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Abstract: With the rapid development of cities, the automated and intelligent garbage transportation
has become an important direction for technological innovation of sanitation vehicles. In this paper,
a vehicle-mounted trash can-handling robot is proposed. In order to reduce the cost of the robot and
increase the loading capacity of the intelligent sanitation vehicles, a lightweight design method is
proposed for the truss structure of the robot. Firstly, the parameters of the robot that are related to the
load are optimized by multi-objective parameter optimization based on particle swarm optimization.
Then, the material distribution of the truss structure is optimized by topology optimization under
multiple load cases. Finally, the thickness of the truss structure parts is optimized by discrete
optimization under multiple load cases. The optimization results show that the mass of the truss
structure is reduced by 8.72%, the inherent frequency is increased by 61.08%, and the maximum stress
is reduced by 10.98%. The optimization results achieve the goal of performance optimization of the
intelligent sanitation vehicle, and prove the feasibility of the proposed lightweight design method.

Keywords: intelligent sanitation vehicle; trash can-handling robot; truss structure; multi-objective
parameter optimization; topology optimization; discrete optimization; multiple load cases

1. Introduction

With the rapid development of cities, the production of municipal solid waste is
increasing year by year, which has a non-negligible impact on the residents’ living stan-
dard [1,2]. With the goal of efficient and environmental-friendly urban cleaning work, the
automated and intelligent garbage transportation has become an important direction for
technological innovation of sanitation vehicles. To this end, the authors’ team has devel-
oped a vehicle-mounted trash can-handling robot. This robot has realized fully automated
operations including trash can identification, trash can-handling, garbage dumping, and
trash can resetting. In this paper, the composition and basic functions of the robot will be
briefly introduced. On the basis of force analysis, this paper will study the lightweight
design of the robot’s truss structure, in order to further improve its working performance.

The developed trash can-handling robot is shown in Figure 1. The robot consists of a
mechanical system, a driving system (hydraulic system), a control system and a perception
system, as shown in Figure 2. Furthermore, the mechanical system is mainly composed of
a manipulator, a telescopic boom and a truss structure. As the end-effector of the robot,
the manipulator has a longitudinal adjustment range of ±0.25 m and a lateral telescopic
distance of 1 m, which reduces the technical requirements for drivers. The driving system is
mainly composed of hydraulic components such as hydraulic motor and hydraulic cylinder.
The roller chain system is used to transmit the power of the hydraulic motor to drive the
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manipulator to move along the guide rail. The control system is mainly composed of
sensors, controllers and a human–machine interaction module. The driver can set the robot
in automatic or manual mode through the touch screen or the operation panel installed in
the cab. Finally, the perception system is mainly composed of two cameras and a lidar. The
lighting lamp is used to ensure good lighting conditions in the working environment.

Actuators 2021, 10, x FOR PEER REVIEW 2 of 17 
 

 

system is mainly composed of hydraulic components such as hydraulic motor and hy-

draulic cylinder. The roller chain system is used to transmit the power of the hydraulic 

motor to drive the manipulator to move along the guide rail. The control system is mainly 

composed of sensors, controllers and a human–machine interaction module. The driver 

can set the robot in automatic or manual mode through the touch screen or the operation 

panel installed in the cab. Finally, the perception system is mainly composed of two cam-

eras and a lidar. The lighting lamp is used to ensure good lighting conditions in the work-

ing environment. 

 

Figure 1. The trash can-handling robot. 

 

Figure 2. The composition of the trash can-handling robot. 

The automatic workflow of the robot is as follows: 

1. After the driver parks the sanitation vehicle next to the trash can, the perception sys-

tem sequentially detects the type of the trash can, the relative position of the trash 

can, pedestrians and obstacles. If the position of the trash can is beyond the working 

range of the robot, the driver will be prompted to make adjustments; 

2. The perception system converts the relative position information of the trash can into 

control data and then sends it to the control system; 

3. According to the preset control strategy, the control system controls the manipulator 

through the hydraulic components to complete the garbage loading operation. 

As the robot is installed on the side of the vehicle, the heavy mechanical structure 

will cause the vehicle to roll, which has a detrimental impact on the vehicle’s handling 

performance and the robot’s control accuracy. Otherwise, the truss structure is the key 

Figure 1. The trash can-handling robot.

Actuators 2021, 10, x FOR PEER REVIEW 2 of 17 
 

 

system is mainly composed of hydraulic components such as hydraulic motor and hy-

draulic cylinder. The roller chain system is used to transmit the power of the hydraulic 

motor to drive the manipulator to move along the guide rail. The control system is mainly 

composed of sensors, controllers and a human–machine interaction module. The driver 

can set the robot in automatic or manual mode through the touch screen or the operation 

panel installed in the cab. Finally, the perception system is mainly composed of two cam-

eras and a lidar. The lighting lamp is used to ensure good lighting conditions in the work-

ing environment. 

 

Figure 1. The trash can-handling robot. 

 

Figure 2. The composition of the trash can-handling robot. 

The automatic workflow of the robot is as follows: 

1. After the driver parks the sanitation vehicle next to the trash can, the perception sys-

tem sequentially detects the type of the trash can, the relative position of the trash 

can, pedestrians and obstacles. If the position of the trash can is beyond the working 

range of the robot, the driver will be prompted to make adjustments; 

2. The perception system converts the relative position information of the trash can into 

control data and then sends it to the control system; 

3. According to the preset control strategy, the control system controls the manipulator 

through the hydraulic components to complete the garbage loading operation. 

As the robot is installed on the side of the vehicle, the heavy mechanical structure 

will cause the vehicle to roll, which has a detrimental impact on the vehicle’s handling 

performance and the robot’s control accuracy. Otherwise, the truss structure is the key 

Figure 2. The composition of the trash can-handling robot.

The automatic workflow of the robot is as follows:

1 After the driver parks the sanitation vehicle next to the trash can, the perception
system sequentially detects the type of the trash can, the relative position of the trash
can, pedestrians and obstacles. If the position of the trash can is beyond the working
range of the robot, the driver will be prompted to make adjustments;

2 The perception system converts the relative position information of the trash can into
control data and then sends it to the control system;

3 According to the preset control strategy, the control system controls the manipulator
through the hydraulic components to complete the garbage loading operation.

As the robot is installed on the side of the vehicle, the heavy mechanical structure
will cause the vehicle to roll, which has a detrimental impact on the vehicle’s handling
performance and the robot’s control accuracy. Otherwise, the truss structure is the key
load-bearing component of the robot. Due to the complex load of the robot, the truss
structure is required to have high load-bearing capacity such as rigidity and strength.
Therefore, the lightweight design of the truss structure is very important to ensure the
performance of the robot.
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However, currently all kinds of lifting equipment mainly use multi-link mechanism.
The relevant research mainly focuses on the optimization of the position of the hinge
points [3–5]. So, there is little research on the optimization of the lifting equipment similar
to the robot in this paper. For the truss robot with similar structure, many scholars have
carried out static characteristic analysis, dynamic characteristic analysis and comprehensive
analysis on the truss structure. On this basis, the structural size of the truss structure is
optimized [6–9]. However, in these studies, the loads and constraints of the truss structure
are quite different from those of the robot in this paper. Therefore, the reference value of
these studies is limited.

For lightweight design, the main methods are structure optimization, process lightweight
and material lightweight [10–12]. The structure optimization can be further divided
into size optimization, shape optimization and topology optimization. At present, size
optimization and shape optimization have been widely used in engineering, such as
lightweight design of loading platform of flat transport vehicle, lightweight design of
soybean harvester’s frame, and comprehensive optimization design of column of double
spindle horizontal machining center [13–15]. In addition, according to the type of design
variables, size optimization can be divided into discrete size optimization and continuous
size optimization [16]. In general, the results of continuous size optimization need to
be rounded according to the available size parameters, so the results of discrete size
optimization are more in line with the actual needs of engineering [17]. At the same time,
there are more optimization variables for discrete optimization, such as cross section [18,19]
and material [20–22]. In addition, the variables in the assignment problem and scheduling
problem are also discrete, so discrete optimization is also applied to solve these problems.
Furthermore, the discrete optimization that optimizes multiple optimization variables at the
same time can obtain better optimization results [23]. However, due to the increase of the
dimension of optimization variables, the solution of discrete size optimization is becoming
more and more difficult. Some scholars reduce the computational cost by making discrete
design variables continuous [24], while many other scholars propose their optimization
methods based on different algorithms, which is a research hotspot in recent years. For
example, Kaveh et al. [25] proposed an improved Shuffle Jaya algorithm for discrete size
optimization of bone structure; Degertekin et al. [26] proposed an improved hybrid HS
algorithm for large-scale truss structure’s size optimization.

Topology optimization is mainly used in the conceptual design stage. Common
topological optimization methods include: homogenization method, variable density
method, evolutionary structural optimization method, level set method, etc. [27]. At
present, the research on topology optimization is divided into optimization strategy and
engineering application. The purpose of the research on optimization strategy is to improve
the accuracy of stress prediction [28,29]. The objects of engineering application include the
optimization design of car body [30,31], the mechanism design of aero-engine [32,33], the
optimization design of the compliant mechanism using composite materials [34,35], and
the design of parts manufactured through additive manufacturing [36,37], etc. It can be
seen that topology optimization has been applied in many disciplines.

Based on the research above, it can be found that most of the current researches
are focused on the optimization methods in specific design stage. Without a systematic
design route, the optimization methods can only meet specific engineering needs. At the
same time, the trash can-handling robot proposed in this paper also has the demand of
performance optimization. Therefore, based on the load analysis and optimization, the
topology optimization in the conceptual design stage and the discrete size optimization
in the engineering design stage, this paper proposes a lightweight design method for the
truss structure in the robot. The main research route of this paper is as follows: in the
second chapter, the kinematic and dynamic equations of the manipulator is established.
The multi-objective optimization of the parameters related to the robot’s load is carried
out through the particle swarm algorithm to reduce the load of the truss structure. In
the third chapter, three typical load cases of the truss structure are set, and the topology
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optimization of the truss structure under multiple load cases is carried out. In the fourth
chapter, the discrete size optimization of the truss structure parts’ thickness under multiple
load cases is carried out through the sequential quadratic programming solver. The fifth
chapter summarizes the lightweight design method used in this paper.

2. Multi-Objective Optimization of Parameters Related to Robot Load

Some parameters of the robot will affect the load of its truss structure. Therefore, it
is necessary to optimize these parameters first. In this chapter, this paper establishes the
kinematic and dynamic equations of the manipulator. Then, the load-related parameters
are optimized through the particle swarm algorithm.

2.1. Establishment of Kinematic Equation

This paper takes the movement of the manipulator after grabbing the trash can as the
analysis object, and makes the following settings:

1. There is no relative displacement between the manipulator and the trash can;
2. The garbage in the trash can does not move during the whole operation, and the

position of the center of mass remains unchanged;

According to the time sequence, the movement of the manipulator can be divided
into three stages, as shown in Figure 3. The lifting movement and the turning movement
are respectively linear movement and circular movement, which will not be analyzed here.
This paragraph will mainly analyze the transition movement.
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Figure 3. Three stages of the manipulator’s movement: (a) lifting movement; (b) transition movement; (c) turning movement.

In the transition movement, the position of the manipulator is shown in Figure 4. In
the figure, oxy is the world coordinate system; o1x1y1 is the tool coordinate system; P′1 is the
center point of the upper groove wheels; P′2 is the center point of the lower groove wheels;
P′cm is the equivalent center of mass of the manipulator and load; r1 is the arc radius of the
dumping track; l1 is the center distance between the upper and lower groove wheels; l2 is
the distance between the point P′2 and the y1 axis; l3 is the distance between the point P′cm
and the y1 axis; l4 is the distance between the point P′cm and the x1 axis; α is the rotation
angle of the manipulator; β is the pitch angle of the manipulator.
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For the points P′1 and P′2, the speed and acceleration can be expressed as follows:

vc
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i

ac
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. (1)

In the equations, the superscript ‘c’ means that the quantity is in complex form; k1
and k2 are the coefficients indicating that the driving force acts on the axis of the upper or

the lower groove wheels, and there are only two cases:
{

k1 = 1
k2 = 0

or
{

k1 = 0
k2 = 1

; v0 is the

linear velocity of the chain system; xv and xa are unknown variables, and their value can
be calculated through the following equations.
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In the equations, the superscript ‘*’ means that the quantity is the conjugate complex
number of itself.

Then the velocity and acceleration of the point P′cm can be obtained through the
complex interpolation method [38], as shown in Equation (3).

vc
cm = vc
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P′ c

cm−P′ c
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(
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2.2. Establishment of Dynamic Equation

Taking the scheme in which the driving force acts on the axis of the lower groove
wheels as an example, the force analysis of the manipulator is shown in Figure 5. In the
figure, C is the instantaneous center of velocity of the manipulator; F1 is the equivalent
force of the gravity of the manipulator and load; Ft is the driving force; N1 and N2 are the
normal force; f1 and f2 are the friction force.
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According to the theorem of kinetic energy and the balance relationship of forces, the
dynamic equations of the manipulator in the lifting movement can be expressed as follows:

{Ft, N1, N2} =

 N1 = N2 = l2+l3
l1

F1

Ft − f1 − f2 − F1 = macm,y
. (4)

The dynamic equations of the manipulator in the transition movement can be ex-
pressed as follows:

{Ft, N1, N2} =


(k1Ft − f1)s1 + (k2Ft − f2)s2 − F1s3 = ∆Ek

−(k1Ft − f1) sin α− N1 cos a + N2 = macm,x

(k1Ft − f1) cos a− N1 sin α + k2Ft − f2 − F1 = macm,y

. (5)

In the equations, s1 is the moving distance of the upper groove wheels in unit time; s2
is the moving distance of the lower groove wheels in unit time; s3 is the height change of
the point Pcm in unit time; ∆Ek is the kinetic energy change of the manipulator and load in
unit time.

The dynamic equations of the manipulator in the turning movement can be expressed
as follows:

{Ft, N1, N2} =


(k1Ft − f1)s1 + (k2Ft − f2)s1 − F1s3 = 0

−(k1Ft − f1) sin α− N1 cos α− (k2Ft − f2) sin(α− θ) + N2 cos(α− θ) = macm,x

(k1Ft − f1) cos α− N1 sin α + (k2Ft − f2) cos(α− θ) + N2 sin(α− θ)− F1 = macm,y

. (6)

In the equations, θ is a fixed angle. It can be expressed as follows:

θ = 2arcsin
(

l1
2r1

)
. (7)

2.3. Mathematical Model of the Multi-Objective Optimization of the Load-Related Parameters

1 Design variables: this paper takes the arc radius r1, the center distance l1 and the time
consumption t4 of the dumping action as the design variables;

2 Constraints: to ensure that the manipulator can dump garbage smoothly, the pitch
angle of the manipulator must be greater than 135◦;

3 Optimization objective: the purpose of parameter optimization is to reduce the load
on the truss structure. Therefore, the optimization objective is to minimize the max-
imum instantaneous power Pmax, the average power P, the maximum change of the
instantaneous driving force ∆Ft,max and the time consumption t4 of the dumping action.
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The mathematical model of the optimization of the load-related parameters can be
expressed as follows: 

X = [r1, l1, t4]

t4 = t3 − t1

minF(X) = ∑ c1,i· fi(X)

s.t.



r1 ∈ [50, 200]

l1 ∈ [80, 210]

l1 <
√

2r1

t4 ∈ [1, 4]

. (8)

2.4. Results of the Multi-Objective Optimization of the Load-Related Parameters

Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart in 1995 [39].
In order to improve the optimization efficiency, this paper adopts particle swarm opti-
mization algorithm with improved weight coefficient [40]. The process of the optimization
iteration is shown in Figure 6.
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The optimization results are shown in Table 1.

Table 1. Results of the multi-objective optimization of the load-related parameters.

Parameter Initial Design
Scheme 1

Optimization
Scheme A 2

Optimization
Scheme B 3

r1 (mm) 120 130 148
l1 (mm) 150 157 210

t4 (s) 2 3.45 3.36
Pmax (W) 3764.17 2028.33 1936.71

P (W) 1817.43 1028.25 1115.82
∆Ft,max (N) 2442.92 722.22 349.32

1 The initial design scheme is the design scheme of the prototype. 2 The driving force in optimization scheme A
acts on the axis of the upper groove wheels. 3 The driving force in optimization scheme B acts on the axis of the
lower groove wheels.

According to Table 1, both optimization scheme A and B have obvious optimization
effect. The maximum instantaneous power of optimization scheme B is reduced by 1827.46 W,
the average power is reduced by 701.61 W and the maximum change of the instantaneous
driving force is reduced by 2093.6 N, which is more effective than that of the optimization
scheme A. Therefore, optimization scheme B is the reasonable optimization scheme.
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3. Topology Optimization of the Truss Structure under Multiple Load Cases

If the truss structure has a reasonable material distribution, the material can fully play
its role, which is an important basis for the lightweight design [41]. In this chapter, this
paper first analyzes and calculates the load on the truss structure, and then determines
three typical load cases. Finally, the topology optimization of the truss structure under
multiple load cases is carried out.

3.1. Analysis of the Load on the Truss Structure

The load on the truss structure mainly comes from the manipulator and the roller
chain system, as shown in Figure 7. The definition of each load is shown in Table 2.

Actuators 2021, 10, x FOR PEER REVIEW 8 of 17 
 

 

3. Topology Optimization of the Truss Structure under Multiple Load Cases 

If the truss structure has a reasonable material distribution, the material can fully 

play its role, which is an important basis for the lightweight design [41]. In this chapter, 

this paper first analyzes and calculates the load on the truss structure, and then deter-

mines three typical load cases. Finally, the topology optimization of the truss structure 

under multiple load cases is carried out. 

3.1. Analysis of the Load on the Truss Structure 

The load on the truss structure mainly comes from the manipulator and the roller 

chain system, as shown in Figure 7. The definition of each load is shown in Table 2. 

Table 2. The definition of the load. 

Load Definition 

𝐹𝐿1,𝐹𝐿2 The force of the driven sprocket assembly acting on the truss structure. 

𝐹𝐿3,𝐹𝐿6 The force of the groove wheels acting on the track. 

𝐹𝐿4,𝐹𝐿5 The friction force of the groove wheels acting on the track.  

𝐹𝐿7,𝐹𝐿8 The force of the drive sprocket assembly acting on the truss structure. 

𝐹𝐿9 The gravity of the hydraulic motor. 

𝑀𝐿 The torque of the hydraulic motor acting on the truss structure. 

 

Figure 7. The load on the truss structure. 

According to the optimization results above, the detailed truss structure parameters 

are shown in Table 3. In the table, 𝑙5 is the length of the vertical track, and 𝜇 is the coef-

ficient of friction. 

Table 3. Parameters of the truss structure. 

𝒓𝟏(mm) 𝒍𝟏(mm) 𝒍𝟐(mm) 𝒍𝟑(mm) 𝒍𝟒(mm) 𝒍𝟓(mm) 𝒎(kg) 𝝁 

148 210 68.5 383.65 308.84 1720 320.35 0.1 

The control method of the robot is ‘Sliding Mode Variable Structure Control’ [42]. 

The preset linear velocity of the chain system is shown in Figure 8a. The corresponding 

speed and acceleration of the point 𝑃cm are shown in Figure 8b,c. 

Figure 7. The load on the truss structure.

Table 2. The definition of the load.

Load Definition

FL1,FL2 The force of the driven sprocket assembly acting on the truss structure.
FL3,FL6 The force of the groove wheels acting on the track.
FL4,FL5 The friction force of the groove wheels acting on the track.
FL7,FL8 The force of the drive sprocket assembly acting on the truss structure.

FL9 The gravity of the hydraulic motor.
ML The torque of the hydraulic motor acting on the truss structure.

According to the optimization results above, the detailed truss structure parameters
are shown in Table 3. In the table, l5 is the length of the vertical track, and µ is the coefficient
of friction.

Table 3. Parameters of the truss structure.

r1(mm) l1(mm) l2(mm) l3(mm) l4(mm) l5(mm) m(kg) µ

148 210 68.5 383.65 308.84 1720 320.35 0.1

The control method of the robot is ‘Sliding Mode Variable Structure Control’ [42]. The
preset linear velocity of the chain system is shown in Figure 8a. The corresponding speed
and acceleration of the point Pcm are shown in Figure 8b,c.
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Figure 8. (a) Preset linear velocity of the chain system; (b) velocity of the point Pcm; (c) acceleration of the point Pcm.

According to the dynamic equations, the driving force required for the motion of the
manipulator and the normal force of the manipulator acting on the track are shown in
Figure 9. It can be seen that when the manipulator enters the circular arc section of the
track, the driving force and the normal force increase significantly. In the lifting motion,
the driving force required by the manipulator is the largest when accelerating.
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Figure 9. (a) Driving force required for the motion of the manipulator; (b) normal force of the manipula-
tor acting on the track.

Then the calculation formula of the truss structure load defined in Table 2 can be
expressed as follows: 

FL1 = FL2 = Ft + (mc + mw)g

FL3 = 0.5N1

FL4 = µFL3

FL5 = µFL6

FL6 = 0.5N2

FL7 = FL8 = 0.5Ft −mwg

FL9 = mmg

ML = Ftr1 + Jeα

(9)

In the formula, mc is the mass of the roller chain on one side; mw is the mass of a
sprocket; mm is the mass of the hydraulic motor; Je is the equivalent moment of inertia of
all rotating parts.

3.2. Topology Optimization under Multiple Load Cases
3.2.1. Determination of Load Cases

Based on the analysis and calculation results of the truss structure load, the states
when the manipulator is in the acceleration lifting movement, the transition movement, and
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on standby are regarded as three typical load cases in this paper. The schematic diagrams
of the typical load cases are shown in Figure 10.
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The value of the truss structure load under three load cases are shown in Table 4.

Table 4. The value of the truss structure load.

Load Case FL1(N) FL2(N) FL3(N) FL4(N) FL5(N) FL6(N) FL7(N) FL8(N) FL9(N) ML(N·m)

Load case A 5160.07 5160.07 3379.75 337.97 337.97 3379.75 2335.97 2335.97 342.02 716.12

Load case B 15,041.05 15,041.05 5721.5 572.15 57.08 570.75 7276.46 7276.46 342.02 2178.05

Load case C 3620.2 3620.2 2169.76 0 0 280.14 2149.46 2149.46 342.02 660.46

3.2.2. Mathematical Model of Topology Optimization under Multiple Load Cases

In this paper, the optimization objective is to minimize the weighted strain energy
of the truss structure under multiple load cases. The ratio of the optimized volume to
the initial volume is the constraint. The mathematical model of the optimization can be
expressed as follows: 

X = [x1, x2, x3, · · ·]
minT(X) = ∑ c2,i∆ti(X)

s.t.


Vi(X)

V0
≤ z

0 ≤ xj ≤ 1, j ∈ N∗

. (10)

In the formula, T(X) is the weighted strain energy; c2,i is the weight coefficient of the
i-th load case, whose value is 1/3; ti(X) is the strain energy of the i-th load case; Vi(X) is
the optimized volume; V0 is the initial volume; z is the volume fraction; xj is the material
density of the j-th unit.

3.2.3. Results of Topology Optimization under Multiple Load Cases

The truss structure is a kind of frame parts. The typical structure of this type of parts is
cubic shape and triangular prism shape. According to the connection relationship between
the truss structure and other parts, the truss structure can be designed as a combination of
cubic shape and triangular prism shape. The optimization model is shown in Figure 11a.
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Figure 11. Technical route of the topology optimization: (a) optimization model; (b) material distribution; (c) force
transmission route map; (d) conceptual configuration model.

Through the finite element optimization solver Optistruct, the material distribution
of the truss structure is obtained, as shown in Figure 11b. After simplifying the material
distribution, the corresponding force transmission route map is formed, as shown in
Figure 11c. As the technological conditions and processing efficiency need to be considered
in practical engineering, the truss structure is mainly welded by sheet metal parts and
angle iron. The conceptual configuration model is shown in Figure 11d.

4. Discrete Optimization of the Truss Structure under Multiple Load Cases

Based on the conceptual configuration model, this chapter will optimize the section
size of the parts. In this chapter, this paper firstly establishes the mathematical model of
discrete optimization under multiple load cases. Then, the optimization is carried out based
on different preference settings. Finally, this paper compares the optimization results.

4.1. Mathematical Model of Discrete Optimization under Multiple Load Cases

If the three parameters of the length, width and thickness of the part are all taken as
optimization variables, the optimization will have a large feasible set. At the same time, the
change of the length and width of different parts will cause the change of the connection
form, which will increase the computational cost [43]. Therefore, this paper has determined
the length and width of each part in the conceptual configuration model to improve the
efficiency of optimization solution.

The optimization objective is to maximize the inherent frequency, and minimize the
maximum stress and the mass of the truss structure under multiple load cases. The thickness
of the parts is the optimization variable, and the yield strength of the material is the constraint.
The mathematical model of discrete optimization can be expressed as follows:

X = [thk1, thk2, · · · , thk23]

Thk = [1, 1.5, 2, 2.5, · · · , 10]

minS(X) = ∑ c3,i(
σi(X)−σi,min
σi,max−σi,min

) + q1

(
m(X)−mmin
mmax−mmin

)
+ q2

(
fmax− f (X)
fmax− fmin

)
s.t.

 σi(X) ≤ [σ]

thk j ∈ Thk, j = 1, 2, · · · , 23

. (11)

In the formula, S(X) is the comprehensive optimization objective; thk j is the thickness
of the j-th part; σi(X) is the maximum stress of the i-th load case; m(X) is the mass of the
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truss structure; mmax and mmin are the maximum and minimum mass of the truss structure
under the constraint; f (X) is the inherent frequency of the truss structure; fmax and fmin are
the maximum and minimum values in the optimization with the inherent frequency of the
truss structure as the optimization objective; [σ] is the yield strength of the material; Thk is
the set of available material thickness; c3,i is the weight coefficient of the i-th load case, whose
value is equal to c2,i; q1 and q2 are the correction factors, whose value is 1/3 as well.

4.2. Results of Discrete Optimization under Multiple Load Cases

Due to the large difference in the density of different types of garbage [44], the typ-
ical loads of the robots that perform different tasks are different. In order to make the
optimization more targeted, this paper sets preference mass (optimization scheme A), pref-
erence performance (optimization scheme B) and no preference (optimization scheme C)
lightweight schemes respectively. Then the sequential quadratic programming (SQP) solver
is applied to solve the mathematical model. The process of optimization iteration is shown
in Figure 12, and the optimization results are shown in Figure 13.
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The thickness of the truss structure parts is shown in Table 5.
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Table 5. The thickness of the truss structure parts.

Part Number Initial Design
Scheme 1 (mm)

Optimization
Scheme A (mm)

Optimization
Scheme B (mm)

Optimization
Scheme C (mm)

1 5.0 5.0 5.0 5.0
2 5.0 1.0 1.0 1.0
3 4.0 1.5 10.0 10.0
4 5.0 1.0 2.0 2.0
5 3.0 1.0 1.0 1.0
6 4.0 10.0 10.0 10.0
7 5.0 1.5 10.0 9.0
8 3.0 2.0 10.0 10.0
9 4.0 1.0 10.0 10.0
10 3.0 1.0 1.0 1.0
11 4.0 4.5 9.5 10.0
12 4.0 1.0 10.0 5.5
13 5.0 3.0 8.0 4.5
14 5.0 4.5 4.5 4.5
15 5.0 1.0 1.0 1.0
16 5.0 1.0 6.0 5.0
17 4.0 2.5 10.0 10.0
18 5.0 3.5 3.0 3.0
19 5.0 1.0 9.5 1.5
20 5.0 2.0 9.5 1.5
21 5.0 3.5 3.0 4.0
22 5.0 2.5 6.0 5.5
23 3.0 3.0 2.5 3.5

1 The initial design scheme is established according to the prototype. For example, if the thickness of the guide
rail in the prototype is 5 mm, the thickness of the guide rail in the initial design scheme is also 5 mm.

It can be seen from Figure 13a and Table 6 that when the preference of the optimization
scheme is set to mass, the mass of the truss structure is 58.37 kg, which is reduced by 18.99%.
The inherent frequency, maximum stress and maximum deformation of the truss structure
haven’t been optimized. The maximum stress is close to the material’s yield stress of
680 MPa. Therefore, this optimization scheme requires higher-strength materials. From
Figure 13b and Table 6, it can be seen that when the preference of the optimization scheme
is set to performance, the performance of the truss structure is significantly improved, while
the mass is only reduced by 0.33 kg. The lightweight design effect is not significant. From
Figure 13c and Table 6, it can be seen that when there is no preference for the optimization,
the maximum stress is reduced by 70.97 MPa, the maximum deformation is increased by
0.2 mm, the inherent frequency is increased by 6.23 Hz, and the mass is reduced by 6.28 kg.
The performance and mass of the truss structure have all been optimized. Therefore,
optimization scheme C is the reasonable optimization scheme.

Table 6. Performance comparison of optimization schemes.

Performance Initial Design
Scheme

Optimization
Scheme A

Optimization
Scheme B

Optimization
Scheme C

m (kg) 72.05 58.37 71.72 65.77
f (Hz) 10.20 10.38 16.92 16.43

d1,max (mm) 1.10 1.75 0.93 1.08
d2,max (mm) 2.19 3.41 1.98 2.39
d3,max (mm) 0.77 1.51 0.64 0.77
σ1,max (MPa) 218.16 273.30 216.47 222.75
σ2,max (MPa) 646.09 666.74 573.67 575.12
σ3,max (MPa) 202.37 322.62 128.29 226.16
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5. Lightweight Design Method of the Robot Truss Structure

The lightweight design method used in this paper are summarized as follows:

1 This paper first established the kinematic and dynamic equations of the manipulator
(load). Then the variables that are related to the load were optimized through the
particle swarm algorithm to reduce the load of the truss structure;

2 This paper then determined the typical load cases of the truss structure. The topology
optimization under multiple load cases was carried out to optimize the material dis-
tribution of the truss structure. The conceptual configuration model was established
through model reconstruction method;

3 Based on the conceptual configuration model, this paper finally reduced the dimen-
sions of the optimization variables according to the technological conditions and
processing efficiency. The sequential quadratic programming solver was applied to
optimize the thickness of the truss structure parts under multiple load cases.

The flow chart of this method is shown in Figure 14.
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6. Conclusions

Aiming at the performance optimization requirement of the trash can-handling robot,
this paper optimizes its truss structure and proposes a systematic lightweight design
method. The main research conclusions are as follows:

1 In this paper, the kinematic and dynamic equations of the manipulator was established
through the complex interpolation method and the theorem of kinetic energy. The
particle swarm algorithm was used to optimize the load-related parameters. This
provides a new method for the optimization of the equipment moving along the
guide rail in the future. After the optimization, the maximum instantaneous power
required by the robot for dumping garbage is reduced by 48.55%, the average power
is reduced by 38.60%, and the maximum change of the instantaneous driving force is
reduced by 85.70%;

2 By analyzing the load of the truss structure during the operation, the states when the
manipulator is in the acceleration lifting movement, the transition movement, and
on standby are regarded as three typical load cases in this paper. Combined with
practical engineering experience, due to the significant increase of the driving force,
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the transition movement needs special attention in the design and optimization of the
equipment with similar structure;

3 In this paper, three kinds of discrete optimization of the truss structure with different
preference were carried out. According to the optimization results, the optimization
scheme with no preference best meets the actual needs of the project. In this opti-
mization scheme, the mass of the truss structure is reduced by 8.72%, the inherent
frequency is increased by 61.08%, and the maximum stress is reduced by 10.98%;

4 The lightweight design method proposed in this paper is a new optimization method
as it includes load optimization. The results show that the method is effective for the
optimization of the robot’s truss structure. This method can also be applied to the
forward design or lightweight design of the actuators with similar structure, such as
the column of vertical drilling machine. So, this method gives a reference value for
actual projects.
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