
actuators

Article

Parameter Identification of BLDC Motor Using
Electromechanical Tests and Recursive Least-Squares
Algorithm: Experimental Validation

Jose Jimenez-Gonzalez † , Felipe Gonzalez-Montañez † , Victor Manuel Jimenez-Mondragon *,† ,
Jesús Ulises Liceaga-Castro , Rafael Escarela-Perez and Juan Carlos Olivares-Galvan

����������
�������

Citation: Jimenez-Gonzalez, J.;

Gonzalez-Montañez, F.;

Jimenez-Mondragon, V.M.;

Liceaga-Castro, J.U.; Escarela-Perez,

R.; Olivares-Galvan, J.C. Parameter

Identification of BLDC Motor Using

Electromechanical Tests and

Recursive Least-Squares Algorithm:

Experimental Validation. Actuators

2021, 10, 143. https://doi.org/

10.3390/act10070143

Academic Editor: Jacek F. Gieras

Received: 12 May 2021

Accepted: 23 June 2021

Published: 25 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Departamento de Energía, Universidad Autónoma Metropolitana Azcapotzalco,
Ciudad de México, CP 02200, Mexico; al2183802728@azc.uam.mx (J.J.-G.); fjgm@azc.uam.mx (F.G.-M.);
julc@azc.uam.mx (J.U.L.-C.); epr@azc.uam.mx (R.E.-P.); jolivares@azc.uam.mx (J.C.O.-G.)
* Correspondence: vmjm@azc.uam.mx
† These authors contributed equally to this work.

Abstract: In this article, the parameter identification of a brushless DC motor (BLDC) is presented.
The approach here presented is based on a direct identification considering a three-phase line-to-line
voltage electromagnetic torque as function of the electric currents and rotor speed. The estimation is
divided into two stages. First, the electrical parameters are estimated by well-known no-load and DC
tests. Consequently, estimation of mechanical parameters is performed using a recursive Least Square
Algorithm. The proposed approach is validated by comparing model responses to motor real time
responses. Additionally, the design, digital simulation and real time implementation of a PI rotor
speed controller, based on the estimated model, validate the identification proposal presented here.

Keywords: brushless DC motor; experimental tests; recursive least-squares; parameter identification

1. Introduction

The use of permanent magnets (PMs) in electric machines has several advantages over
conventional machines, such as the absence of field winding losses, simpler construction,
greater efficiency, and higher torque density [1,2]. Additionally, considerable improvements
in dynamic performance can be achieved because there is a nearly constant air-gap magnetic
flux density in each permanent magnet pole face. Brushless direct current (BLDC) motors
use PMs as magnetic field excitation and are widely popular in automotive, aeronautic,
industrial, and commercial applications because of reduced mechanical losses, lower
maintenance costs and higher reliability compared to brushed motors.

The BLDC motor analyzed in this work has a trapezoidal back-emf waveform, and it
is fed by a DC power source through a three-phase power converter. Several strategies
have been reported in the literature for the control of BLDC motors such as PID, fuzzy logic,
neural networks, optimization via genetic algorithms, and sliding-modes [2–6]. Depending
on the application, control schemes may be designed for regulation or tracking of rotor
position, speed or torque.

The performance of typical control schemes for BLDC motors relies on information
of rotor position and machine parameters. The rotor position is determined via Hall-
effect sensors or sensorless techniques, whereas the parameters must be known a priori
or determined online [3,7]. These parameters are the winding resistance and inductance,
rotor inertia, back-emf constant, and the coefficients of damping or friction [8,9].

Accurate information of parameters is generally not available, and an identification
scheme must be formulated. There are several ways to determine motor parameters.
However, an accurate estimation is subject to precise design information of the machine
such as stator and rotor cores materials as well as their geometry, type of permanent
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magnets and winding distribution, etc. When this information is available, there are
popular methods for determining these parameters such as the classical models of magnetic
circuits or finite element analysis (FEA) [10–12].

Detailed information on machine design is generally not available. Therefore, experi-
mental tests are usually performed to obtain the parameters listed above [13]. In [9,14–16],
stator resistance and inductance, rotor inertia and damping coefficient of a DC motor are
determined by analyzing its step response to blocked-rotor and no-load tests. In [17], a modi-
fied blocked-rotor test is performed to determine the direct and quadrature axes inductances
and the back-emf constant of a PM synchronous motor. In [4], the motor is excited with a
variable frequency input and the frequency response is fitted to appropriate transfer func-
tions, resulting in the lumped parameters of the model. The main drawback of these tests is
that they are performed under very specific circumstances—blocked rotor, zero speed, no
load, simplified dynamics—which may not represent the performance of the motor under
normal operating conditions. Therefore, the results may need to be refined.

The electrical and mechanical parameters are also subject to variation due to different
causes; for example, stator resistance, damping coefficient and PM strength vary with
temperature, while inductances vary nonlinearly with the effective air-gap field and damp-
ing coefficient varies with rotor speed. These variations are compensated using online
identification schemes based on optimization methods and adaptive controllers [3,15,18].
In [18], a method that combines a genetic algorithm and simplex search is used to determine
the parameters of the nonlinear friction components in a DC motor. In [3], an algebraic
identification method combined with a classical gradient search are used online on a BLDC
motor to tune an adaptive speed controller; the model used is a simplified one that neglects
the damping coefficient. The results are satisfactory in numerical simulation; however, no
experimental validation is provided. In [19], the moment of inertia is estimated dynamically
using a state observer to improve the performance of a PI control scheme.

Intelligent strategies such as artificial neural networks, particle swarm and bat algo-
rithms have also been used in determining BLDC parameters [6,20]. However, these works
determine the lumped parameters of the transfer functions used in the control design stage
rather than the machine parameters. Some of the most used algorithms are based on a
least-squares (LS) estimate. This approach compares the measured output with the modeled
output and minimizes their difference. Assuming an accurate model, the LS method pro-
vides a versatile, efficient, reliable, and easy to implement parameter estimation method [21].
In particular, the recursive least-squares (RLS) is a modified version of the LS that can be
implemented online, allowing the use of sizable sets of measurements, and solving the
minimization problem using an efficient matrix inversion method [21,22]. These characteris-
tics allow to determine the dynamic model parameters and improve the performance of a
linear speed controller [23]. In [2] the RLS algorithm was used to determine nonlinearities
of the model, such as Coulomb friction coefficient, back-emf harmonics, and cogging torque
coefficients. In [7], the minimum cogging torque coefficients are determined using RLS.
In [24], the stator resistances are estimated using the RLS algorithm in a torque ripple
minimization scheme.

In previous works, a notable disadvantage is that the number of estimated parameters of
the model is limited [9,10,14,24,25], the estimated parameters are typically lumped [6,18,20],
or are intended to refine nonlinear behavior of the machine [2,7]. Moreover, the parameter
estimation schemes are established as an intermediate step to tune and test controllers. On the
other hand, in [4] an estimation of the full model parameters is obtained but makes use of a
frequency domain approach, which is less intuitive and is limited by the laboratory equipment
available. The aim of this work is to propose an easy, reliable and performable strategy for
the entire identification of parameters contained in the dynamic model of a BLDC motor for
control purposes, requiring a minimal number of experimental measurements. The method
requires only the measurement of two-line voltages and currents and two signals of hall
effect position sensors instead of three. The electrical parameters are determined through
two tests which are accomplishable using a conventional data acquisition system of electrical
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signals. The mechanical parameters are determined using the RLS algorithm. For this stage,
the electric measurements are used to estimate the instantaneous torque, which in turn is used
as input to the RLS algorithm for the mechanical identification. Additionally, the validity of
the estimated parameters is assessed against manufacturer information, as well as through
numerical simulation using the state space model. Moreover, a real-time implementation of
a well-known speed control strategy is presented. Our methodology can be applied for the
parameter estimation in other electrical machines, such as brush DC motor, brushless AC, and
reluctance machines.

This paper is structured as follows. In Section 2 the model equations and the param-
eters involved are presented; in Section 3 the tests used to determine the parameters are
described alongside a brief description of the RLS algorithm; Section 4 briefly outlines the
experimental setup, details the results of the tests comparing with information provided
by the manufacturer and their validity is tested. Finally, Section 6 presents the concluding
remarks of this work.

2. Mathematical Modeling and Problem Formulation

The BLDC motor is a three-phase machine, whose windings are typically wye-connected.
Its dynamic behavior can be described by the following system of equations:

v(t) = ri(t) +
d
dt

λ(t), (1a)

Te(t)− Tl(t) = J
d
dt

ωr(t) + bωr(t). (1b)

Equation (1a) is a matrix equation that represents the electrical dynamics of the motor.
The bold terms v, i and λ are the voltage, current and flux linkage vectors, and are of the
form α = [αa αb αc]

T, where a, b and c are the phases of the machine. The first term
on the right-hand side of (1a) represents the ohmic voltage drop across the stator phase
resistance r, and the second term represents the voltage induced by the time-varying currents.
Equation (1b) describes the dynamics of the rotor speed ωr. This is done through the torque
balance between the inertial and damping torques—produced by the rotor inertia J and
damping coefficient b—with the input electromagnetic torque Te and load torque Tl .

The flux linkages can be modeled by considering linearity in the magnetic core and
balanced currents with the expression

λ(t) = `i(t) + λr(t), (2)

where the first term on the right-hand side yields the vector of flux linkages due to the
magnetic field produced by the stator time-varying currents and the second term is the
vector of flux linkages due to relative motion between the stationary stator windings and
the rotary PM. The inductance ` represents the effect of self and mutual induction in the
stator windings carrying balanced currents. The flux linkages due to the magnetic field
produced by the PM λr are, however, dependent on the magnet arrangements and the
winding uniform distribution. This is taken into account in [26] by modeling these flux
linkages as quadratic functions of rotor position, so that the time-derivative of the flux
linkages leads to trapezoidal back-emf waveforms, whose magnitudes are proportional
to the rotor speed ωr, the back-emf constant kv and the number of poles P. The induced
voltages due to the rotor-produced flux linkages are

er(t) =
(

P
2

)
kvωrf(θe), (3)

where f(θe) is a vector of trapezoidal functions of the rotor position (radians) θe, with mag-
nitude 1 and phase angle of 120°. These voltages are referred to as back electromotive force
(emf) or internal voltage. Here, as in (1a), this vector has the form f = [ fa fb fc]

T .
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The developed torque is obtained by the vector product

Te(t) =
(

P
2

)
kvfT(θe)i(t). (4)

The ideal form of i and f are shown in Figure 1. It can be observed that the currents
are AC square waves of amplitude Ip in discontinuous-current mode, i.e., are zero in 60°
intervals and are positive or negative in 120° intervals. This mode of operation is called
120° commutation, and ensures current flows through only two phases at any given time.
The flat intervals of the trapezoidal back-emf waveforms correspond to those of the currents
and, as a result, a constant torque Te(t) = Pkv Ip is produced (see Figure 1). Nevertheless,
as a result of the armature reaction and other parasitic effects, the back-emf waveform is
never flat and the developed torque is not constant, but rippled [27].
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1

2
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Figure 1. Ideal developed torque. The top three plots show the ideal phase current (continuous line)
and back-emf (dashed line) waveforms. The bottom plot shows the resultant torque produced by
each winding and the developed torque Te.
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BLDC Model

Using the expressions derived in previous sections, the mathematical model of a BLDC
motor is typically developed under the following assumptions: The power converter that
generates the necessary source waveforms is comprised of ideal components, the stator
windings are wye-connected and symmetric, the magnetic materials are considered linear,
and the ideal current and back-emf waveforms produce a constant torque. Accordingly,
Equations (1a) and (1b) take the form

v(t) = ri(t) + `
d
dt

i(t) +
(

P
2

)
kvωr(t)f(θe), (5a)

(
P
2

)
kvfT(θe)i(t) = bωr(t) + J

d
dt

ωr(t) + Tl(t). (5b)

In most applications, the neutral point of the BLDC is unaccessible and the measure-
ments must be made in a line-to-line basis. The formulation of the BLDC model (line
quantities) under these assumptions is therefore [1,28]

vL(t) = riL(t) + `
d
dt

iL(t) +
(

P
2

)
kvωr(t)fL(θe), (6a)

(
P
2

)(
kv

3

)
fT

L(θe)iL(t) = bωr(t) + J
d
dt

ωr(t) + Tl(t), (6b)

where the vectors with an L subindex are of the form αL = [αab αbc αca]
T . Note that the

line currents in (6) do not have a strict physical meaning as the voltages, but are rather the
result of the manipulation of the phase equations. An important consequence of using line
quantities in the model is that the winding are no longer in discontinuous-current mode,
which means that the current does not return to zero in every period and their magnitudes
along with the back-emf waveforms are affected by a factor of 2. These waveforms are also
shown in Figure 1. Equation (6) is useful because it naturally provides a 120° commutation.
In any commutation interval, the two phases conducting x and y are modeled by the
voltage equations

vxy(t) = rixy(t) + `
d
dt

ixy(t) +
(

P
2

)
kvωr(t) fxy(θe). (7)

However, due to the fact that phases x and y are connected in series, the current
flowing through them is the same but with opposite signs, i.e., ix = −iy. Therefore,
the following simplification can be made:

vxy = rtix(t) + `t
d
dt

ix(t) +
(

P
2

)
kvωr(t) fxy(θe), (8)

where rt = 2r and `t = 2` are the terminal resistance and inductance, respectively.

3. Electromechanical Tests and Recursive Least-Squares Algorithm
3.1. DC Tests

The resistance and inductance of a BLDC motor can be determined by applying a constant
DC voltage across two phases of the machine while blocking the rotor. This is equivalent
to making ωr = 0 in (8) and vxy = Vxy a constant voltage. Assuming an ideal neutral
connection [7,29], this convenient setup leads to linear, first-order differential equations for
the pair of phases x and y

Vxy = rtix(t) + `t
d
dt

ix(t). (9)
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The solution of (9) is given by

ix(t) = KeVxy

(
1− e−

t
τe

)
+ ix(0)e−

t
τe (10)

for an initial condition ix(0). Ke and τe are the electric steady-state gain and time constant of
the circuit. The transient response produced by the exponential terms in (10) can be visualized
and measured using a data acquisition system; thus, rt and `t can be determined through

r̂t =
1

Ke
=

Vxy

Ix
and ˆ̀t = τe r̂t, (11)

where r̂t and ˆ̀t are the estimates of rt and `t, and Ix is the measured steady-state current.

3.2. Open-Circuit Tests

Open-circuit tests are conducted by keeping the armature terminals open-circuited
and hence no current flowing in the armature windings. The test is performed by coupling
a prime mover to the shaft of the motor and running it at a constant speed. Under these
conditions ix(t) = 0 and the back-emf exy equals the terminal voltage:

vxy(t) = exy(t) =
(

P
2

)
kvΩr fxy(θe), (12)

where Ωr is the steady-state value of the measured rotor speed. If the number of poles is
unknown it can be determined by computing the steady-state angular frequency Ωe of the
induced voltages

P = 2
Ωe

Ωr
. (13)

Let Ep be the peak value of the induced voltages when the prime mover is running at
constant speed and recalling that the peak value of the trapezoidal waveforms equals two,
the back-emf constant can be determined by

k̂v =
Ep

PΩr
. (14)

3.3. No-Load Tests

A no-load test consists of starting the motor with no load connected to the shaft
(Tl(t) = 0). This makes the motor run with near a zero current, thus reducing the armature
reaction and making the amplitude of the back-emf close to that of the terminal voltage.
Assuming ideal back-emf and current waveforms, the developed torque has a constant
value Te = Pkv Ip, so Equation (5b) can be simplified to

Pkv Ip = J
d
dt

ωr(t) + bωr(t), (15)

which is also a linear, first-order differential equation with solution

ωr(t) = PKmkv Ip

(
1− e−

t
τm

)
+ ωr(0)e−

t
τm , (16)

where Km and τm are the mechanical steady-state gain and time constant, respectively.
Using a procedure similar to the one described for the determination of resistance and
inductance, the damping coefficient and moment of inertia estimates can be obtained with

b̂ =
1

Km
and Ĵ = τm b̂. (17)
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Discrete Mechanical Equation

Adhering to the standard notation, let u be the input of a linear system and y its
output. The relation between u and y can be represented through the transfer function
G(s) = Y(s)/U(s), where U and Y are the Laplace transforms of u and y, respectively. Let
us now assume that G represents a first-order system, characterized by a steady-state gain
K and a time constant τ, of which the input and output are measured at a definite sample
time T. This results in the discrete representation of G considering a zero-order hold in the
complex z domain [21,30]

G(z) =
K
(

1− e−
T
τ

)
z−1

1− e−
T
τ z−1

(18)

and the corresponding difference equation of the system

y(k) = e−
T
τ y(k− 1) + K

(
1− e−

T
τ

)
u(k− 1), (19)

where k represents the sampling instant. The mechanical equation of the BLDC model
under no-load conditions (15) is a system of this kind; one can thus rewrite (19) making
u = Te and y = ωr as

ωr(k) = e−
T

τm ωr(k− 1) + Km

(
1− e−

T
τ

)
Te(k− 1). (20)

Defining the regression vector ϕ and the parameter vector ϑ as

ϕ(k) = [ωr(k− 1) Te(k− 1)]T and ϑ =
[
e−

T
τm Km

(
1− e−

T
τm

)]T
, (21)

Equation (20) can be recast as

ωr(k) = ϑT ϕ(k). (22)

in compact form.

3.4. Recursive Least-Squares Algorithm

A brief description of the RLS algorithm is presented. Equation (22) is composed
of past measurements of ωr and Te; therefore, it assumes certainty in the parameters ϑ.
When these parameters are unknown or uncertain, the product ϑT ϕ may not reproduce the
system output ωr. If one defines system output error as the difference between the actual
output and the modeled output as follows

ε(k) = ωr(k)− ϑT ϕ(k), (23)

the weighted least-squares criterion applied to (23) can be expressed as the cost function J ,
defined as

J =
N

∑
k=1

B(N, k)ε2(k), (24)

where N is the number of samples and B is a weighting function. The parameter vector ϑ̂
that minimizes (24) is defined as the parameter estimates. Determining ϑ̂ involves matrix
operations that can be highly costly in computational resources. To avoid this, (24) can be
minimized recursively, updating at every sample step with the new information processed
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from the regression vector ϕ. This can be achieved by selecting a weighting function of
the form

B(N, k) =
N

∏
j=k+1

β = βN−k, 0 ≤ β ≤ 1, (25)

where β is a constant weight that is recursively multiplied by itself. With this weighting
function the RLS algorithm, along with Equation (23), is synthesized as follows:

ϑ̂(k) = ϑ̂(k− 1) +
F(k− 1)ϕ(k)ε(k)

β + ϕT(k)F(k− 1)ϕ(k)
, (26a)

F(k) =
1
β

(
F(k− 1)− F(k− 1)ϕ(k)ϕT(k)F(k− 1)

β + ϕT(k)F(k− 1)ϕ(k)

)
, (26b)

where ϑ is updated with each sample k and F is a positive defined non-singular matrix,
relating the input and output variables. According to (25), older samples are exponentially
discarded and a larger weight is given newer ones. For this reason β is called forgetting
factor. Its impact on the algorithm can be interpreted as a noise sensibility parameter:
A smaller β helps the algorithm to converge faster but becomes highly sensible to noise.
The necessary steps to obtain (26) are rather involved, however, the detailed methodology is
reported in [21,22]. The recursive nature of this algorithm allows an online implementation
to adaptively adjust the parameters fed into controllers or observers.

The input signal fed to the algorithm must satisfy the condition of persistent excitation
to yield optimal results [4,21,24]. That is, input signal must satisfy the persistent excitation
condition to ensure that all process modes or dynamics are activated, and to ensure that
the covariance matrix F remains non-singular which implies an input signal with an appro-
priate frequency sweep. This means that the input signal must be a “white noise”, which is
difficult to achieve in practice. However, this condition can be relaxed by ensuring that the
input signal keeps the system response out of steady state condition at all times. Result-
ing from the limitations of the experimental setup, the tests for numerical identification
were made by using a piecewise constant input signal that produces transients at regular
intervals but does not excite every mode of the system. The algorithm uses the calculated
torque as input and the rotor speed as output to identify the parameters of Equation (15).

4. Experimental Setup and Results

Several tests were performed on a four pole BLDC motor of known parameters. Two
voltage and two current sensors were used to measure the line voltages (vab and vcb) and cur-
rents (ia and ib). The rotor position and speed were measured using two Hall-effect sensors
and an incremental encoder. The three-phase waveforms that power the BLDC were gener-
ated using a three-phase IGBT-based inverter. The electrical signals were measured using a
National Instruments analog data-acquisition board (DAB), labeled PCI-6602 in Figure 2a,
and the signals of the incremental encoder using a National Instruments digital DAB, labeled
PCI-6621 in Figure 2a. The latter was also used to generate the gate signals to drive the
inverter according to the algorithms programmed in Simulink for the no-load tests and the PI
control validation tests. The schematic diagram is is shown in Figure 2. The voltage, current
and position sensors are labeled VSx, CSx and PS, respectively. Additional components are
shown in Figure 2, such as conditioning circuits for the electrical signals, an optoisolation
stage to separate the logical stage from the power stage, and a DC machine mechanically
coupled to the BLDC motor for the open-circuit tests. The measured data was acquired and
analyzed using Simulink Real-Time, Simulink, and MATLAB, from The Mathworks, Inc.
The sample time of voltage, current and Hall-effect sensors was T = 125 µs.
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(b)
Figure 2. (a) Schematic diagram. (b) Experimental setup.

4.1. Resistance and Inductance Estimation

To determine the terminal resistance rt and inductance `t of the BLDC motor, a constant
DC voltage was applied to two terminals of the motor and the voltage and current were
measured. This setup is shown in Figure 3.
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−
+vxy (t)

A
ix (t)

rt

`t

V

Figure 3. Circuit used for the identification of the resistance and inductance.

This test was performed for the three phases and different values of Vxy. The ap-
plied voltages were limited by the rated current of the motor and the power source used.
The current Ix flowing through the phases connected to the power source was measured
and used to determine the electric steady-state Ke and the terminal resistance rt using (11).
The time constant τe was determined using the data-acquisition system and was used
along with the terminal resistance to compute the terminal inductance `t for each phase
using (11). Table 1 show the measured voltage, current and time constant. The fourth
column shows the resistance rx computed using (11) and the values shown in the second
and third columns. The fifth column shows the terminal resistance value computed by
subtracting from rx the resistance of the wires used to connect the elements of the circuit,
which equals 0.4± 0.0038Ω. The last column shows the value of inductance computed
from each test using (11). The resulting parameters for each test were averaged to yield
the estimated values r̂t and ˆ̀t and the corresponding uncertainties were computed as the
standard error for the number of tests performed. These results are shown in the bottom
rows of Table 1.

Table 1. Results for the resistance and inductance estimation tests.

Test
Measured Values Computed Values

Vxy [V] Ix [A] τe [s] rx [Ω] rt [Ω] `t [mH]

1 5.4 3.4 1.75 1.59 1.19 2.08
2 3.49 2.19 1.81 1.59 1.19 2.16
3 −3.47 −2.18 1.95 1.59 1.19 2.32
4 −5.21 −3.28 1.97 1.59 1.19 2.34
5 5.34 3.36 1.61 1.59 1.19 1.91
6 3.42 2.17 1.73 1.58 1.18 2.05
7 −3.29 −2.09 1.81 1.58 1.18 2.13
8 −5.08 −3.22 1.91 1.58 1.18 2.24
9 5.42 3.44 2.03 1.58 1.18 2.39

10 2.88 1.82 2.06 1.58 1.18 2.42
11 −2.88 −1.81 1.77 1.59 1.19 2.1
12 −5.06 −3.22 1.66 1.57 1.17 1.94

Mean value 1.18 2.17
Uncertainty 0.0056 0.0601

The results were substituted in Equation (10) and compared with the experimental
results. This is shown graphically in Figure 4: The measured current for three of these tests is
displayed with continuous lines. The dashed lines are the results obtained by substituting
the determined parameters in (10) along with the corresponding measured voltage. For each
test, a shaded area is shown, which represents the response within the uncertainty intervals.

It can be seen that the experimental results are into these intervals for the first-order
approximation (9) for time values above τe = 1.28 ms. Below this time, neither response
falls within the expected estimated region. As can be seen in the Figure 4, the experimental
curves are those of a higher order dynamic system, which reveals the deficiencies of the
first-order model approximation used in this test. This difference is due to dynamics,
such as magnetic nonlinearity, or the rotor position, that are not considered in the utilized
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model.Regarding the rotor position, it is worth mentioning that the tests were performed by
letting the rotor align itself to the field produced by driving current through the windings
under study and locking it in that position. So for each phase the tests were made in similar
conditions regarding the initial position of the rotor and the respective magnetic flux path.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

3

τe

t, [ms]

I x
(t
),

[A
]

3.4 A 2.2 A 1.8 A

Figure 4. The BLDC blocked-rotor step responses are shown with continuous lines, along with the
first-order model approximation with dashed lines. The uncertainty intervals are the shaded areas
for each test.

4.2. Back-emf Constant

The procedure described in the previous section for the open-circuit test was performed
by coupling a controlled DC motor to the shaft of the BLDC motor. The line voltages were
measured using voltage sensors and the speed was determined with an incremental encoder.
Figure 5 shows the results of this test at different speeds, (12, 16, and 22 rad s−1) displaying
the obtained voltage measurements exy divided by the steady-state rotor speed Ωe of the
respective test, i.e.,

exy(t)
Ωe(t)

= kv fxy(θe). (27)

It can be readily seen that the waveforms have the same amplitude regardless of the
speed, as expected, from the fact that the shape functions have fixed amplitudes. It can also
be seen that the waveforms are not ideally trapezoidal. This is due that the waveform is
heavily dependent upon how the PMs are arranged in the machine and not every magnet
array yields the trapezoidal back-emf shown in Figure 1. In addition to this the measured
quantities are line voltages, so the flat-top intervals are shorter (cf. Figure 1). For each test,
the peak values of the generated voltages were averaged to determine the amplitude of
the induced voltages Ep, the rotor speed Ωr was measured, and the back-emf constant was
determined by substituting these values and the number of poles P = 4 in (14). The results
from every test are shown in Table 2. The last column shows the back-emf constant for each
test computed using (14). As before, the estimated parameter was obtained by averaging
these values, and the uncertainty was computed as the standard error. The estimated
parameter during this test is shown in the bottom rows of Table 2.
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Table 2. Results for the back-emf constant estimation tests.

Test
Measured Values Computed Values

Ep [V] Ωr [rad s−1] kv [mV s rad s−1]

1 1.21 12.53 24.16
2 1.40 14.56 24.00
3 1.61 16.78 24.01
4 1.84 19.15 23.95
5 2.02 21.05 23.93
6 2.11 22.03 23.90

Mean value 23.99
Uncertainty 0.0377
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1 ]

12.5 rad s−1

0 20 40

t, [ms]

16.8 rad s−1

0 20 40

t, [ms]

22.0 rad s−1

Figure 5. Shape functions of back-emf force for different rotor speeds. The dashed lines indicate the
amplitude 2kv.

4.3. Moment of Inertia and Damping Coefficient Estimation Using RLS

A no-load test was conducted to determine the mechanical parameters of the motor.
The test consisted of starting the motor from standstill to a speed within its operating range.
This was achieved by sensing the rotor position and determining the commutation logic to
turn on the corresponding phase sequentially. The magnitude of the applied voltage was
determined by the well-known volts per hertz relationship, used in scalar control strategies
for induction motors. The speed was varied at equal time intervals for 6 s. The input
torque was calculated using the current and rotor position measurements and Equation (4).
However, because of the sampling rate, the non-ideal waveforms and the measurement
noise, the resultant torque was excessively noisy. This poses a problem regarding the
RLS algorithm, because of the first-order approximation used. The torque signal was
therefore smoothed using a moving median filter prior to being input to the algorithm.
This smoothing strategy was chosen to remove as much outliers as possible from the torque
signal by taking the median of windows of 100 samples, without significantly affecting
its dynamics.

The setup for the RLS identification algorithm considers the following values

β = 0.92, T = 1.25 µs, ϑ̂0 = [0.1 0.1]T , F0 =

[
50 0
0 50

]
. (28)

There is no standard methodology for choosing a forgetting factor. In general, values
close to 1 are rapidly convergent but very noise-sensitive. This tradeoff was considered in
the choice of β, which was tuned after several trials on the algorithm using the input torque
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data. The sample time was selected considering that the measurement of the Hall-effect
sensors used in the commutation algorithm was acquired using the same board as the
voltage and current measurements. The initial parameters ϑ̂0 were chosen arbitrarily as
well as the initial correlation matrix F0, which was required to be positive definite.

Using this configuration and the filtered torque signal, the algorithm was run to de-
termine the discrete parameters ϑ̂1 and ϑ̂2 (these results are shown in Figure 6). Figure 6a,b
show the parameter trajectory during the test where both signals can be seen to have a
significant noise component. Nevertheless, a trend can be established by eliminating the
outliers in the resulting data. Figure 6c shows the output error ε for the test. It can be seen that
the algorithm tends to minimize the output error despite the parameters are not converging
to a constant value. The mean values of the obtained parameters are:

ϑ̂ = [ϑ̂1 ϑ̂2]
T = [0.9986 8.1069]T . (29)
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Figure 6. Recursive least-squares results. (a,b) showing the parameter trajectories of ϑ̂1 and ϑ̂2, respectively, (c) shows the
quadratic error of the algorithm, (d) shows the comparison between the measured speed and the speed obtained with the
first-order approximation.

Substituting these parameters into Equation (18) and running the algorithm using an
input torque of the same magnitude as the measured torque yields a very approximate out-
put speed compared to the measured one, however, a steady-state error can be appreciated
during the whole tests, which reveals a poor estimate of the parameter ϑ2 and, by extension,
of the damping coefficient. In fact, this parameter is the one that most differs from the
expected value, as presented in Section 4.4.1. This is shown in Figure 6d.

Solving (21) for Km and τm, these parameters are given by:

τm = − T
ln(ϑ̂1)

and Km =
ϑ̂2

1− ϑ̂1
, (30)

and the moment of inertia and the damping coefficient are in turn given by (17). Substitut-
ing (29) into (30) and (17), the estimated mechanical parameters are shown in Table 3.

b̂ = 172.69± 21.42 µN m s−1 and Ĵ = 154.04± 28.58 g cm2. (31)
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Table 3. Results for the damping coefficient and moment of inertia tests.

Parameter Units Value
Uncertainty

Value %

Damping coefficient, b µN m s−1 172.69 21.42 12.40
Moment of inertia, J g cm2 154.04 28.58 18.55

4.4. Validation

In this section the validity of the estimated parameters is assessed.

4.4.1. Manufacturer Data

All the obtained parameters are summarized in Table 4, along with the parameters
provided by the manufacturer. It can be seen that, except for the damping coefficient, all
parameters were determined within the uncertainty bounds of both the manufacturer data
and the estimated data. The discrepancy in the value of the damping coefficient may be
due to several different reasons: The manufacturer employed a different model than the
one used in this work, the motor used during these tests was in service for several years
and it may have suffered damages or alterations, the friction model comprised very specific
operating regimes, such as no-load, same initial conditions for every test and unidirectional
rotation, amongst others. Besides, friction phenomena are known to be non-linear and
dependent on many factors besides the ones that were modeled in this work. Therefore,
the value of the estimated damping coefficient should only be considered valid under the
conditions in which the tests were performed.

Table 4. Parameters provided by the manufacturer and estimated through tests.

Parameter Units
Manufacturer Estimation

Discrepancy, %
Value Tolerance, % Value Uncertainty, %

Resistance, r Ω 1.18 10 1.1826 0.48 0.22
Inductance, ` mH 2.30 15 2.0369 12.9 11.44
Back-emf constant, kv mV s−1 21.96 10 23.994 0.16 9.26
Damping coefficient, b µN m s−1 25.62 2.6 172.69 12.4 574.04
Moment of inertia, J g cm2 176.00 20 154.04 18.5 12.47

5. Application Example: Closed-Loop Speed Control

Parameters are needed to tune the controllers of a motor appropriately. Therefore,
the obtained parameters were used in the simulation and implementation of a well-known,
two-stage PI speed controller [7,26]. That is, the control system is based on an inner loop,
which controls the current to generate the required torque and an outer loop to control
the speed of the rotor. Both feedbacks were designed using the models of the identified
electrical and mechanical subsystems. A BLDC motor was simulated and controlled using
the estimated parameters and the controller was tuned to follow a speed trajectory within
rated operational ranges of the motor.

The test for evaluating the controller performance consisted of a tracking problem.
The speed was raised from 0 to 100 rad s−1 following a smooth curve, it then was held
constant for two more seconds, and then it was varied sinusoidally with a period of 1 s for
four seconds. The controller was tuned using the simulated machine and the resulting gains
were implemented in the real-time application for the BLDC motor. Figure 7 shows the
results of the test: The desired speed trajectory ω?

r , the measured speed and the simulated
speed. It can be seen that the three curves show a very small tracking error even in the
most aggressive transients. The measured current is also plotted to show that the rated
current is never reached during the whole test.
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Figure 7. PI speed control results.

6. Conclusions

The proposed tests for determining the parameters of a BLDC motor yielded results
that are in close agreement with the expected parameter values within reasonable margins
of uncertainty. The tests were systematically presented and are reproducible, which means
they can be applied to BLDC motors of similar characteristics.The use of the recursive least-
squares algorithm applied to the first-order approximation of the mechanical subsystem of
the motor is a viable method for estimating the mechanical parameters within margins of
uncertainty. However, there exists the drawback of preprocessing the torque input signal.
The obtained parameters are able to model the motor in a range of frequencies within
the nominal operating limits, so that the dynamic model considered and the first-order
approximation are useful for identification and control purposes.
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