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Abstract: Purpose: We aim to provide a systematic methodology for the optimal design of MRD
for improved damping capacity and dynamical adjustability in performing its damping function.
Methods: A modified Bingham model is employed to model and simulate the MRD considering the
MR fluid’s compressibility. The parameters that describe the structure of MRD and the property of the
fluid are systematically examined for their contributions to the damping capacity and dynamically
adjustability. A response surface method is employed to optimize the damping force and dynamically
adjustable coefficient for a more practical setting related to the parameters. Results: The simulation
system effectively shows the hysteretic characteristics of MRDs and shows our common sense
understanding that the damping gap width and yoke diameter have significant effects on the
damping characteristics of MRD. By taking a typical MRD device setup, optimal design shows an
increase of the damping force by 33% and an increase of the dynamically adjustable coefficient by
17%. It is also shown that the methodology is applicable to other types of MDR devices. Conclusion:
The compressibility of MR fluid is one of the main reasons for the hysteretic characteristics of MRD.
The proposed simulation and optimization methods can effectively improve the MRD’s damping
performance in the design stage.

Keywords: magnetorheological damper; numerical simulation; damping characteristics; response
surface methodology; optimization

1. Introduction

Magnetorheological damper (MRD) is a semi-actively controlled intelligent vibration
damping device. The rapid, continuous, and reversible rheological properties of the
internal magnetorheological fluid make it a smart device [1,2]. Most studies on MRD have
been devoted to vehicle vibration and control [3,4]. Recently, MRD has been used in the
field of robotics [5]. For example, some work shows that MRD is used in rehabilitation
medical devices [6,7]. Compared with the traditional gas damper, MRD can adjust its
damping capability (measured by damping force) in real-time to accommodate a change
in its environment, and thus improve the robot’s controllability and stability as well as its
resilience and robustness [8,9].

As a critical component of humanoid robot or interactive robot equipment, MRD has
higher requirements on its size and power density than that of typical applications. There-
fore, accurate prediction of the MRD’s damping force is crucial for optimizing the device’s
performance. Regarding the optimization design of an MRD, the focus of the parameters
to be optimized in the design is different for the different structures of the MRD [10].
Since the MRD is a multi-physics intersection involving electromagnetic field, flow field,
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structure, etc., to improve the performance of the MRD, the multi-objective optimization
design of multi-physics coupling is a commonly used optimization design method [11,12].
Parlak et al. [13] performed a unidirectional coupling simulation analysis of MRD to study
the effects of the current, damping gap, piston core radius, and flange length on the MRD’s
damping characteristics. Gurubasavaraju et al. [14] combined the finite element method
with computational fluid dynamics to calculate the damper’s maximum output force with
a specified frequency, amplitude, and applied current. The effect of damping gap length
and frequency on the damping force of MRD has also been investigated. Case et al. [15]
performed multiphysics modeling on the dynamics of the small MRD and calculated the
magnetic flux density, magnetic induction intensity, and the circulating fluid flow state in
the MRD under sinusoidal excitation of the piston. The simulation result was consistent
with the maximum damping force obtained from the experiment. Besides, in terms of
power consumption and overall weight, aiming at reducing computational complexity, a
comprehensive approach based on mathematical optimization and finite element analysis
for the optimal design of MRDs was conducted [16]. The aforementioned studies could not
accurately predict the MRD’s hysteretic characteristics at low velocity, which is important
to understanding the device’s damping capability along with reason.

Indeed, maximization of the damping force and dynamically adjustable coefficient
(which is a measure of the adjustability of MRD) are two important concerns from the
applications point of view. Khan et al. [17] proposed an optimization method using a
comparative analysis. The MRD’s damping forces with nine different coils and different
piston heads were simulated and analyzed. They found that the piston head can provide a
higher damping force when the piston head is adjusted in the shape of rounded corners.
These parameters are also factors that researchers often consider in the optimization design
of an MRD [18]. Parlak et al. [19] proposed a DOE (design of experiments) optimization
design method with the damping force and dynamically adjustable coefficient as two
objectives, and the method was conducted by combining with the FEM method to achieve
a multi-objective optimization goal [20]. Sung et al. [21] proposed a first-order optimization
method using a general-purpose finite element package (ANSYS APDL). In addition, a
multiphysics simulation method was performed using COMSOL Multiphysics to enhance
an MRD’s damping force [22]. The maximum output damping force was chosen as the op-
timization objective to optimize the MRD design, while the initial and optimized dampers
were experimentally evaluated. The optimized one can provide superior performance in
terms of the output damping force and power consumption.

An important shortcoming with the aforementioned studies on optimization of MRD
design is the lack of comprehensive analysis of various parameters of the structure and
property of MRD on how they contribute to the damping capability and dynamically
adjustable range. This shortcoming further leads to ad-hoc choices of parameters for
optimization, which either fail to get a truly optimized design or lead to a design with
many side effects (although good damping force). The study presented in this paper
attempted to overcome these shortcomings. The methodology taken in this study had
three steps. In the first step, a simulation system for MRD was built. In the second step,
the influence of the parameters of the structure and the material property was examined
with the help of the simulation system, which led to a set of important parameters for
optimization. In the third step, a response surface method was employed to optimize these
parameters for two objectives: the damping force and the dynamically adjustable coefficient.
The result of the optimization was validated with the simulation system. Throughout,
an example MRD was taken; however, the generality of the methodology to other MRD
devices was kept whenever possible.

2. Magnetorheological Damper
2.1. Fundamental Principles of MRD

The studied MRD’s compact volume makes it suitable for rehabilitation medical
equipment or more generally human–computer interactive robots. A typical MRD device
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is shown in Figure 1, consisting of the piston (with a double coil inside), piston rod,
cylinder, upper and lower end caps, floating piston, lifting lug, and other components. The
high-pressure nitrogen compensation chamber is utilized to adjust the floating piston to
compensate for the volume change caused by the piston rod entering and exiting.
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Figure 1. A typical device of MRD.

The magnetic flux generated by the excitation coil passes through the damping gap
(the annular gap between the piston and the cylinder) in the middle and both ends of the
piston. The magnetic flux passes through the cylinder via the damper gap while it passes
through the other side’s damper gap. Eventually, the magnetic flux flows back to the yoke
to form a closed magnetic circuit. The applied magnetic field changes the viscosity of MR
fluid in the damping gap as well as the damping force for the piston to move. Meanwhile,
in the process of piston movement, as the current increases, the MR fluid viscosity increases,
and the MR fluid’s yield stress increases accordingly. Therefore, the MRD’s damping force
can be adjusted by the current applied to the excitation coil.

2.2. Mathematical Model for the Damping Force

According to the theory for the gap flow between two parallel plates, the MRD’s
damping force can be expressed as [23,24]:

Fd = Fη + Fτ + Fg + Ff (1)

where

Fη =
3πη0

(
D2 − d2

)2
L

4D′g3 v (2)

Fτ =
3πτy(L1 + 2L2)

(
D2 − d2)

4g
(3)

Fg = P0

(
V0

V0 − πd2

4 x

)n
πd2

4
(4)

where Fη , Fτ , Fg, and Ff are the viscous damping force, the Coulomb damping force, the
gas compensating force, and the friction force, respectively; η0 is the MR fluid’s viscosity
in the absence of magnetic field; L denotes the piston length; L1 and L2 are the effective
pole lengths in the middle and two ends, respectively; D and d describe the diameters of
the piston, and the piston rod, respectively; D′ is the mean circumference of the damper’s
annular flow path; V0 denotes the gas initial volume in the compensation chamber; x is the
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piston displacement; and v is the piston velocity. If the friction force is not considered, the
dynamically adjustable coefficient λ of the MRD can be written as:

λ =
Fτ + Fη + Fg

Fη + Fg
(5)

3. Simulation of MRD
3.1. The Fundamental Theory of MR Damping Force

The governing equations of electromagnetism in the COMSOL solver, including
Maxwell’s equation and Ampere’s law, are given by [15]:{

∇×H = J + ∂D
∂t

∇ · B = 0
(6)

where H, J, D, and B are the magnetic field, current densities, electric displacement field,
and magnetic flux densities, respectively.

The flow of the magnetorheological fluid in the MRD can be described by the following
weakly compressible Navier–Stokes equation to describe the velocity and pressure fields in
the space motion coordinate system [25]:

ρ ∂u
∂t + ρ(u · ∇)u = ∇ · [−pI + K] + F
∂ρ
∂t +∇ · (ρu) = 0
K = η

(
∇u + (∇u)T

)
− 2

3 η(∇ · u)I
(7)

where ρ is the fluid density; u is the velocity vector; p is the pressure; I is the unit diagonal
matrix; ∇ is the vector operator in Cartesian coordinates; η is the kinetic viscosity; and F is
the volume force.

The correlation between flow and electromagnetic fields in the MRD is described by
the viscosity of MR fluid and magnetic induction intensity. Therefore, this study’s solution
strategy is to first obtain the magnetic induction intensity distribution by solving the
electromagnetic field and then load the solved magnetic induction intensity distribution
result as the initial values into the flow field problem for solution. To solve the non-
differentiable constitutive equation of the magnetorheological fluid without yield, the
modified Bingham model [26] is utilized to model the magnetorheological fluid viscosity as:

η = η0 +
τy(B)

.
γ

[
1− e(−m

.
γ)
]

(8)

where η0 is the zero-field viscosity; τy(B) is the yield stress associated with the magnetic
field;

.
γ is the shear rate; and m is a model parameter determining the viscosity growth

of non-Newtonian fluids at low shear rates [13,27]. According to the experimental data
in our research group, the shear stress and magnetic induction intensity of MRF450 was
obtained as:

τy(B) = 25827.6B4 − 45068B3+69831.3B2 − 4058.4B+56.14 (9)

For the flow field analysis of the MRD in the moving process, the relationship between
the density and pressure of the MR fluid under the MR fluid compressibility is described
using the Tait equation of state [28] as:

p = Mv

[(
ρ

ρ0

)n
− 1
]
+ p0 (10)
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where Mv is the bulk elastic modulus, taking 3× 108 Pa; ρ is the compressible fluid density;
ρ0 is the reference density; p0 is the reference pressure; and n is the index regulating the
fluid stiffness.

3.2. Modeling and Calculation
3.2.1. Material Properties and Meshing

The MRD’s piston adopts DT4, which is a pure electrical iron with low coercivity,
excellent processing performance, and a high magnetic flux performance; the piston rod
and the cylinder adopt steel 45 and 20, respectively. The magnetization curves of each part
of materials can be obtained from [29], while the magnetization curve of MRF450 is shown
in Figure 2. Table 1 presents the MR fluid properties, and the main design parameters of
the MRD are shown in Table 2.
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Figure 2. MRF450: (a) description of MRF; (b) magnetization curve; and (c) the shear stress vs. magnetic induction intensity.

Table 1. MR fluid properties.

Model Number Properties Value

MRF450

density 3550 (kg/m3)
viscosity (40 ◦C) 0.69 (pa·s)

magnetizing curve Figure 2b
shear stress vs. magnetic induction intensity Figure 2c

Table 2. Main design parameters and initial values of the MRD.

Main Structural Parameters Values

the thickness of the cylinder h 4 mm
piston rod diameter d 10 mm
piston diameter D 30 mm
yoke diameter d1 14 mm
damping gap g 1 mm
magnetic pole length at both ends L1 5 mm
magnetic pole length in the middle L2 10 mm
loop length L3 15 mm
current I 0.25 A, 0.5 A, 0.75 A, 1 A
number of turns per coil N 600
compensation chamber pressure Pa 2.23 MPa

The model should be reasonably simplified to reduce the calculation load. Therefore,
the upper and lower end caps, seals, and fasteners are ignored in the modeling procedure.
A two-dimensional axisymmetric model is established, and the properties of the materi-
als above are incorporated into the corresponding modules of the solver. The meshing
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sequence controlled by the physical field, including flow model settings, specific feature
processing, and grid cell size control, is utilized to divide the mesh (see Figure 3), and the
mesh is refined at the damping gap and outlet of the damper. Boundary layer treatment
is performed at the fluid boundary. The complete grid consists of 10,459 grid cells and
1699 edge cells.
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3.2.2. Boundary Conditions and Initial Values

Boundary conditions are necessary to find electromagnetic and flow fields and should
have permissible values. Here, the magnetic field’s air boundary condition is chosen as
the magnetic insulation, while the boundary condition of the flow field in contact with the
piston and cylinder is adjusted as a non-slip flow on the wall. To more accurately simulate
the transient flow field variations of the magnetorheological fluid inside the damper under
the magnetic field action, the dynamic grid technology is utilized to describe the piston
displacement through the following sinusoidal relation:

S = A sin(2π f ts) (11)

where A is the piston displacement amplitude, while its initial value is adjusted as 10 mm;
f is the piston’s vibration frequency, while its initial value is chosen as 1 Hz; and ts is the
time step, which is considered as 0.01 s.

3.3. Simulation Results

The magnetic induction intensity and magnetic induction line distribution of the MRD
at different currents (for I = 0.25, 0.5, 0.75, and 1 A) are shown in Figure 4a–d. The magnetic
induction intensity at the midline of the damping gap under different currents is extracted
(see Figure 5) to further understand the distribution of magnetic induction intensity in
the MR region. It can be seen that the magnetic induction intensity gradually increases
with the increase of current. In the damping gap, the magnetic induction intensity in the
effective damping gap between the two coils reaches its maximum while rapidly reduces
in the damping gap area adjacent to the coils.
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The pressure at the middle line of the damping gap with different currents is shown
in Figure 6. There is a significant pressure rise in the effective damping gap, causing
the damping force. Figure 7a–d shows the pressure distribution of MR fluid at different
currents (for I = 0.25, 0.5, 0.75, and 1 A) when the piston rebounds upward. When I = 1 A,
the damping pressure rise at both ends of the piston reaches 1.25 MPa.
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Figure 8a–d shows the MR fluid’s velocity distribution at different currents (for I = 0.25,
0.5, 0.75, and 1 A). In the damping gap, the fluid velocity in adjacent regions of the coil is
higher than that of the effective magnetic poles, while the maximum flow velocity is not
affected by the current change, which is 0.64 m/s. The dynamic viscosity distribution of
MR fluid at different currents (for I = 0.25, 0.5, 0.75, and 1 A) is shown in Figure 9a–d, which
indicates that the MR fluid viscosity adjacent to the effective magnetic poles gradually
increases with the increase of current, while the MR fluid viscosity adjacent to the effective
magnetic poles in the middle is higher than that at both ends. The MR fluid’s maximum
viscosity in the damping gap reaches 127 Pa · s( I = 1 A).

Two damping force–displacement and force–velocity curves are utilized to describe
the MRD’s damping characteristics under sinusoidal excitation. The damping force–
displacement curve describes the relationship between the MRD’s output damping force
and piston displacement, reflecting the MRD’s ability to attenuate vibration in one motion
period, while the damping force–velocity curve describes the relationship between the
damper’s output damping force and the piston velocity, reflecting the damping force
response to the piston velocity. The damping characteristics of dampers considering com-
pressibility and incompressibility are shown in Figure 10 for I = 1 A, A = 10 mm, and
f = 1 Hz. According to Figure 10a, the simulation model considering the MR fluid incom-
pressibility and the simulation model considering the MR fluid compressibility have good
agreement on the MRD’s maximum output damping force. However, near the maximum
displacement, when the piston reaches its maximum displacement, the damping force does
not change immediately but gradually. It also should be noticed that the damping force is
not symmetric about the x-axis due to the role of the gas compensation chamber. When
the piston is in extrusion motion, more pressurized gas is applied, which applies a greater
force than in rebound motion.
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According to Figure 10b, compared with the incompressible model, it demonstrates a
strong nonlinear relationship between the output damping force predicted by the simu-
lation model (considering the magnetorheological fluid compressibility) and the velocity.
Moreover, an evident hysteretic phenomenon can be observed in the low-velocity region,
which cannot be predicted by neglecting the MR fluid compressibility, as one of the essential
factors for the MRD’s hysteretic characteristics at low velocity in previous studies.
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Figure 9. Dynamic viscosity distribution for: (a) I = 0.25 A; (b) I = 0.5 A; (c) I = 0.75 A; and (d) I = 1 A.
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Figure 10. Damping characteristic contrast considering compressibility and incompressibility: (a) damping force–
displacement; and (b) damping force–velocity.

4. Structural Parameters Influence

In this section, the established finite element simulation model is employed to study
the influence of several structural parameters, including the damping gap, effective mag-
netic poles at both ends, effective magnetic poles in the middle, and yoke diameter.

4.1. Damping Gap

The damping gaps are chosen as g = 0.8, 1, and 1.2 mm under different currents, while
the other parameters remain unchanged. The damping characteristics predicted by the
simulation model are shown in Figure 11. The output damping force decreases with the
increase of the damping gap width. The area enclosed by the damping force–displacement
in Figure 11a decreases with the increase of the damping gap width, indicating that the
MRD’s energy dissipation performance decreases. It is not difficult to be explained that,
with the increase of the damping gap width, the magnetic induction intensity in the
damping gap, the yield stress of the MR fluid, and the Coulomb damping force decrease
accordingly. Figure 11b shows that the slope of the damping force and velocity curve
decreases, while the hysteretic width of the velocity curve reduces. That may be due to
the increase of damping gap, which alleviates the pressure inside the damper and changes
the MR fluid compressibility accordingly. In summary, although the damping gap width
variation is small, it has a significant impact on the MRD’s output performance. When
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the damping gap is relatively large, the damping force output is slightly affected by the
amplitude and velocity variations, demonstrating the superior controllability of the MRD.
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Figure 11. Damping characteristics at different damping gaps for I = 0.25, 0.5, 0.75 and 1 A: (a1–a4) damping force–
displacement; and (b1–b4) damping force–velocity.

4.2. Magnetic Pole Length at Both Ends

The MRD’s damping characteristics are investigated when effective magnetic poles
at both ends are considered as L1 = 3, 5, and 9 mm under different currents, while the
other parameters are constant. The damping characteristics predicted by the simulation
model are shown in Figure 12. As the effective pole length increases, the damping force
decreases. That is because, when the effective pole length increases, the magnetic flux
density via the damping gap declines, and the shear yield stress of the MR fluid and the
damper’s Coulomb damping force descend accordingly. However, the viscous damping
force increases with the increase of the total damping gap length. Due to these two factors’
combined action, the damper’s output damping force increases first and decreases in a
small range. The area enclosed by the damping force–displacement in Figure 12a increases
first and then drops, while the energy dissipation performance is approximately constant.
Since the output damping force and the MR fluid compressibility change slowly, as shown
in Figure 12b, the damping force has the same trend with the slope and hysteresis width of
the velocity curve. It can be drawn from above that the effective magnetic pole lengths at
both ends have little influence on the MRD’s output performance.
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Figure 12. Damping characteristics of effective magnetic poles at different ends for I = 0.25, 0.5, 0.75 and 1 A: (a1–a4)
damping force–displacement; and (b1–b4) damping force–velocity.

4.3. Magnetic Pole Length in the Middle

The MRD’s damping characteristics are evaluated when effective magnetic pole length
in the middle is selected as L2 = 5, 8, 10, and 15 mm under various currents, while
the remaining parameters are kept fixed. The damping characteristics estimated by the
simulation model are presented in Figure 13. The effect of effective magnetic poles in the
middle on MRD characteristics is similar to that of effective magnetic poles at both ends,
which is not described. Compared with the two effective magnetic poles, the middle’s
effective magnetic pole has a more significant effect on the MRD’s output performance.
However, the damping force output performance is affected by the amplitude and velocity
variations, and the trend is nearly unchanged.
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Figure 13. Damping characteristics of effective magnetic poles in the middle for I = 0.25, 0.5, 0.75 and 1 A: (a1–a4) damping
force–displacement; and (b1–b4) damping force–velocity.

4.4. Yoke Diameter

The MRD’s damping characteristics are verified when the yoke diameters are d1 = 12, 14,
and 16 mm under several currents while considering constant values for the other parame-
ters. The damping characteristics of various currents predicted by the simulation model
are depicted in Figure 14. The yoke diameter is different from the above parameters since
it does not change the damping gap structure. Accordingly, it does not affect the viscous
damping force. The increase in the yoke diameter increases the magnetic induction in the
damping gap, accordingly the MR fluid’s yield stress and the damper’s output damping
force. The area enclosed by the damping force–displacement in Figure 14a increases with
the increase of yoke diameter, indicating that the MRD’s energy dissipation performance
increases. Figure 14b illustrates that, when the damping force and velocity curve slope
increase, the velocity curve’s hysteretic width increases for the fluid’s compressibility
improvement resulting from improved damping force output performance. The analysis
states that, when the damping gap structure is constant, the yoke diameter change signifi-
cantly influences the MRD’s damping force output. However, the damping force output
performance is influenced by amplitude, and velocity does not change much.
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Figure 14. Damping characteristics of different magnetic yoke diameters for I = 0.25, 0.5, 0.75 and 1 A: (a1–a4) damping
force–displacement; and (b1–b4) damping force–velocity.

5. Optimization Based on RSM

As an optimal design method based on statistics and engineering [30], RSM (Response
surface methodology) is an alternative model which obtains relevant data through a series
of experimental schemes determined in the design domain and employs them to extract the
explicit relationship between design variables and response values. When a response or a
set of responses is affected by multiple variables, the level of these design variables can be
determined to obtain an optimal response. Here, the damper structure is optimized based
on response surface methodology (RSM) to achieve higher damping force and damping
performance of the adjustable damping coefficient.

5.1. Response Surface Test Design

The output damping and dynamically adjustable coefficient are the two most im-
portant parameters when evaluating the MRD’s overall performance [31]. Therefore, the
maximum damping force and dynamically adjustable coefficient are chosen as the opti-
mization objectives. According to the optimization goals, the optimization design process
is designed (see Figure 15).
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Figure 15. Optimization process.

The main structural parameters studied in the previous section are considered as the
optimization variables, while their upper and lower limits are presented in Table 3. By
considering the Box–Behnken scheme for experimental design, 25 groups of schemes are
generated, and the corresponding response values for each group are shown in Table 4.

Table 3. Upper and lower limits of design variables of damper structure parameters.

Code Design Variable Lower Limit Middle Upper Limit

A damping gap g 0.8 1 1.2
B magnetic pole length in the middle L2 8 10 12
C magnetic pole length at both ends L1 4 5 6
D yoke diameter d1 6 7 8

Table 4. Design and results of response surface test.

Test Number A (mm) B (mm) C (mm) D (mm) Fd(N) λ

1 0.8 8 5 14 1320.24 3.24
2 1.2 8 5 14 755.96 3.09
3 0.8 12 5 14 1212.54 2.93
4 1.2 12 5 14 694.25 2.81
5 1 10 4 12 723.45 2.46
6 1 10 6 12 721.09 2.42
7 1 10 4 16 1097.36 3.76
8 1 10 6 16 1097.07 3.71
9 0.8 10 5 12 1003.72 2.44
10 1.2 10 5 16 573.87 2.33
11 0.8 10 5 16 1457.94 3.55
12 1.2 10 5 16 827.86 3.37
13 1 8 4 14 953.38 3.3
14 1 12 4 14 875.49 2.96
15 1 8 6 14 967.97 3.27
16 1 12 6 14 886.74 3.01
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Table 4. Cont.

Test Number A (mm) B (mm) C (mm) D (mm) Fd(N) λ

17 0.8 10 4 14 1286.14 3.14
18 1.2 10 4 14 737.50 2.97
19 0.8 10 6 14 1281.74 3.11
20 1.2 10 6 14 734.41 2.99
21 1 8 5 12 766.36 2.59
22 1 12 5 12 705.98 2.39
23 1 8 5 16 1102.67 3.72
24 1 12 5 16 1136.07 3.61
25 1 10 5 14 918.05 3.10

5.2. Response Surface Model

Regression analysis is commonly utilized in RSM to represent polynomial functions.
The RSM-based approximate response can be described as:

y = ŷ(x1, x2, . . . xn) + ε (12)

where x1,x2, . . . xn are design variables and ε is the error between the actual response value
and the approximate one. In this paper, the RSM-based approximate function fitting is
directly described by the following quadratic model:

ŷ = β0 +
K

∑
i=1

βixi +
K

∑
i=1

βiix2
i +

K−1

∑
j=1

K

∑
i=j+1

β jixjxi (13)

From left to right, on the right side of the equation are the intercept, linear, quadratic
interaction, and square terms of the model. Regression analysis is applied to the design
variables and their response values through Design Expert. Table 5 gives the finally-
established response functions.

Table 5. Mathematical model of response surface.

Response Response Function

damping force
Fd = 2023.809− 3480.704A− 164.475B− 62.535C+488.563D
+28.743AB+1.638AC− 250.288AD− 0.417BC + 11.723BD

+0.518CD+1793.865A2 + 2.047B2 + 6.276C2 − 12.337D2

dynamically adjustable
coefficient

λ = −3.483 + 4.815A− 0.23B− 0.434C+1.381D + 0.02AB
+0.0558AC− 0.0935AD + 0.004BC + 0.01BD− 0.00439CD
−2.489A2 + 0.002731B2 + 0.0359C2 − 0.0555D2

The relationship between the other two design variables obtained by fixing two
design variables, the damping force and adjustable damping coefficient, is shown in
Figures 16 and 17. It indicates the change and distribution of the damping force and damp-
ing adjustable coefficient while changing the design variables. Meanwhile, the relationship
between the two response values and different design variables can be obtained through
the control variable method, which is not listed here.
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vs. A and B; and (b) adjustable damping coefficient λ vs. C and D.

The variance analysis of damping force Fd and adjustable damping coefficient λ
obtained from the RSM is shown in Table 6. The variance analysis can evaluate the
response surface function’s applicability through the two variance indices F, p, and the
determination coefficient R2. According to the authors of [32], as both responses’ p values
are lower than 0.001, it indicates that design variables can significantly affect the response
values. R2 of both responses is higher than the standard value of 0.9, demonstrating the
prediction model validity for both responses.

Table 6. Variance analysis.

Information Standard Fd λ

Sum of squares - 1.34 × 106 4.5
Mean of aquare - 95,945 0.54

F-Value - 145.57 68.01
p-value <0.05 <0.0001 <0.0001

R2 >0.9 0.98 0.98

5.3. Optimization Results

The MRD’s maximum output damping force determines the robot’s impact on energy
absorption and stability during walking, while the dynamically adjustable coefficient
determines the adjustment range of the damping force. The following multi-objective
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optimization model [33,34] containing two responses is established to increase the output
damping force and dynamically adjustable coefficient of the MRD:

Maximize D =
√

Fd · λ

s.t.


0.9 ≤ A ≤ 1.2
5 ≤ B ≤ 15
4 ≤ C ≤ 6
12 ≤ D ≤ 16

(14)

where D is an expectation function, reflecting the appropriate scope for each response.
The expectation function combines several responses into a dimensionless perfor-

mance measure, while the expectation function can be changed for each response to specify
different importance and weights. This study employs the expectation method to solve
multi-goals optimization problems.

The structural parameters, maximum damping force, and dynamically adjustable
coefficient of the initial and optimization models of the MRD are shown in Table 7. Com-
pared with the initial model, the optimized model’s damping force is increased by 33%
and the dynamically adjustable coefficient is increased by 17%. The optimized model
provides superior performance and higher values for the damping force and dynamically
adjustable coefficient.

Table 7. Comparison of parameter values between the initial model and the optimized model.

Parameters A (mm) B (mm) C (mm) D (mm) Fd (N) λ

before optimization 1 10 5 14 918.58 3.10
after optimization 0.9 5 4 16 1222.34 3.63

The structural parameters of the optimization model are substituted into the simula-
tion model to solve the problem. The damping characteristics before and after optimization
are shown in Figure 18. The indicator area enclosed by the optimal damping force and
displacement curve is increased, demonstrating the optimal damper’s superior energy
dissipation performance and more robustness of the damping force’s output performance
under the amplitude and velocity variations. Simultaneously, the damping force and
velocity curve slope increase, which means that the piston’s damping force significantly
changes and responds quickly at the stroke’s two ends. The optimal MRD provides superior
stability and controllability for the structural system.
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Figure 18. Damping characteristics before and after optimization: (a) damping force–displacement; and (b) damp-
ing force–velocity.
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6. Conclusions

In this study, the modified Bingham constitutive relation for MR fluid was utilized
to establish a simulation model considering fluid compressibility. The MRD’s damping
characteristics under sinusoidal excitation were predicted, and a feasible and effective
optimization design method was proposed. The damping force and dynamically adjustable
coefficient of the MRD are significantly improved. The main conclusions can be drawn
as follows:

(1) Hysteresis phenomenon for the MRD’s damping characteristics is exhibited from
the simulation system, which shows the simulation’s validity. The MR fluid compressibility
is one of the essential factors affecting the MRD’s low-velocity hysteretic characteristics.
As such, the enabler to simulate and predict the hysteresis characteristics of MRD is an
important contribution to the optimal design of MDR devices.

(2) Compared with the effective pole length, the damping gap width and yoke diam-
eter significantly influence the MRD’s damping characteristics. When the damping gap
is relatively large, the damping force is slightly affected by the amplitude and velocity
variation, while the MRD controllability is improved. The yoke diameter has a significant
effect on the MRD’s damping force output, while the changing trend of damping force
output performance affected by amplitude and speed does not change much.

(3) The maximal damping force output performance and dynamically adjustable
coefficient of an MRD device can be increased by 33% and 17%, respectively, with the
optimization procedure developed in this study.

A physical test-bed will be built to verify the simulation system further and improve
the optimal design quality in the near future. Another future work is a more careful exami-
nation of the damping characteristics considering the friction behavior in the damping force
equation. The friction behavior may not be governed by Coulomb’s law, as conventionally
thought, but by other laws such as the LuGre model (see a comprehensive discussion of
friction in micro-motion systems in [35]).
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