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Abstract: With the rapid and wide implementation of adaptive cruise control system (ACC), the
testing and evaluation method becomes an important question. Based on the human driver behavior
characteristics extracted from naturalistic driving studies (NDS), this paper proposed the testing
and evaluation method for ACC systems, which considers safety and human-like at the same time.
Firstly, usage scenarios of ACC systems are defined and test scenarios are extracted and categorized
as safety test scenarios and human-like test scenarios according to the collision likelihood. Then, the
characteristic of human driving behavior is analyzed in terms of time to collision and acceleration
distribution extracted from NDS. According to the dynamic parameters distribution probability,
the driving behavior is divided into safe, critical, and dangerous behavior regarding safety and
aggressive and normal behavior regarding human-like according to different quantiles. Then, the
baselines for evaluation are designed and the weights of different scenarios are determined according
to exposure frequency, resulting in a comprehensive evaluation method. Finally, an ACC system is
tested in the selected test scenarios and evaluated with the proposed method. The tested vehicle
finally got a safety score of 0.9496 (full score: 1) and a human-like score as fail. The results revealed
the tested vehicle has a remarkably different driving pattern to human drivers, which may lead to
uncomfortable ride experience and user-distrust of the system.

Keywords: ACC; safety evaluation; human-like evaluation; naturalistic driving study; driving
behavior characteristic

1. Introduction

Advanced Driver Assistance Systems (ADAS) are drawing increasing attention due to
their potential in enhancing traffic safety, reducing driving workload and improving traffic
efficiency. With wide studies on the control strategies of ADAS like adaptive cruise control
system (ACC) [1,2], lane-keeping system (LKS) [3], automated emergency braking system
(AEB) [4], etc., the functionalities of such systems are well studied and qualified. It follows
that improving the anthropomorphism should also be incorporated into the development
of these systems [5]. A human-like driving behavior pattern could enhance riding comfort
and user trust and therefore improve user acceptance and increase usage frequency [6–8].
In the meantime, the surrounding drivers could better understand the vehicles adapting
human-like driving patterns and make a natural interaction in the human-robot mixed
traffic environment [9,10]. With the development of human-like ADAS, there raises the
need for a testing and evaluation method considering human-like behavior.

Considering the motion state of the leading vehicle and the host vehicle, and the
human driver’s commands, an adaptive cruise control (ACC) system automatically controls
the longitudinal motion of the host vehicle and provides the driver with driving risk tips
to reduce the driving task strength and guarantee driving safety [11–13]. At present, ACC
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systems are widely used. In 2018, about 11.8% of all car models were equipped with ACC
systems as the standard configuration in America [14].

As a mature function already on the market, there are several testing standards or
regulations for ACC systems come from organizations such as ISO [11], SAE [13], GB [12],
FMCSA [15] and so on. ISO 15622 and GB/T 20608 share three similar basic testing
procedures: target acquisition range test, target discrimination test, and curve capability
test, involving three test scenarios. Besides, the scenario for the deceleration ability test
of the system is supplemented in SAE J2399. All these related standards focus on the test
of functionality, that is, whether the functions such as longitudinal ranging and speed
controlling could be realized.

On the other hand, studies on ACC systems or ADAS testing and evaluation methods
mainly focus on the safety issue. Li et al. [16] evaluated impacts of ACC parameters
on reducing collision risks on congested freeways. Qiu et al. [17] proposed a model for
assessing the probability of accidents of ADAS systems, i.e., from the safety perspective.
Focusing on collision avoidance, Stark et al. [18] carried out a simulation to estimate the
performance of the state-of-art ADAS.

Although these standards and studies on testing and evaluation methods of ACC
systems have produced great achievements on assessment of the system, none of them
take the human-like behavior into consideration. Therefore, in this paper, we proposed
a testing and evaluation method for ACC systems involving both safety and human-like
performance. This method has the following two advantages: 1. this ready-to-use method
provides testing scenarios generated from real driving data to ensure consistency to the
real implementation environment; 2. the result is quantitatively evaluated from both the
safety and human-like perspectives. This work offers an improvement for existing testing
and evaluation methods in terms of a more real and efficient testing scenario set and more
a comprehensive evaluation index, which is of great significance for further improvement
of ACC systems.

The rest of the paper is arranged as follows: in Section 2 the real usage scenarios of
ACC systems are defined based on the naturalistic driving study (NDS) and test scenarios
are extracted according to the collision likelihood. In Section 3, the driving behavior
characteristics of human drivers are obtained from NDS by statistical analysis. Evaluation
indexes for both safety and human-like are designed separately in Section 4. Finally, an
ACC system is tested and evaluated in Section 5 with the proposed method, following with
the conclusion as ending in Section 6.

2. Testing Scenarios Extraction

In order to evaluate the safety and human-like of ACC systems, it is necessary to
clarify the operating domains of ACC systems and then extract test scenarios accordingly.
In this section, the operating domain is firstly defined according to the function design of
ACC systems and then classified into usage scenarios according to the vehicle’s motion
state. Then, the test scenarios were classified into safety and human-like testing based
on collision likelihood. Finally, a set of testing scenarios is generated and summarized in
a table.

2.1. Usage Scenarios Definition

An ACC system performs longitudinal motion control of the vehicle according to the
motion state of the host vehicle and the leading vehicle and the command from drivers.
Under the premise of meeting the functional requirements, ACC systems can accurately
track the following target among multiple leading vehicles and accurately measure the
distance between them [12]. The system input is the motion state of the leading vehicle
and the host vehicle and the command from drivers, and the output is the longitudinal
motion control of the host vehicle. Therefore, the implementation scenario of ACC systems
can be simplified to a two-vehicle scenario consisting of only the host vehicle and the
vehicle in front (if any). What needs to be emphasized is that ACC systems only control the
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longitudinal movement of the host vehicle, making the movement of the vehicle limited
to a single lane. In summary, the operating domain of ACC systems can be defined as a
car-following (or free cruise if there is no leading vehicle) scenario in a single lane, which is
referred to as a car following scenario in the following text.

During a car following process, the host vehicle keeps in a single lane while the
leading car may change lanes, drive far away, etc., resulting in a scenario transition. In
order to describe this scenario transition, the car-following process is decomposed into
stable driving states (S) and events (A). A stable driving state S refers to the car-following
process during which the leading vehicle target does not change. The stable driving state
can be further classified into two types according to the presence of the leading target:
(1) the host vehicle follows a fixed leading target in the lane (car following), denoted as
Sc f , (2) the host vehicle travels in the lane with the prescribed speed without any leading
target (free cruise), denoted as S f c. An event A refers to the process that the movement
of other traffic participants causes a change of the stable driving state of the host vehicle,
including the appearance, disappearance, and change of the leading target. With an event,
the host vehicle changes from one stable driving state to another stable driving state. The
events that may occur during the car-following process include: cut-in Aci, cut-out Aco,
vehicle-approaching Ava, vehicle-distancing Avd, etc.

Take the car following process in Figure 1 as an example. At t0, the host vehicle
changes lanes into a new lane and the following process starts: firstly, the host vehicle
follows the leading vehicle 1, which is a stable driving state Sc f . Then at time t1, event
Aci occurs, i.e., a new vehicle 2 drives into the front of the host vehicle and works as the
new leading vehicle. The host vehicle enters the second stable driving state Sc f . At t2, the
leading vehicle travels far beyond the ACC system recognition range. Since there is no
leading target in front of the host vehicle, it enters the cruise control state S f c, and so on.

The process can be described as: Sc f
Aci−→ Sc f

Avd−−→ S f c. . .
In a stable driving state, the following target and driving lane are fixed. Therefore, an

ACC system is only required with the basic function, i.e., keeping a reasonable following
range to the leading vehicle. However, when an event occurs, the changing following target
and following state will put forward higher requirements on the performance of ACC
systems. In existing standards (GB/T 20608 and ISO 15622), the three basic performance
test scenarios, i.e., target acquisition range test, target discrimination test, and curve
capability test, are all in Sc f processes, making the testing scenarios less challenging than
real operation scenarios. To comprehensively evaluate the system performance, the S f c
process and the various events should also be included in the testing scenario set.

Figure 1. Car following process example.

2.2. Testing Scenarios
2.2.1. Human-Like Testing Scenario

Human-like indicates that the driving behavior of the vehicle controlled by ACC
systems should be similar to that of a human driver, avoiding abnormal driving behaviors
which may affect the surrounding traffic flow or the ride comfort. Human-like testing
scenarios consist of Sc f and S f c due to the following two reason: 1. the short occurrence of
events making Sc f and S f c processes occupy most of the driving distance and driving time
during the car following process. Therefore, the behavior of the vehicle during Sc f and S f c
impacts the comfort experience of the driver for a longer time than events. 2. In Sc f and
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S f c processes, the scenarios are safe and then the driver focuses on driving experiences
rather than the safety issue, making the human-like question significant.

2.2.2. Safety Testing Scenario

The most common danger happens in a car following process is a rear-end event
caused by a too-small follow-up distance. To find proper scenarios for safety testing, events
are analyzed to confirm the collision likelihood. When the leading vehicle cuts in Aci or
the leading vehicle approaching the leading vehicle Ava due to the speed difference, the
following distance will reduce gradually or even suddenly. The host vehicle needs to
brake to ensure safety, so Aci and Ava are included in safety testing scenarios. When the
leading vehicle cuts out Aco or drives far-away Avd, the following distance increases, which
does not involve any safety issues. Hence Aco and Avd are excluded in the safety testing
scenarios. Stop-and-go scenario refers to the car following process in which the leading
vehicle decelerates to a full stop and then accelerates again. This process is common in
traffic jams. At this time, timely and sufficient brake control is required to ensure a safe
distance. The stop-and-go scenario is included in the testing scenario and recorded as Asg.

The testing scenarios above only offer brief descriptions of the behaviors of the two
vehicles during testing. In Table 1 scenarios are further detailed with the speed settings
of vehicles.

Table 1. List of testing scenarios.

Type Scenarios Code Cases and Description

human-like test

car-following
Sc f 1 the leading vehicle speeds up from 30 km/h to 50/70/90/120 km/h

Sc f 2 the leading vehicle slows down from 50/70/90/120 km/h to 30 km/h

cruising
S f c1 the host vehicle speeds up from 30 km/h to 50/70/90/120 km/h

S f c2 the host vehicle slows down from 50/70/90/120 km/h to 30 km/h

safety test

cut-in Aci the host vehicle is at 40 km/h and the leading vehicle cuts in with
speed of 40 km/h and the range is 50 m

vehicle appears Ava the host vehicle approaches the 40 km/h leading vehicle with speed
of 50/70/110 km/h

stop-go Asg the leading vehicle slows down from 60 km/h to a full stop and then
accelerates to 60 km/h

3. Human Driving Characteristic

The behavior characteristics of human drivers are the baseline for quantitative evalua-
tion. Therefore, firstly, naturalistic driving data and critical driving data are used to analyze
the real human driving pattern. Then the boundary among safe, critical, and dangerous
driving behavior domains and among normal, aggressive, and critical driving behavior
domains are extracted for safe and critical evaluation respectively. Finally, the scenario
frequency parameters are integrated, and this chapter obtains an evaluation method that
can be used for comprehensive quantitative evaluation of the system.

3.1. Human Driving Data
3.1.1. Naturalistic Driving Data

The naturalistic driving study refers to the driving data collection with the usage of
unobtrusive observation methods. Since driver behaviors are collected from real traffic en-
vironment without disturbing the driver, the naturalistic driving study can collect massive
amounts of traffic environment data, driving behavior data, and vehicle dynamical data,
which can reflect the real driving needs and driving characteristic of human drivers [19,20].
Therefore, NDS is suitable as the resource date for vehicle development, testing, and verifi-
cation. At present, various NDS projects were carried out all over the world, including the
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100-Car Naturalistic Driving Study project [19] and the SHRP2 project [20] in the United
States, the PROLOGUE project in Europe [21] and so on. The data used in this paper
comes from a large-scale naturalistic driving study carried out in Shanghai, China. This
project lasted for 18 months with 8 vehicles and 32 drivers. Each driver drove a vehicle for
six months. The experiment vehicle is equipped with 4 cameras, which record the road
environment in front of the vehicle with 2 different viewing angles, the driver’s hand and
pedal operations separately as shown in Figure 2. The vehicle’s motion was also collected
from the CAN-bus and an accelerometer. A total of 7402 were collected, which lasts for
3594 h and travels 129,935 km.

Figure 2. Naturalistic driving study.

3.1.2. Critical Driving Data—‘500-Cases’

In NDS, critical or dangerous scenarios are very limited due to the extremely low
frequency of danger. Most scenarios are safe and therefore only reflect human driving
behavior under safe scenarios. Since the driving characteristic in critical scenarios varies a
lot from that in safe scenarios, it is necessary to obtain critical driving data as a supplement.
Therefore, the data set ‘500-Cases’ is introduced. The ‘500-Cases’ is generated from a
critical scenarios collecting project carried out in Shanghai. Dashcams were installed on
taxis, police cars, and some private cars to collect the critical scenarios with longitudinal
deceleration greater than 0.4 g or lateral acceleration greater than 0.4 g. The cam will record
the driving states 15 s before and 5 s after the time that the trigger value is reached. The
sampling frequency is 2 Hz for speed and 30 Hz for acceleration and the frequency of
video information is 30 Hz. A total of 4000 cases were collected during the 4 years test.
Finally, a total of about 500 critical scenarios and 8 collisions were obtained and formed the
500-Cases data set.

3.2. Driving Behavior Characteristic

3.2.1. Joint Distribution of Speed- 1
TTC

Time to collision TTC is a parameter commonly used to describe the degree of criti-
cality of a car-following scenario. It was first proposed by Hayward as the time that two
vehicles will collide if both of them maintain the current motion state, which is equal to the
relative distance between the two vehicles divided by the relative speed [22]. In general, the
larger the TTC is, the lower the risk level is. Usually, TTC is distributed in (0,+). However,
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when the speed of the two vehicles are similar, the value of TTC is very large, which brings
inconvenience to the calculation and visualization of TTC distribution. Therefore, the value
of 1

TTC at the braking time is introduced as the objective risk-level indicator.
Figure 3 shows the joint distribution of speed and 1

TTC of 78 dangerous car-following
scenarios from ‘500-Cases’. After the regression coefficient test, the significance level
p < 0.001, i.e., there is a significant regression relationship between 1

TTC at the start of brak-
ing and the speed of the vehicle. The linear fitting equation is: TTC = −0.0717v + 1.2145.
Therefore, the influence of speed should be considered when 1

TTC is used to divide the safe,
critical, and dangerous driving behavior domain. As shown as the green line in Figure 3,
the 5% percentile of 1

TTC works as the boundary between the safe and the critical driving
behavior domains. The linear quantile-regression equation is: TTC = −0.0937v + 2.103.
As shown as the red line in Figure 3, the 95% percentile of 1

TTC works as the boundary be-
tween the critical and dangerous driving behavior domains. The linear quantile regression
equation is: TTC = −0.0057v + 0.1684.

Figure 3. Joint-distribution of speed- 1
TTC .

3.2.2. Joint Distribution of Velocity-Acceleration

Acceleration can directly reflect the driver’s intention to control the vehicle. Therefore,
the acceleration distribution obtained from NDS indicates the probability distribution of the
driver’s operation in the scenario. So, the system acceleration falls in the interval of higher
probability indicates that it is similar to the human driver’s operation, and the opposite
means that the operation is poorly human-like. Acceleration can be therefore used as a
characterization of the human-like of system. Besides, the magnitude of acceleration also
indicates the driver’s understanding of the current scenario state from safety perspective.
For example, in a dangerous situation, the driver often applies a large deceleration to avoid
collisions. Therefore, a very large deceleration tends to characterize the driver’s subjective
understanding of the current scenario as a high level of danger. Therefore, acceleration
can be used as a subjective safety characterization of the system. In the following, NDS
are used to obtain the joint-distribution of speed and acceleration of human drivers and
critical, aggressive, and normal driving behavior domains are divided.

From NDS, 1000 journeys were randomly selected. The longitudinal velocity (km/h,
hereafter referred to as velocity) and longitudinal acceleration (m/s2, hereafter referred
to as acceleration) are rolling averaged with the time window of 1s. The joint velocity-
acceleration distribution is shown in Figure 4. As the speed increases, the range of accelera-
tion expands and then narrows, indicating that the driver’s acceleration and deceleration
behavior becomes more violent in the low and medium speed intervals (0–15 m/s2) and
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becomes more cautious in the high speed interval. The driver’s control of acceleration is
clearly related to the speed.

Figure 4. Joint-distribution of speed-acceleration.

Figure 5 shows the probability density function of acceleration at speeds v = {10 km/h,
20 km/h, . . . , 120 km/h}. According to Liu Rui, the empirical distribution of acceleration in
different speed intervals basically conforms to the Pareto distribution [23]. That is, under
the same speed interval, the acceleration near 0 m/s2 has the largest proportion, and the
probability of extreme acceleration and deceleration is low. In normal scenarios, drivers
generally control the distance to the leading vehicle by adding or subtracting speed gently;
in case of danger, drivers tend to take emergency braking measures to avoid collisions,
which results in a large deceleration.

As shown in Figure 4, the 95% quantile-regression line (green) is selected as the
boundary between the normal and aggressive driving behavior domains; the lower 99%
quantile-regression line (red) is selected as the boundary between the aggressive and critical
driving behavior domains.

3.3. Testing Scenarios Frequency Weights

Since the frequency of different scenarios in the driving process is different, their
weighting in evaluation should also varies, thus introducing the testing scenario frequency
weight Wi. Data of one weekday are randomly selected from NDS for statistical analyze.
Five of the eight test vehicles produced data with a cumulative driving time of 5 h, 22 min,
and 24 s, and a cumulative mileage of 202 km. Among them, the car-following process
totaled 162 km. In the proposed human-like testing scenarios, the proportion of mileage
accounted for by the scenario is used as the scenario frequency weight, that is:

WSc f = P(Sc f ) = 0.73,

WS f c = P(S f c) = 0.27.
(1)

For safety testing scenarios, the frequency ratio of the occurrence of each event in NDS
was used as the scenario frequency weight as shown in Table 2.
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Figure 5. Frequency of acceleration with different speed.

Table 2. Event statistic.

Event Count Frequency Weight

Cut-in 113 48.29% WAci = 0.4829
Stop-go 76 32.48% WAsg = 0.3248

Vehicle-appear 45 19.23% WAva = 0.1923

Sum 234 100.00%

4. Evaluation Method for Safety and Human-Like
4.1. Scoring Method for Safety

The safety evaluation involves two indicators: 1
TTC and a. For 1

TTC , the boundaries
among safe, critical, and dangerous driving behavior domains are all natural baselines for
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objective safety, denoted as LTTC,l and LTTC,h respectively. For a, the boundary between
critical and aggressive driving behavior domains works as the baseline for subjective safety
and denoted as La hereafter.

The ACC system is scored after completing all scenarios of the safety testing. If a
collision occurs during the test then the safety level is ’fail’ and Pos = 0. In the absence of a
collision, the objective safety of the system is calculated withing the following equation.

Pos,i =
1
V

V

∑
v=0

Pv
os,iP

v
os,i =



0 i f 1
TTCv > 1

TTCv
h

1−

√
( 1

TTCv − 1
TTCv

l
)2√

1
TTCv

h
− 1

TTCv
l

i f 1
TTCv

l
≤ 1

TTCv ≤ 1
TTCv

h

1 i f 1
TTCv < 1

TTCv
l

(2)

where i is the scenario number, and Pos,i is the objective safety level of the vehicle in scenario
i. v is the speed of the host vehicle, Pv

os,i is the objective safety level of the vehicle in scenario
i when the speed is v , V is the maximum speed of the vehicle in the test scenario, and the
speed resolution is 0.1m/s; 1

TTCv
h

and 1
TTCv

l
are the values of the baselines LTTC,h and LTTC,l

when the speed is v respectively .
The subjective safety of the ACC system with acceleration as indicator is calculated

using the following equation.

Pss,i =
1
V

V

∑
v=0

Pv
ss,iP

v
ss,i =

1 i f av ≥ av
s

1−
√

(av
a−av)

2

av
a

i f av < av
a

(3)

where Pss,i is the subjective safety level of the vehicle in scenario i. Pv
ss,i is the subjective

safety level of the vehicle when the vehicle speed is v in scenario i. av
a is the value of the

baseline La when the speed is v. av is the acceleration value of the host vehicle when the
speed of the vehicle is v in the test. In the same scenario, the comprehensive safety of
the system is recorded as the mean value of the subjective and objective safety, and after
completing all safety testing scenarios, the safety level of the system is obtained as follows.

Ps =
1
2

N

∑
i=1

Wi × (Pos,i + Pss,i) (4)

where, N is the total number of human-like test scenarios, and Wi is the scenario frequency
weight of the i scenario. The value range of the safety level Ps is [0, 1]. The closer the Ps is to
1, the higher the safety level is, indicating that the vehicle is less likely to enter a dangerous
state during the driving process.

4.2. Scoring Method for Human-Like

Acceleration is the direct reflection of drivers intention in longitudinal direction. When
there is no critical issue, drivers seldom apply violent acceleration or hard deceleration.
Therefore, as shown in Figure 6 the 95% quantile-regression line (green dash line) is
selected as the reference for human-like evaluation. Acceleration out of this range may
cause discomfort or unsafe feeling of drivers.

Besides, the requirement for acceleration during the operation of the ACC system
in the international standard ISO15622 [11] is also applied and denoted as the red dotted
line. As shown in the figure, the area enclosed by the green dash line is much smaller and
narrower than the area enclosed by the red dotted line, indicating a higher requirement
proposed from human driving characteristics than from the ISO standard.

Therefore, green dash line is defined as the full-score line L f . The acceleration within
these lines could be regarded as a human-like behavior. Furthermore, the red dotted line is
defined as the passing line. The behavior which exceeds these lines will fail the test.
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Figure 6. Full-score and passing line of acceleration.

The system is scored after completing all scenarios of the human-like test. If the
acceleration exceeds the passing line Lp in any scenario during the test, it can be considered
that the ACC system does not conform to the international standard. Then the system is
judged as ‘fail’ without subsequent scoring, and the human-like level Ph is recorded as 0.
On the premise of meeting the passing line, the calculation method of the human-like score
in a single test scenario is:

Ph,i =
1
V

V

∑
v=0

Pv
h,i, Pv

h,i =


1−

√
(av−av

h)
2

av
h

i f av > av
h

1 i f av
l ≤ av ≤ av

h

1−
√
(av

l −av)2

|av
l |

i f av < av
l

(5)

where Ph,i is the human-like level of the vehicle in scene i; v is the speed of the vehicle,
P(h, i)v is the human-like level of the vehicle when the speed is v in scene i, V is the maxi-
mum speed of the vehicle in this test scenario, and the resolution of the speed is 0.1 m/s;
av is the acceleration of the vehicle when the vehicle speed is v , av

h is the acceleration value
of L f ,h when the speed is v, and av

l is the acceleration value of L f ,l when the velocity is v.
After completing all human-like testing scenarios, the human-like level of the ACC

system is calculated as:

Ph =
N

∑
i=1

Wi × Ph,i (6)

where, i is the scenario number, N is the total number of human-like testing scenarios,
and Wi is the scenario frequency weight of the i scenario. The value range of the vehicle
human-like level Ph is [0, 1]. The closer the Ph is to 1, the higher the human-like level is,
indicating that the vehicle motion control conforms to the driving habits of human drivers.

5. Test and Results
5.1. Test Vehicle and Data Processing

A vehicle equipped with the ACC system was selected for the test. On a flat and
straight road, the leading vehicle is controlled by an experienced driver according to the
scenario description and the host vehicle turns on the ACC system for motion control. The
following data were recorded throughout the field experiment: speed and acceleration
of the host vehicle and the leading vehicle (if any), distance between them and TTC. The
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recording frequency is 100 Hz. The data are smoothed with a sliding time window of 0.1 s,
and then safety and human-like evaluations are performed separately.

5.2. Results and Discussion
5.2.1. Results of Safety Evaluation

Figures 7 and 8 describe the safety testing results in terms of 1
TTC and a respectively.

Since a negative 1
TTC indicates the host vehicle is driving away from the leading vehi-

cle, indicating a safe scenarios, the Figure 7 only demonstrates the positive 1
TTC with a

collision potential.

Figure 7. Safety evaluation results- 1
TTC .

Figure 8. Safety evaluation results-a.

As shown in Figure 7, in all of the five testing scenarios, the testing vehicle did not
exceed the baseline LTTC,h. Only in scenario Asg (i.e., stop and go scenario), the vehicle
reached the baseline LTTC,l and got a score of Pos,2 = 0.6901. The rest of the four scenarios
all got the Pos,i = 1, wherei = 1, 3, 4, 5.

Figure 8 demonstrates the safety testing results in terms of a. In scenario Ava,110
(the testing vehicle approaching the 40 km/h leading vehicle with speed of 110 km/h),
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a exceeded the baseline La when the speed was around 100 km/h and got a score of
Pss,3 = 0.9995. The rest of the four scenarios all got the Pss,i = 1, where i = 1, 2, 4, 5. The
final score of safety evaluation was PS = 0.9496.

5.2.2. Results of Human-Like Evaluation

Figure 9 demonstrates the human-like testing results. The upper two rows of the
subfigures demonstrate the car-following scenarios with a speeding up front leading vehicle
and with a slowing down front leading vehicle separately. v f here is the speed change of
the front vehicle. The lower two rows demonstrate the free-cruising scenarios separately.
The dotted lines stand for the passing line from ISO 15622 while the dash lines are the
full-score line from the human driving characteristics. The blue line demonstrates the real
acceleration profile generated from field tests.

Figure 9. Human-like evaluation results under car-following scenarios with an accelerating leading vehicle.
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Among all 16 testing scenarios, the testing vehicle’s behavior runs out of the passing
line in 4 scenarios. Therefore, the final score of the human-like evaluation was Ph = Fail.

All of the four failed scenarios are car-following scenarios. Compared with free
cruising scenarios, the car-following scenarios are more challenging, as the longitudinal
behavior decision should be restricted with a reasonable distance to the leading vehicle.
In these four failed scenarios, three of them are with a decelerating leading vehicle as the
decreasing following range may cause a safety issue, forcing the system to apply a relative
hard brake to avoid entering a critical state. One possible improvement of the system that
might be undertaken is to bring forward the timing of braking to flatten the decelerating
curve. Another failed scenario is with an accelerating vehicle: the excessive acceleration
may give the drivers an aggressive impression.

6. Conclusions

This paper proposed an ACC system testing and evaluation method based on human
driver characteristics generated from naturalistic driving data, including testing scenarios
and testing result evaluation method. The usage scenarios of the ACC system are defined
and testing scenarios are then designed based on collision likelihood. The statistical analysis
of real human driving data was conducted to obtain the speed- 1

TTC and speed-acceleration
distributions to describe human drivers’ perception of safety and driving habits. Quantiles
of 1

TTC and acceleration are calculated to represent the majority behaviors.
Within the speed- 1

TTC distribution, the safe, critical, and dangerous driving behavior
domains were divided by 5% and 95% quantiles, and the two boundaries were used as
objective safety evaluation baseline. The normal, aggressive, and critical driving behavior
domains were divided within the velocity-acceleration distribution by 5%, 95%, and 1%
quantiles separately, and the boundaries were used as the baseline for human-like and
subjective safety evaluation. Then the result evaluation method is accordingly designed.

An ACC system from the market is tested and evaluated. The system passed the safety
tests with a score of 0.9496 (full score = 1) while failed the human-like tests. The results
show the system has a more aggressive acceleration strategy and a delay on brake timing
compared with human drivers.

The proposed testing and evaluation method has the following improvements com-
pared with the existing testing protocols.

(1) The testing scenarios are derived from naturalistic driving data, improving the
consistency with real driving scenarios. By introducing the scenario frequency coefficients,
the final test results can reflect the real performance of the ACC system in real usage.

(2) The evaluation method is a supplement to the existing functional and safety
evaluation of ACC systems for the human-like evaluation, which can help to improve the
riding-comfort, user-trust, and user-acceptance of the system.

This study has the limitation that the proposed method is only applied to one ACC
system due to time and budget. The comparison of the testing and evaluation results
could further validate the method. Future works could apply the conception of human-like
evaluation on other ADAS systems like LKS and also automated driving systems.
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