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Abstract: Hydraulic rubber hoses are subject to great hydraulic impact during the actual working
process, which causes a great potential safety hazard. Therefore, it is necessary to carry out pressure
tests on hose assemblies to ensure its quality, so providing a high pressure for the hydraulic hose has
become the key technology of this problem. Aiming at solving the problem of detection of pressure
resistance in hydraulic rubber hose cleaning machines, this paper analyzed the pressurization mecha-
nism of the hydraulic pressurized cylinder and proposed a method of continuous pressurization. This
paper also theoretically analyzed the pressure expansion of the rubber hose, and the conclusion is that
for the maximum hose capacity (hose size is Φ25 mm× 6 m), the volume of water required to provide
water in the hose from 10 MPa to 100 MPa is 0.59 L. The pressurized cylinder was designed and
checked theoretically and analyzed by the finite element method. It is concluded that the maximum
stress of the pressurized cylinder is concentrated at the bottom of the high-pressure chamber, and the
outlet hole at the bottom of the cylinder barrel of the high-pressure chamber is the weakest part of
the pressurized cylinder. The performance of the supercharging cylinder is verified by experiments,
which proves the feasibility, rapidity and stability of the supercharging cylinder.

Keywords: hydraulic rubber hose; double-acting pressurized cylinder; pressure test; compression
expansion; finite element

1. Introduction

Hydraulic hose assemblies are widely used in various types of hydraulic equip-
ment, especially in heavy-duty hydraulic equipment such as excavators, loaders and
bulldozers [1,2]. In the actual work process, it is often affected by high and low tempera-
ture changes outside. Due to the harsh construction environment, they will be subject to
great hydraulic impact, it is very likely that there will be hydraulic oil leakage, buckle trip-
ping, hose bursts and other situations, which will cause great security risks and endanger
the safety of people and machines [3–5]. In order to solve these problems, it is necessary to
carry out pressure tests on the hose assemblies to ensure their quality, so providing high
pressure for the hydraulic hose has become the key technology of this problem [6,7].

At present, gas-liquid booster pumps are used in the pressure test bench [8,9], but
their pressure loading is unstable and the fluctuations are difficult to control [10]. The flow
rate is only 0.3 L/min, and the pressurization takes a long time. They can only complete the
pressure test of 2 m of rubber hose assembly at a time, so it takes a long time to complete
the pressure test of a large number of rubber hoses, which cannot meet requirements of the
production line, therefore, it is urgent to adopt a new pressurization method to improve
the pressure test efficiency of rubber hose assemblies [11–13].

In normal engineering applications, the pressure of general hydraulic systems is
within 35 MPa. Under this pressure condition, the cost and maintenance cost of the
hydraulic system are relatively low, so it has high economic benefits. But in some cases
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such as metal extrusion, ultra-high pressure water jet processing, hydroforming, pressure
explosion testing and so on, the pressure is usually about 100 MPa, and sometimes even
higher. When the pressure of a hydraulic system exceeds 82 MPa, it can be considered as an
ultra-high pressure system, and its cost and maintenance cost are considerable [14,15]. It is
difficult for a typical high-pressure pump to achieve such a high pressure, so a pressurized
cylinder is usually used to achieve the desired pressure [16,17].

In order to solve the above problems, this paper adopts a liquid-driven double-acting
pressurized cylinder which uses oil pressure to increase the water pressure, so as to provide
high water pressure for the withstand voltage test. A booster circuit is set in the low
pressure chamber of the double-acting pressurized cylinder, the pressure of the circuit is
adjustable, and hydraulic oil functions as the medium to achieve the purpose of system
supercharging; a theoretical analysis and calculation of the compression expansion of the
hose are carried out, and the key dimensions of the pressurized cylinder are designed and
calculated according to the calculation results. The strength of the hydraulic cylinder is
checked and finite element simulation is carried out under different working conditions.
The theoretical calculation results are compared with the simulation results, and the
performance of the hydraulic cylinder is verified by experiments.

As the pressure and cleanliness of the hydraulic system have higher and higher re-
quirements on the hoseline, it is urgent to adopt new process plans and equipment to ensure
the cleanliness of the hoseline and to detect the pressure resistance of the hoseline. This
study can improve the efficiency and stability of hose cleaning and promote the improve-
ment of production efficiency. The cleaning, pressure testing and drying integrated process
equipment of hose has good application prospects, which can promote the development of
the hose industry.

2. Hydraulic Cylinder Pressure Ratio Theoretical Calculation

In this paper, the double-acting pressurized cylinder is adopted, which is in the form
of a double-extraction rod [18–20]. There is no idle stroke, which improves the working
efficiency. The low-pressure chamber is an oil chamber, the inner diameter is d; the high
pressure chamber is a water chamber, and the inner diameter is D [21]. The two high
pressure water chambers are connected to a circuit consisting of four check valves. When
the pressurized cylinder piston moves to the left, the left chamber discharges high pressure
water and the right chamber suctions in water. When the piston moves to the right, the
right chamber discharges high pressure water and the left chamber suctions in water. The
water suction and discharge processes are simultaneously performed, and the input lower
pressure hydraulic oil is converted into higher pressure water for use in the hose pressure
test system. A structure diagram is shown in Figure 1.

Figure 1. Schematic diagram of double-acting pressurized cylinder.

In Figure 1, the input pressure of the low-pressure chamber of the pressurized cylinder
is P1, and the output pressure of the high pressure chamber is P2. The mechanical balance
is obtained without considering the resistance:

π

4

(
D2 − d2

)
P1 =

π

4
d2P2 (1)
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D2 − d2

d2 =
P1

P2
(2)

where D2

d2 is the boost ratio.

3. Pressurized Cylinder Flow Demand Calculation
3.1. Selection of Pressurized Medium and Determination of Technical Indicators

The system pressure during pressure test is very high. The ultra-high pressure system
requires the hydraulic medium to have good flowability and small volume compression.
However, water has high bulk modulus of elasticity, so it is suitable to be used as hydraulic
medium in the proposed pressure test system.

The structure of hydraulic hose assembly is shown in Figure 2.

Figure 2. Hydraulic hose assembly. 1—connector 1; 2—sleeve; 3—hose; 4—spring sheath;
5—connector 2.

The pressurized cylinder provides a pressure source for the pressure test of the
hydraulic hose. The pressure test requires that the hydraulic hose of the type 12EFG6K will
be pressurized to 100 MPa within the specified time. The details of the hose are shown
in Table 1. For this hose, it is considered that the total amount of compression caused by
water pressure and the total deformation produced by the compression of hose assembly
are the demands of the supercharging system in terms of flow rate, while the deformation
produced by the rigid hose loop is ignored. In summary, the system pressure requirement
is 100 MPa, and the maximum capacity of the hydraulic hose assembly to be tested is
6000 mm in length and Φ25 mm in diameter.

Table 1. Hose parameter.

Content Numerical Value

brand GATES
type 12EFG6K

diameter 25 mm
length 6000 mm

3.2. Calculation of the Amount of Compression Generated by Water Compression

The maximum volume V1 of the test hose assembly is:

V1 =
πd2

1L1

4
(3)

where d1 is the diameter (mm) of the test hose assembly; L1 is the total length (mm) of the
test hose assembly.

At room temperature, water compression coefficient βw is 4.5× 10−4(MPa−1), and
the test bench pre-fills the hose before the test of the hose. The pressure of the pre-filling
liquid is 10 MPa. When the pressure is increased from 10 MPa to 100 MPa, the compression
amount ∆V1 generated by the water pressure is:

∆V1 = V1∆Pβw = V1(P− P0)βw (4)
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where P is the pressure after water is pressurized; P0 is the pressure of pre-flush before
water is pressurized; βw is water’s compression coefficient.

3.3. Volume Change Calculation Caused by the Deformation of the Hose Assembly

Xu in his master’s thesis [22] carried out a finite element analysis and simulation on
the skeleton structure of a steel wire wound hydraulic hose. In this paper, the relevant
conclusions of the change of the axial deformation of the hose body during the pressure
application and the change of the radial deformation of the hose body during the pressure
application are directly cited as the calculation basis. The conclusion of the paper points out
that the deformation of the Φ25 mm diameter steel wire wrapped with the pressure varies
with the pressure. The axial deformation of the Φ25 mm diameter is very slow. When the
pressure is greater than 15 MPa, the axial deformation of the hose changes linearly. The
amount of change in the inner diameter of the hose gradually increases as the applied
pressure increases, and changes substantially linearly [22].

The hose with the model of 16M3K and 210 mm is selected for pressure test on the
pressure tester. The diameter of the hose is Φ25 mm, and the working pressure is 27.6 MPa.
Therefore, according to the 1.5 times working pressure factor, the maximum pressure can
be increased to 40 MPa, and the axial deformation and radial deformation are recorded at
5 MPa per liter. The experimental data is processed. Figure 3 shows the change of the axial
deformation of the hose with the pressure process. Figure 4 shows the change of the inner
diameter of the hose with the pressure process [22].

Figure 3. Variation of the axial deformation of the hose with the pressure application process.

Figure 4. Variation of the inner diameter of the hose with the pressure application process.
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It can be seen from Figure 3 that the axial deformation is 0.03 mm when the pressure is
10 MPa, and the axial length deformation of the hydraulic hose under pressure is −0.014%.
In Figure 3, the axial deformation is 2.82 mm when the pressure is 100 MPa. Therefore,
the axial length deformation of the hydraulic hose under pressure is −1.34%. It meets
the mechanical industry standard JB/T8727-2004 which stipulates that the axial length
deformation of the hose under pressure is −2–4%. When the length of the hose assembly
is 6000 mm, the length becomes 5999.1 mm after being subjected to a pressure of 10 MPa,
and the length becomes 5919.6 mm after being subjected to a pressure of 100 MPa.

As Figure 4 illustrates, when the pressure is 10 MPa, the inner diameter deformation
is 0.2 mm, and the hose diameter becomes Φ25.2 mm. For Figure 4, it can be estimated
that when the pressure is 100 MPa, the inner diameter deformation is 2.34 mm and the
hose diameter is changed to Φ27.3 mm. The ∆V2 of the volume change caused by the
deformation of the hose assembly is:

∆V2 =
π

4

(
d2

nL− d2
0L0

)
(5)

where dn is the diameter (mm) of the hose when subjected to a pressure of 100 MPa; d0 is
the diameter (mm) of the hose when subjected to a pressure of 10 MPa; L is the total length
(mm) of the hose when subjected to a pressure of 100 MPa; L0 is the total length (mm) of
the hose when subjected to a pressure of 10 MPa.

3.4. Calculation of Volume Change of Pressurized System

The total volume change ∆V is:

∆V = ∆V1 + ∆V2 (6)

Substituting the relevant data into the above theoretical formula, it can be analyzed
that for the hydraulic hose of the type 12EFG6K, the capacity of supplying water to the
hose is 0.59 L from 10 MPa to 100 MPa.

4. Design Calculation and Strength Check of the Pressurized Cylinder
4.1. Design and Calculation of Double-Acting Liquid Drive Pressurized Cylinder

Through the analysis of the pressurization theory of the hydraulic hose, we got the
working requirement of adding the cylinder: for the hydraulic hose of the type 12EFG6K,
the pressure increases from 10 MPa to 100 MPa within the specified time, and the required
water supply capacity to the hose is 0.59 L. According to the above conclusions, this paper
presents the relevant parameters of the pressurized cylinder to design and calculate. The
preset parameters of the pressurized cylinder are shown in Table 2.

Table 2. Pre-set parameters of the pressurized cylinder.

Pre-Set Content Numerical Value

inner diameter of high pressure cavity (mm) 45
number of piston runs 3

boost ratio 1:7
pressure of high pressure cavity (MPa) 100
pressure of low pressure cavity (MPa) 10

The formula for calculating the total stroke Lz of the pressurized cylinder is:

Lz =
∆V
πd2

4

(7)
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The formula for calculating the single stroke Lr of the pressurized cylinder is:

Lr =
Lz

6
(8)

The relevant data is substituted into the formula to solve the actual design parameters
of the pressurized cylinder, as shown in Table 3.

Table 3. Actual design parameters of the pressurized cylinder.

Actual Content Numerical Value

single stroke (mm) 65
inner diameter of low pressure cavity (mm) 130
inner diameter of high pressure cavity (mm) 45

boost ratio 1:7.3
pressure of low pressure cavity (MPa) 13.7
pressure of high pressure cavity (MPa) 100

According to the above conditions, we have designed a double-acting pressurized
cylinder [23,24]. The assembled diagram of the designed pressurized cylinder is shown
in Figure 5, where the oil chamber 8 and the water chamber 12 constitute two chambers
of the pressurized cylinder. The seal between the piston 2 and the low-pressure chamber
cylinder 6 is made of a grate ring with a working pressure of 40 MPa [25], which is much
higher than the low pressure. The required oil pressure in the chamber is 13.7 MPa, which
meets the working requirements. The seal between the piston 2 and the high pressure
chamber cylinder 1 is sealed by a U-shaped slip ring type [26], and its maximum withstand
voltage can reach 300 MPa, which is much larger than the water pressure of up to 100 MPa
in the high pressure chamber to meet the working requirements. The static seal between
the low-pressure cavity cylinder 6 and the high-pressure cavity cylinder 1 is sealed by an
O-ring [27]. The working pressure can reach 40 MPa, which is much larger than 13.7 MPa,
so it satisfies the working requirements. A ring 4 is provided in the high- pressure chamber
to cushion the piston 2 [28].

Figure 5. Assembly drawing of the pressurized cylinder. 1—high pressure chamber cylinder; 2—
piston rod; 3—support ring; 4—block; 5—u-slip ring combination seal; 6—low pressure chamber
cylinder; 7—hole with glyph ring; 8—oil chamber; 9—O seal; 10—inlet port; 11—hex socket head
bolt; 12—water chamber; 13—outlet.

4.2. Double-Acting Liquid-Drive Pressurized Cylinder Strength Theory Check

The material used in this pressurized cylinder is 45# steel, which is a steel material
with a tensile strength of σb ≥ 600 MPa and a yield strength of σs ≥ 335 MPa. For steel
materials, the third or fourth strength theory in material mechanics is generally used.
However, the third strength theory only considers the maximum shear stress, while the
von Mises theory considers the combined effects of the three principal stresses. Therefore,
this paper uses the von Mises theory for strength checking.
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4.2.1. Cylinder Strength Check Calculation

Figure 6 [29] shows the physical stress distribution of the micro-body in the three-
dimensional stress state of the thick-walled cylinder.

Figure 6. Stress distribution of the micro-body of a thick-walled cylinder.

The distribution law of the three-direction stress is obtained from the theoretical
calculation formula of thick-walled cylinder:

σr =
PR2

i
R2

0−R2
i

(
1− R2

0
r2

)
= P

K2−1

(
1− R2

0
r2

)
σθ =

PR2
i

R2
0−R2

i

(
1 + R2

0
r2

)
= P

K2−1

(
1 + R2

0
r2

)
σs =

PR2
i

R2
0−R2

i
= P

K2−1

(9)

where σr is radial compressive stress, which is generated by the direct acting of the pressure
oil on the inner wall of the cylinder wall; σθ is tangential tensile stress, which is caused
by the radial expansion of the cylinder wall by internal pressure; σs is axial tensile stress,
which is generated when pressure oil acts on both ends of the working chamber of the
cylinder; P is test pressure; R0 is the outer wall radius of the cylinder; Ri is the radius of
the inner wall of the cylinder; r is free radius of the cylinder (Ri ≤ r ≤ R0); K is the ratio
of R0 to Ri.

The von Mises theory is:

[σ] =

√
1
2

[
(σr − σθ)

2 + (σθ − σs)
2 + (σs − σr)

2
]

(10)

We substitute the above three-direction stress Formula (9) into (10). when r = Ri, the
total stress is the largest, and the result is:

[σ] =
√

3
PK2

K2 − 1
(11)

According to the above formula and the size of the pressurized cylinder designed in
the previous section, the calculation formula of safety factor nG is:

nG =
σb
[σ]

(12)

Substituting the relevant data into the formula can obtain the relevant parameters of
the boost cylinder, as shown in Table 4. From the calculation results in Table 4, we can get
the cylinder of the pressurized cylinder to meet the strength requirements.
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Table 4. Pressurized cylinder stress parameters.

Cylinder’s Name Maximum Stress
(MPa) Safety Factor Tensile Strength

(MPa)

high pressure cylinder 220.65 2.71 600
low pressure cylinder 50.12 11.97 600

4.2.2. Piston Rod Strength Check Calculation

The piston rod of the pressurized cylinder is compressed according to the axial di-
rection to calculate the strength. It is obvious that as long as the piston rod of the high-
pressure chamber meets the strength requirements, it will be realized. When the maximum
stress is 100 MPa, which is less than 600 MPa, the safety factor is 6. Therefore, the strength
of the piston rod meets the application requirements.

4.3. Finite Element Analysis of Double-Acting Liquid-Drive Pressurized Cylinder

In this paper, the finite element software ANSYS Workbench [30] is used to analyze
the supercharging cylinder. Because of its wide use the ANSYS Workbench software is not
introduced in detail in this article.

4.3.1. Establishment of Three-Dimensional Model of Double-Acting Pressurized Cylinder

According to the structural parameters of the pressurized cylinder calculated in
the previous section, the Solidworks [31] software is used to design a three-dimensional
modeling for the various components of the pressurized cylinder. Each part is physically
assembly, ignoring the seal groove and the threaded hole of the oil port changed into a
hole. The three-dimensional modeling of the pressurized cylinder is shown in Figure 7.

Figure 7. 3D modeling of the pressurized cylinder.

4.3.2. Import the Created Solid Model Geometry

After the 3D model of the pressurized cylinder is established in Solidworks, it is
saved as in .x_t format and then it is imported into ANSYS Workbench for the finite
element analysis. Since the piston rod is moving, this paper analyzes the three working
conditions of the pressurized cylinder piston, which are at the leftmost end, middle end
and rightmost end. The “Face Split” tool is used to perform surface separation treatment on
the pressurized cylinder which separate the pressurized portion of the pressurized cylinder
chamber and the piston rod from the uncompressed portion, and use the “Symmetry” tool
to symmetrically process the pressurized cylinder model. Then, a pressurized cylinder
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model of three operating conditions is obtained, in which the piston is at the leftmost end
as shown in Figure 8.

Figure 8. The piston is at the leftmost end.

4.3.3. Add Material Library to Add Model Material Properties

The material parameters are edited in “Engineering Data” and the material parameters
of 45# steel are shown in Table 5.

Table 5. 45# Steel material parameters.

Parameter Name Parameter Value

elastic modulus (GPa) 210
Poisson’s ratio 0.269

Density (g/cm3) 7.85
yield strength (MPa) not less than 355

4.3.4. Meshing and Mesh Convergence Study

The size of the mesh directly affects the results of the calculation. The smaller the
mesh size is, the higher calculation accuracy will be, but the longer the calculation time will
be too. Therefore, finding an appropriate mesh size before calculation is very important
which can improve the accuracy and computational efficiency of the calculation results.

Therefore, the convergence of the mesh is verified before the calculation. The model
of piston rod on the right side is selected, different sizes of grids are selected, and the
maximum stress is taken as the analysis index. The analysis results are shown in the
Table 6. In Table 6, we find that as the number of meshes increases, the calculated index no
longer changes with the increase of the mesh size, indicating that the mesh has reached
convergence.

Table 6. Calculation results for different meshs.

Mesh Name Size Amount Maximum Stress (MPa)

mesh-1 1 1,337,104 236.50
mesh-2 1.5 581,427 236.02
mesh-3 2 321,387 236.80
mesh-4 2.5 201,824 235.91
mesh-5 3 137,451 234.47
mesh-6 3.5 99,112 232.17
mesh-7 4 74,851 230.42
mesh-8 4.5 57,043 223.29
mesh-9 5 46,196 219.50
mesh-10 5.5 38,838 217.83

According to the above content, we adjust “Relevance” to 100, “Relevance Center” to
fine, and “Element Size” to 0.002 mm. Then the number of nodes divided by the piston
at the leftmost end is 944,787, and the number of cells is 586,402; the number of nodes
divided at the middle end is 925,471, and the number of cells is 576,809; the number of
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nodes divided at the rightmost end is 948,116, and the number of cells is 592,653. The
meshing results are shown in the figure, where the piston is in the middle as shown in
Figure 9.

Figure 9. The piston is at the mid end.

4.3.5. Applying Loads and Constraints

The connection mode of the low pressure chamber and the high pressure chamber
of the pressurized cylinder is set to “Bonded”, the connection mode of the low pressure
chamber and the piston is set to “Bonded”, while the connection mode of the piston rod
and the high pressure chamber is set to “Frictionless”. The “Fixed Support” constraint
is imposed on the bolt holes of the pressurized cylinder, and the “Frictionless Support”
constraint is imposed on the symmetry plane of the pressurized cylinder. At the same time,
a pressure of 100 MPa is applied to the high-pressure chamber of the pressurized cylinder,
while a pressure of 13.7 MPa is applied to the low pressure chamber. The applied load is
shown in the figure. Figure 10 shows the case where the piston is at the rightmost end, and
the red part in the figure is the loading part.

Figure 10. The piston is at the far right.

4.3.6. Post-Processing of Results

After the finite element solution, the stress analysis cloud image and the strain analysis
cloud image obtained in three working conditions are respectively shown in Figures 11–13.

Figure 11. Stress analysis cloud and strain analysis cloud diagram when the piston is at the
leftmost end.
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Figure 12. Stress analysis cloud and strain analysis cloud diagram when the piston is at the
middle end.

Figure 13. Stress analysis cloud and strain analysis cloud diagram when the piston is at the far right.

From the strain analysis cloud diagram of the three working conditions, it can be seen
that when the piston is at the leftmost end, the strain and the deformation of the high-
pressure cavity cylinder is relatively large. When the piston is at the rightmost end, the
strain and the deformation of the low-pressure cavity cylinder is relatively large. When the
piston is at the middle end, the strain of the high pressure and low pressure cylinders is
between the front two cases.

From the stress analysis cloud diagram of the three middle working conditions, it
can be seen that the maximum stress of the pressurized cylinder is concentrated at the
bottom of the high-pressure chamber, and the outlet hole at the bottom of the high-pressure
chamber cylinder is subjected to the the greatest stress, both of which are about 200 MPa.
That is the weakest part of the pressurized cylinder. The relatively large stresses on other
parts are mainly concentrated on the inner wall of the cylinder. Under the three working
conditions, when the piston is in the rightmost end, the stress of the high pressure cylinder
is the largest, and it is about 258.07 MPa. When the piston is at the rightmost end, the stress
of the low-pressure cylinder is the largest, and it is about 52.89 MPa. The stresses received
in the working conditions are basically the same, about 100 MPa.
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4.4. Comparison of Theoretical Check and Finite Element Simulation Results

The simulation results of the finite element are compared with the previous theoretical
calculations as shown in Table 7. In this test, the relative error E (%) is used as a measure of
the accuracy of the simulation results. The calculation method is as shown in Equation (13):

E =

∣∣∣Pt − Pf

∣∣∣
Pt

× 100% (13)

where Pt is the theoretical calculation result, MPa; Pf is finite element simulation result, MPa.

Table 7. Comparison between simulation results and theoretical calculation results.

Method
High Pressure

Cylinder Stress
(MPa)

Low Pressure
Cylinder Stress

(MPa)

Piston Rod
Stress (MPa)

finite element simulation result 258.07 52.89 101.97
theoretical calculation result 220.65 49.09 100

E (%) 16.96 7.74 1.97

From the comparison, we can see that the stress values of the finite element anal-
ysis and the theoretical calculation are basically the same. The consistency of the two
methods verifies the accuracy of the calculation results and ensures the reliability of the
pressurized cylinder strength. The use of finite element analysis can be more intuitive,
clear and comprehensive. The results can be simulated and calculated for all parts of the
pressurized cylinder.

5. Hydraulic Cylinder Performance Experimental Verification Research
5.1. Low Pressure Chamber Boost Circuit Design

This paper sets up a booster circuit in the low-pressure chamber of a double-acting
pressurized cylinder. The pressure of the booster circuit is adjustable and the medium is
hydraulic oil, so that they can achieve the purpose of system boosting. The low-pressure
chamber portion of the pressurized cylinder is connected to the hydraulic station system.
The hydraulic station system includes an oil tank, a motor, a vane pump, a pressure gauge,
a pilot-operated proportional relief valve, a proportional valve electronic controller, a three-
position four-way electromagnetic reversing valve, and a hydraulically controlled one-way
valve. The motor and vane pump provide pressure oil for the low-pressure chamber of
the pressurized cylinder. The pilot proportional relief valve and the proportional valve
electronic controller ensure the stepless adjustment of the pressure in the booster circuit,
thus the pressure of the high-pressure water output from the pressurized cylinder.

It can also be steplessly adjusted, and the proportional relief valve can also be used
as a safety valve to ensure that the pressure oil entering the double-acting pressurized
cylinder does not exceed the limit value required by the system. The three-position four-
way solenoid valve ensures continuous operation of the double-acting pressurized cylinder
and provides high pressure water for the test pressure. The hydraulic control check valve
ensures that when the three-position four-way solenoid valve is in the neutral position,
the piston of the double-acting pressurized cylinder can be fixed at any position to be
stationary, so that the outlet pressure of the high-pressure chamber of the pressurized
cylinder is relatively stable, starts and stops are relatively stable, the reversing position is
more accurate, and the position of the reversing position is more accurate.

The two high-pressure water chambers of the double-acting pressurized cylinder are
connected with a circuit composed of four check valves, so that when the pressurized
cylinder piston moves to the left, the left chamber discharges high pressure water, and the
right chamber suctions in water. When the piston moves to the right, the right chamber is
filled with high pressure water, the left chamber suctions in water, and the water suction
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and discharge process are simultaneously performed. The schematic diagram of the
continuous pressurized hydraulic pressure of the hose is shown in Figure 14.

Figure 14. Booster circuit diagram. 1—tank; 2—motor; 3—vane pump; 4 and 23—pressure gauge;
5—pilot type proportional relief valve; 6—three four way solenoid valve; 7—superimposed hydraulic
control check valve; 8—double acting booster cylinder; 9 and 10—water single Valve; 11—Water
suction port; 12 and 13—water outlet check valve; 14—Filling port; 15—Low-pressure spillway valve;
16–18—high pressure check valve; 19,20,24 and 28—high pressure needle valve; 21—large valve
block; 22—lressure transmitter; 25—small valve block; 26—experimental device; 27—high pressure
filter; 29—high pressure pneumatic control valve; 30—circulating water outlet; 31—pneumatic triplex;
32 and 33—electromagnetic reversing.

5.2. Construction of the Experimental Platform

According to the actual requirements, the experimental platform is built as shown in
the Figure 15, which mainly includes the test tank, the pressurized cylinder, the water tank,
the hydraulic station and the control cabinet.

Figure 15. Experimental platform diagram.

5.3. Feasibility Verification Test

A 12EFG6K hose assembly was selected for pressure test. Its technical specifications
require a 12EFG6K hydraulic hose to be pressurized to 100 MPa within 15 s. The length
of each hose assembly was 1800 mm. To achieve the maximum hose capacity, six hose
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assemblies (V = 3.06 L) were selected and connected using a transition joint. It is shown in
Figure 16.

Figure 16. Experimental study on maximum hose capacity.

Nine groups of pressure tests were carried out on six hose assemblies, and the pressure
is set to 85 MPa each time. The pressure data are recorded every second. The pressure data
of the nine groups are shown in Table 8. From the standard deviation of the nine sets of
data, we can see that the data measured by the experiment is stable. The pressure curve
inside the hose is shown in Figure 17.

Table 8. Sheet of Pressure test data (MPa).

Group Time(s) 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 10 s 11 s 12 s

1 5.0 8.5 13.1 19.0 21.2 32.5 43.1 54.1 66.0 74.8 80.7 85.0 85.0
2 5.0 8.9 14.0 20.1 20.9 32.4 44.8 53.2 65.0 73.0 80.2 84.6 84.9
3 5.0 8.7 14.2 18.2 19.9 33.1 43.9 53.9 66.7 75.1 80.9 84.9 84.9
4 5.0 8.7 12.5 18.9 20.1 31.5 44.5 52.6 66.8 74.9 80.8 84.3 85.1
5 5.0 8.3 12.7 20.0 20.7 33.2 43.8 53.4 66.5 76.1 81.2 85.1 85.1
6 5.0 8.5 13.9 18.5 20.3 33.0 43.6 53.1 65.2 74.8 81.0 84.8 84.9
7 5.0 8.6 13.2 18.8 19.8 33.2 43.5 54.0 65.9 73.3 80.5 84.8 84.9
8 5.0 8.3 12.8 17.9 20.3 33.0 44.7 53.2 65.3 74.5 80.9 84.6 85.0
9 5.0 8.7 13.4 20.1 20.4 33.6 43.7 53.5 65.8 74.8 80.9 84.5 84.9

Mean value 5.0 8.6 13.3 19.1 20.4 32.8 44.0 53.4 65.9 74.6 80.8 84.7 85.0
Standard
deviation 0 0.19 0.57 0.78 0.43 0.58 0.55 0.46 0.62 0.88 0.28 0.24 0.08

Figure 17. Pressure in the hose changes with pressurization time.
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It can be seen from Figure 17 that the results of the nine groups of experiments
show that they can be pressurized to 85 MPa within 12 s, which meets the performance
requirements of the equipment. That illustrates the feasibility of the system, and verifies
the rationality of the design of the pressurized cylinder. From the trend of the pressure-time
curve, the time required to pressurize to 100 MPa is even about 13 s, which is shorter than
the 15 s calculated by the previous design. The reason should be that the actual deformation
of the hose is not theoretically analyzed. The pressure required by the pressurized system
is greater and the pressurization time is shortened.

5.4. Pressure Rapidity and Stability Experiment

In order to understand the rapidity and stability of the pressurization of the pres-
surized cylinder, it is necessary to carry out the withstand voltage test on the hydraulic
hose assembly of different hose capacities. We select the type 12EFG6K hose assembly for
pressure test. Two hose assemblies (V = 1.02 L), four hose assemblies (V = 2.04 L), and six
hose assemblies (V = 3.06 L) are selected and connected using a transition joint. It is shown
in Figures 18–20.

Figure 18. Two hose assembly experiments.

Figure 19. Four hose assembly experiments.

Figure 20. Six hose assembly experiments.
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It can be seen from Figures 21–23 that the time required for the two hose assemblies
(V = 1.02 L) to be pressurized to 85 MPa is about 6.5 s, and the four hose assemblies
(V = 2.04 L) are pressurized. The time required for 85 MPa is about 9 s. The time required
for the six hose assemblies (V = 3.06 L) to be pressurized to 85 MPa is about 11.5 s. With the
increase of the number of test hoses, the pressurization time did not increase exponentially,
but increased by about 2.5 s. The reason for the analysis should be that the water from
the pressurized cylinder to the hard hose of the test tool is drained after each pressure
relief. When repressured, part of the flow of the pressurized cylinder is consumed. From
Figures 20–22, we can see that the pressure in the hose in the first 2 s of pressurization
barely increases, which confirms this point. For a maximum hose volume boost rate of
7.4 MPa/s, increasing pressure is very fast.

Figure 21. Pressure time curve of two hose assemblies.

Figure 22. Pressure time curve of four hose assemblies.
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Figure 23. Pressure time curve of six hose assemblies.

From Figures 21–23, it can be seen that as the hose capacity increases, the pressure-
time curve of each group of experiments becomes closer and closer, that is, the closer the
time required to get pressurized to each pressure stage is, the better the pressurization
stability is. The reason for the analysis should be that the hose capacity is very small, a
small amount of water in the hose will cause a large pressure change, and the pressure-time
curves of the experiments in each group will vary greatly.

6. Conclusions

Aiming at the problem of hydraulic hose pressure test, this paper proposes a method
of continuous pressurization, which uses a double acting pressurized cylinder to provide
high pressure for the pressure tests. The design calculation and strength theory check of
the supercharging cylinder are carried out. Based on the finite element solution analysis
of ANSYS Workbench, it is concluded that the high pressure cavity cylinder is the weak
link of the pressurized cylinder. The performance of the hose pressure washer was studied
experimentally, and the feasibility was verified. The pressure-pressurization time curve
was obtained under the maximum hose capacity (V = 3.06 L). The pressure time needed to
reach the maximum pressure of 85 MPa was 12 s, and the pressure rise rate was 7.4 MPa/s.
This paper also studies the pressure-holding performance and provides a quantitative basis
for judging whether the pressure test of rubber hose is successful or not. It is concluded
that the larger the hose capacity is, the better the pressure stability is.

Due to the limitations of the production line and the objective conditions of the
equipment, there are still many problems to be studied: in this paper, there is no built-in
sensor designed for the pressurized cylinder to monitor the piston position and buffer
structure, which will make the piston rod impact. Therefore, further dynamic analysis of
the pressurized cylinder can be carried out.
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Nomenclature

P1: the input pressure of the low pressure chamber; P2, the output pressure of the high
pressure chamber; d, the inner diameter of the low pressure chamber; D, the inner diameter
of the high pressure chamber; d1, the diameter of the test hose assembly; L1, the total length
of the test hose assembly; V1, the maximum volume; P, the pressure after water is pressur-
ized; P0, the pressure of pre-flush before water is pressurized; βw , water’s compression
coefficient; dn, the diameter of the hose when subjected to a pressure of 100 MPa; d0, the
diameter of the hose when subjected to a pressure of 10 MPa; L, the total length of the hose
when subjected to a pressure of 100 MPa; L0, the total length of the hose when subjected
to a pressure of 10 MPa; Lz, the total stroke; Lr, the single stroke; σr, radial compressive
stress; σθ , tangential tensile stress; σs, axial tensile stress; P, test pressure; R0, the outer
wall radius of the cylinder; Ri, the radius of the inner wall of the cylinder; r, free radius of
the cylinder; K, the ratio of R0 to Ri; nG, safety factor; Pt, the theoretical calculation result;
Pf , finite element simulation result.
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