equation for control quantity is transformed and the corresponding
transformation matrix is obtained:

u(t + k) = u(t + k− 1) + ∆u(t + k) (18)

Ut = 1Nc ⊗ u(k− 1) (19)

A = MNc×Nc ⊗ Im (20)

where 1Nc is a column vector with Nc rows, MNc×Nc is the unit lower triangular matrix
with dimension Nc, Im is the identity matrix of dimension m, ⊗ is the Kronecker product,
and u(k − 1) is the actual control quantity of the previous time. In combination with
Equations (18)–(20), the constraint condition of the control quantity can be rewritten as:

Umin ≤ A× ∆Ut + Ut ≤ Umax (21)

where Umin is the minimum set of control variables in the control time domain and Umin is
the maximum set of control variables in the control time domain. The objective function is
then transformed into a standard quadratic form:

J(ξ(t), u(t− 1), ∆U(t)) =
[
∆U(t)T , ε

]T
Ht

[
∆U(t)T , ε

]
+ Gt

[
∆U(t)T , ε

]
(22)

s.t. ∆Umin ≤ ∆Ut ≤ ∆Umax
Umin ≤ A∆Ut + Ut ≤ Umax

(23)
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where Ht =

[
ΘT

t QΘt + R 0
0 ρ

]
, Gt =

[
2eT

t QΘt 0
]
, et is the tracking error in the pre-

diction time domain. In each control cycle, the control input increment can be expressed as:

∆U∗t =
[
∆u∗t , ∆u∗t+1, ∆u∗t+2, . . . , ∆u∗t+Nc−1

]T (24)

The first element of the optimal sequence control is applied to the control system as
the optimal control increment in this cycle, until the next period solves the new optimal
control quantity according to the real-time system state. The vehicle finally reaches the
drift trigger point, and the vehicle will begin to drift when the drift-triggering condition
is met.

3. The Process of Drift Parking
3.1. Drift Open-Loop Control

Vehicle drift is triggered based on the longitudinal coupling characteristics of the tire.
According to the tire force ellipse shown in Figure 3, when the rear wheel applies enough
braking force to lock the wheel, the longitudinal force reaches the road adhesion limit, and
the lateral force provided by the rear wheel is close to zero. At this time, the front wheel
turns at a specific angle to produce a lateral force, and the rear wheel cannot provide a
balanced lateral force. The lateral force of the front wheel produces a yaw moment on the
body, which makes the rear axle sideslip, triggering the drift [19].

Figure 3. Tire force friction ellipse.
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To create a sample of drifting instances to study, it is not necessary to float the vehicle
into the warehouse during sampling, but only to carry out repeated tail-flick tests of the
rear-wheel brake locking in the same field under the same vehicle conditions [20,21]. The
vehicle starts in a static state, begins to accelerate, and then applies a drift after reaching a
specific speed. Changes in the vehicle state and the action sequence from the initial time
of the drift starting to the vehicle coming to a complete stop and achieving stability are
recorded, such that:

S(k) = s1, s2, . . . sk
A(k) = a1, a2, . . . , ak

(25)

The recorded action A includes the desired steering wheel angle and the desired
brake fluid pressure of the vehicle. The recorded vehicle state S includes the X, Y direction
coordinates and heading angle. The purpose of state sequence S(k) is to record the position
change at the end of the drift process (∆X, ∆Y), and the change in the heading angle, ∆ψ.
The absolute coordinates (XD, YD) and heading angle, ψD, of drift trigger point D can be
calculated by using Equation (26) according to the coordinates (XP, YP) and heading angle
(i.e., ψP) of the target location during drift test:

XD = XP + (∆X cos ψP − ∆Y sin ψP)
YD = YP + (∆X sin ψP + ∆Y cos ψP)

ψD = ψP − ∆ψ
(26)

The vehicle trajectory and heading sequence are used as the reference sequence in
order to monitor whether the vehicle drifts according to the expected trajectory. The
drift process failure monitoring strategy outlined in Section 4 was designed based on
this premise.

3.2. Design of Drift Trigger Conditions

Directed by the motion tracking controller, the vehicle travels along the planned route
and gradually accelerates to the desired speed. When the vehicle is running, the state of the
vehicle is monitored in real-time to determine whether it is consistent with the expected
drift trigger state. The judgment conditions are as follows:

(1) Begin by calculating the distance between the current vehicle position coordinates

(X, Y) and the drift trigger point (XD, YD), d(k) =
√
(X− XD)

2 + (Y−YD)
2. Com-

pare this with the distance obtained previously, to determine if d(k)− d(k− 1) ≤ 0,
and d(k) < dthres. The result indicates whether the vehicle meets the position condi-
tion triggered by drift.

(2) Calculate whether the difference between the actual speed and the expected speed,
∆v is less than ∆vthres. If ∆v < ∆vthres, the vehicle meets the speed condition triggered
by a drift.

(3) Calculate whether the difference between the actual heading angle and the expected
heading angle, ∆ψ is less than ∆ψthres. If ∆ψ < ∆ψthres, the vehicle meets the heading
angle condition triggered by drift.

(4) Judge whether the current steering wheel angle exceeds the limit value. If |δ| < δthres,
it means that the vehicle meets the yaw motion condition triggered by drift.

Since the vehicle drifting into the warehouse is simulated by the recurrence of the
tail-flick action, the motion state cannot be feedback-controlled during drifting with our
methodology, so the consistency between the vehicle state at the drift trigger time and the
expected vehicle state must be high. If the motion planner or motion tracking controller
fails during the depot approach and the vehicle triggers a drift in the wrong state, it will
not drift to the depot. It may collide with the pile barrels or other obstacles near the depot,
and aggravate the wear of the rear tires. Therefore, it was necessary to design a failure
monitoring strategy for the drift entry action. When the vehicle motion state meets the
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specific conditions and cannot drift into the warehouse successfully, some measures should
be taken to stop the drift entry action.

4. Monitoring Strategy
4.1. Supervision Strategy of the Path Planning Algorithm

In this paper, a cubic Bezier curve is used to connect the vehicle starting point and the
drift trigger point and serves as the vehicle’s approach path. In the process of generating
the path, the algorithm is used to ensure the path has a minimum change in the curvature.
In addition to the geometric constraints outlined in the planning stage, the path should
also meet the following constraints:

(1) Maximum curvature constraint: The minimum radius of the path should be greater
than the minimum turning radius of the vehicle while satisfying the corner constraint
of the path-following controller.

(2) Maximum attachment constraint: The tire force should be less than the maximum tire
force provided by the road surface at the maximum curvature of the constrained path,
and also less than the tire force provided at the larger curvature when running at the
maximum speed, so as to avoid wheel slip.

(3) Longitudinal velocity constraint: The planned path should be long enough to allow
the vehicle to accelerate at the maximum acceleration and reach the desired drift
longitudinal speed at the drift trigger point.

The curvilinear path is treated as being connected by several small circles, and the
problem of a vehicle driving along the curvilinear path is simplified as a steady-state
circular problem. The relationship between the curvature of the path and the steering angle
of the vehicle can now be obtained. If the vehicle maintains a constant speed while moving
in a circular motion with a certain radius, R0, then the radius and the front wheel angle of
δ will demonstrate the following relationship:

δ =
(

1 + K · v2
x

) l
R0

(27)

where vx is the vehicle speed; R0 is the turning radius; l is the vehicle wheelbase; and
K is the stability factor, K = m

l2

(
l f Cα f − lrCαr

)
. According to Equation (27), when the

front wheel angle δmax corresponds to the maximum steering wheel angle in the controller
constraint, the upper bound of the path curvature constraint is reached when the vehicle
reaches maximum speed. In other words, the expression of the maximum curvature
constraint is as follows:

κ ≤ kδδmax

(1+K · v2
max)l

(28)

where kδ is the safety factor, and the value range is [0, 1]. The maximum expected speed
on the path is vmax, which is equal to the drift trigger speed vtarget. The vehicle motion
is simplified to the steady-state circular driving problem, and the maximum attachment
constraint of the path is deduced. The front axle does not slip during steering, provided
the following criterion is met:

Fy f ≤ µFz f (29)

where µ is the road adhesion coefficient, Fy f is front axle lateral force, Fz f is front axle
vertical force, and vy is the lateral speed. The vehicle is simplified as a linear model with
two degrees of freedom, and the front axle lateral force can be expressed as:

Fy f = Cα f

(
δ−

vy + l f ω

vx

)
(30)

Due to the steady circular motion of the vehicle:

R0 =
vx

ω
(31)
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We then substitute Equations (27), (30), and (31) into Equation (29):

κ ≤
vy
vx

+
µFz f
Cα f

l · (1 + Kv2
x)− l f

(32)

Ignoring the lateral acceleration of the vehicle makes the inequality constraint stricter,
and the maximum path attachment constraint is obtained:

κ ≤
µFz f

Cα f

[
l · (1 + Kv2

x)− l f

] (33)

When determining the longitudinal speed of the vehicle at a certain point on the path,
it is assumed that the vehicle meets the road adhesion and road surface constraints, and
thus accelerates with the maximum longitudinal acceleration. The longitudinal speed can
then be determined by the distance from the point to the starting point:

vx(s) = min
(

vtarget,
√

2amaxs
)

(34)

amax = min
(

µg,
Tmaxi

mr

)
(35)

where vtarget is the target speed at the drift trigger point, s is the path length from the
starting point to a certain point, Tmax is the peak torque of the driving motor, i is the
transmission ratio of the reduction mechanism, m is the mass of the whole vehicle, and r is
the wheel radius.

In addition, it is necessary to verify the distance from the starting point to the drift
trigger point in order to ensure that the vehicle can achieve maximum acceleration towards
the drift trigger speed before reaching the drift trigger point. The longitudinal speed
constraint equation is expressed as follows:

s ≥
v2

target

2amax
(36)

where amax is determined by Equation (35). After planning a path connecting the starting
point and the drift trigger point, Equations (28), (33) and (36) can be utilized to check
whether the constraint conditions are met, so as to judge the feasibility of the proposed
path. If the conditions are not met, it means that the path planning fails. The approach
path to the depot must be re-planned by adjusting the initial vehicle position and the initial
heading angle.

4.2. Drift Process Monitoring Strategy

The vehicle drift process may be influenced by changes in the vehicle road system,
which cause the vehicle system to produce different responses under the same control
input. When the same site and the same vehicle conditions are tested, the vehicle road
system may change due to factors including:

(1) Tire characteristics: Tire wear occurs in the process of lock slip, which leads to the
change of tire characteristics. The change of tire force will directly affect the corre-
sponding relationship between the steering wheel angle input and the drift trajectory
output, so that the actual drift trajectory does not match the expected trajectory.

(2) Road conditions: Due to the influence of temperature and humidity, the adhesion
condition of the road surface may differ between the tail-flick test and the drift test,
which changes the tire force under the same load and slip rate.

(3) Vehicle status: Changes in the vehicle load size and distribution lead to changes in
vehicle mass and the centroid position, which affects the tire force.
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Through the sampling of vehicle states in the tail-flick test, the expected trajectory
and the expected heading angle sequence of the vehicle drift process were obtained. The
vehicle state is (Xt, Yt, ψt) at a certain time during the drift. The expected state closest to
the current state in the expected sequence is calculated by Equation (37):

k = argmin
k



∥∥∥Xt − Xre f (k)

∥∥∥∥∥∥Yt −Yre f (k)
∥∥∥∥∥∥ψt − ψre f (k)
∥∥∥


T

×

 ωX
ωY

ωψ

×

∥∥∥Xt − Xre f (k)

∥∥∥∥∥∥Yt −Yre f (k)
∥∥∥∥∥∥ψt − ψre f (k)
∥∥∥


 (37)

where ωX ,ωY, and ωψ are the weight coefficient, which is used to balance the influence of
different distance and angle dimensions. After obtaining the expected state at the current
moment, the weighted error vector between the actual vehicle state and the expected state
at the current moment is calculated:

et =
[
ωX , ωY, ωψ

]T·

∥∥∥Xt − Xre f (k)

∥∥∥∥∥∥Yt −Yre f (k)
∥∥∥∥∥∥ψt − ψre f (k)
∥∥∥

 (38)

The error vector et is compared with the error threshold vector ethres =
[
eX

thres, eY
thres, eψ

thres

]T
.

When any component of et is greater than y, it is considered that the control open-loop is
invalid and the vehicle cannot accurately stop in the storage position.

5. Simulation and Ground Test

A CarSim-Simulink simulation platform was built to verify the effectiveness of the
drift parking algorithm, and the drift parking action in the simulation environment was
realized. Key parameters of the vehicle model are shown in Table 2.

Table 2. CarSim key parameters of simulation vehicle model.

Parameter Unit Value Parameter Unit Value

Vehicle mass kg 1412 Vehicle length m 4.025
Yaw moment of inertia kg m2 1536.7 Vehicle width m 1.916

Wheel radius m 0.325 Steering ratio - 2.91
Centroid height m 0.54 Wheelbase m 2.91

5.1. Simulation Test of Drift Whole Process Control

A simulation experiment of the whole-process open-loop algorithm was carried out
to verify the effectiveness of the algorithm.

(1) Working condition setting:

The location coordinates of the vehicle’s starting point are (−100, −50), and the
location coordinates of the depot are (0, 0). The initial vehicle heading angle is 0◦. The
initial speed is 0 km/h. The target location’s orientation is 180◦. The road adhesion
coefficient is 1. According to the results of the tail-flick test, the preset coordinates of the
drift trigger point are (−10.69, −6.13), and the heading angle of the drift point is 7.50◦.
The longitudinal speed triggered by the drift is 39.96 km/h, and the step angle of the drift
steering wheel is 140◦.

(2) Parameter setting:

The threshold settings of the drift trigger point are ∆vthres = 0.5 km/h, dthres = 0.3 m,
ψthres = 5, and δthres = 5.

(3) Simulation test results:
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The simulation results are shown in Figure 4. At 11.72 s, when the vehicle reaches
(−10.97, −6.34), the vehicle is 0.278 m away from the drift trigger point, and the steering
wheel angle is −2.7◦. The longitudinal speed is 40.1 km/h, satisfying the drift triggering
condition. The change in the vehicle trajectory in the global coordinate system is shown
in Figure 4. Finally, the vehicle parks at (−1.196, 0.075). The distance from the center of
the warehouse’s error is 0.196 m. The final heading angle is 180.2◦, and the error of the
storage location orientation angle is 0.2◦. The location is 5.2 × 2.5 m in size. The simulation
test demonstrates that the car body stops completely within the storage position range
and does not interfere with the storage position line. An animation of the entire output
process made in CarSim is shown in Figure 5. The figures demonstrate that the vehicles are
correctly parked in the warehouse and surrounded by the four pile barrels.

Figure 4. Simulation test results: (a) Steering wheel angle; (b) Vehicle speed; (c) Heading angle; and
(d) Drift process.

Figure 5. Drift parking process.
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5.2. Function Verification of Monitoring Strategy

First, the initial positions and heading angles of different vehicles are set to verify
the effectiveness of the failure monitoring strategy of the path planner. The simulation
results are shown in Figure 6. The coordinates of the target drift trigger point are (0, 0),
and the heading angle of the drift trigger point is 0◦. The three flag bits correspond to the
maximum curvature constraint, the maximum adhesion constraint, and the longitudinal
speed constraint, respectively. The path planning and feasibility judgment were completed
before the simulation test.

Figure 6. Simulation test of path planning failure monitoring strategy: (a) Vehicle path; (b) Failure
flag; (c) Vehicle path; (d) Failure flag; (e) Vehicle path; and (f) Failure flag.

As shown in Figure 6a,b, the vehicle initial point coordinates are (−100, −50), and the
initial heading angle is 0◦. The simulation results show that the vehicle can complete the
approach action, and the failure flag is 0.

As shown in Figure 6c,d, the vehicle initial point coordinates are (−10, −10), and the
initial heading angle is 90◦. the path is too short for the vehicle to accelerate to the desired
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drift trigger speed by the time it reaches the desired point, and thus does not meet the
drift trigger conditions. The path does not meet the longitudinal speed constraint, and the
corresponding flag bit is 1.

As shown in Figure 6e,f, the vehicle initial point coordinates are (−100, −50), and the
initial heading angle is 180◦. Due to the path’s large curvature, the vehicle cannot track the
path with the maximum steering wheel angle, which leads to path tracking failure. The
path does not satisfy the maximum curvature constraint, and the corresponding flag bit is 1.

Next, the drift trajectory tracking and monitoring strategy and drift stop strategy are
simulated and verified. Let the weight coefficients in Equation (38) be ωX = 1, ωY = 1,
ωψ = 2. The target location is (0, 0), and the heading angle of the target location is 180◦.
The vehicle starting point coordinates are (−100, −50), and the starting heading angle is
0◦. If the road adhesion coefficient is set to 0.5, the vehicle can complete the approaching
movement on the road surface attached to the center, but it cannot drift into the warehouse
according to the open-loop control law obtained from the tail-flick test when the adhesion
coefficient is 1. The simulation results are shown in Figure 7. As can be seen from Figure 7b,
at 13.84 s, the vehicle meets the drift trigger condition and enters the drift state. At 14.71 s,
the controller detects that the vehicle deviates from the expected drift trajectory, and the
drift failure flag is 1. At this time, the steering wheel angle returns to 0◦. The front axle
is put under greater pressure and the pressure on the rear axle is reduced, as shown in
Figure 7c. Figure 7a shows that the drift stop action makes the vehicle stop faster and
greatly reduces the yaw motion. Compared with a vehicle completing the entire drift the
final heading angle changed from 193◦ to 124◦, the total drift time decreased from 5.86 s to
3.56 s, and the rear wheel slip distance decreased from 28.87 m to 23.33 m. The simulation
results verify the effectiveness of the strategy.

Figure 7. Simulation test of drift process failure monitoring strategy: (a) Vehicle path; (b) Drift flag;
and (c) Actuator output.
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5.3. Ground Test

The open-loop control drift algorithm was verified using the actual vehicle. First, a
170◦ steering wheel angle was applied to record the change in the vehicle motion state from
the beginning to the end of the drift. The initial position of the vehicle is (0, 0). At the end
of the drift, the x-direction displacement changes by 12.27 m, the y-direction displacement
changes by 11.28 m, and the heading angle changes by 75.4 degrees. In the real vehicle test,
the vehicle conditions and road conditions must be consistent to achieve high-precision
drift control. The data begin recording when the drift state is triggered. The change in
vehicle motion state parameters across the entire drift process is shown in Figure 8.

Figure 8. Ground test: (a) Vehicle path; (b) Heading angle; (c) Vx; (d) Vy; and (e) Yawrate.

The drift trigger point is set to (0, 0), the distance threshold of the drift trigger point
is set to 0.3 m, and the heading angle error threshold is set to 3 degrees. The vehicle
meets the drift trigger condition and begins to drift. During the entire process of the
vehicle drifting and entering the warehouse, the heading angle changes by 75.1◦, the x-
direction displacement changes by 12.32 m, and the y-direction displacement changes by
11.05 m. In contrast to the collected data, the heading angle deviation is 0.3◦, the x-direction
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displacement deviation is 0.05 m, the y-direction displacement deviation is 0.23 m, and the
vehicle completes the drift.

6. Discussion and Conclusions

The actual vehicle test is compared with the simulation experiment. In the simulation
experiment, the distance between the drifting vehicle and the center of the parking location
is 0.196 m. In the actual vehicle test, when the vehicle completes its drift, the distance
between the vehicle and the center of the parking location is 0.235 m. This indicates a
3.9% accuracy difference between the two. The accuracy of the heading angle deviation is
1%. These differences stem from fluctuations in the drift trigger point and the state of the
vehicle road system during the actual vehicle test.

In this paper, a segmented drift algorithm is designed to extend the handling ability
beyond the limit of vehicle stability. By tracking the planned path, the vehicle can reach
the drift trigger point and apply the open-loop control rate. In the simulation test, the
vehicle drifts into the parking location from 0.196 m away, with a heading angle deviation
of 0.2 degrees. In the ground test, the deviation between the final position of the vehicle
and the center position of the parking location is 0.235 m, and the deviation of the heading
angle is 0.3◦. A strategy for monitoring the drift triggering condition, path planning, and
vehicle state was designed. The simulation results show that the monitoring method
can accurately monitor the real-time state of the vehicle and completion of the drift. The
simulation and real vehicle test results show that the segmented drift control method can
achieve high-precision drift parking.

The research of segmented drift control has the following significance:

(1) Through the combination of path planning, path tracking, and an open-loop control
algorithm, it can realize the action of the driverless vehicle drifting into the warehouse,
which demonstrates the potential of further research on driverless vehicle under
extreme conditions.

(2) The segmented drift control strategy is designed to make the vehicle complete a drift
during its approach of the warehouse. In order to ensure that there are no major
changes to the vehicle road system, the open-loop control rate can effectively complete
the drift.

(3) The realization of the whole drift process requires the initial state of the vehicle and
the vehicle path system to be consistent with the acquisition path, which leads to the
low success rate of drift parking. Constraints on the planned path and drift trigger
state can significantly improve the success rate of drift storage. The monitoring
strategy of the drift process can also ensure the integrity and safety of the test.

In subsequent research based on this paper, the tire inflation state should also be fully
considered as part of the road system. The tire characteristics and road adhesion coefficient
could be used as input for improving the robustness of the system. Future research could
try to employ reinforcement learning methods in drift control experiments.
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