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Abstract: This article proposes a novel adaptive super-twisting sliding mode control scheme with
a time-delay estimation technique (ASTSMC-TDE) to control the yaw angle of a single ducted-fan
unmanned aerial vehicle system. Such systems are highly nonlinear; hence, the proposed control
scheme is a combination of several control schemes; super-twisting sliding mode, TDE technique
to estimate the nonlinear factors of the system, and an adaptive sliding mode. The tracking error
of the ASTSMC-TDE is guaranteed to be uniformly ultimately bounded using Lyapunov stability
theory. Moreover, to enhance the versatility and the practical feasibility of the proposed control
scheme, a comparison study between the proposed controller and a proportional-integral-derivative
controller (PID) is conducted. The comparison is achieved through two different scenarios: a normal
mode and an abnormal mode. Simulation and experimental tests are carried out to provide an
in-depth investigation of the performance of the proposed ASTSMC-TDE control system.

Keywords: adaptive control; ASTSMC-TDE; DUAV; nonlinear control; super-twisting sliding mode;
time-delay estimation

1. Introduction

The ducted-fan unmanned aerial vehicle (DUAV) technologies have consistently
evolved since their first emergence to fulfill military objectives and humanitarian relief
operations [1–4]. In recent years, DUAV systems have demonstrated successful departures
from unprepared sites and small deck spaces [5]. Moreover, these ducted-fan vehicles
have been subjected to turbulent environments [6,7] and gusty winds [8,9], and their
performance was studied. A DUAV system is mainly required to accurately follow a
predefined trajectory [10,11]. Hence, the landing process should as well be considered as
one of the most important aspects in developing such systems [12,13].

Generally, the landing operation includes the yaw motion control and the landing
process. The yaw motion control herein keeps the DUAV at a proper angle before landing
safely. However, air conditions often create uneven aerodynamic forces that affect the
DUAV. Which makes it difficult to control the yaw angle because of the high nonlinearities,
parametric uncertainties, and unknown disturbances. In particular, the high nonlinearities—
undesirable factors, for instance—can lead to the DUAV’s instability. To cope with these
issues, several robust control laws have been designed. For instance, sliding mode control
(SMC) [14,15], time-delay technique [16–18], feedback control [19], process control [20,21],
and model predictive control theories [22,23] were applied.

The SMC is a well-established and widely applied control scheme [24,25]. The re-
markable thing about the SMC is that it can be extended to a super-twisting SMC (STSMC)
to cope with unknown system dynamics [26,27]. The control gains of the STSMC are
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designed to be greater than the upper bound of the uncertain terms so that robustness can
be achieved [28,29]. However, the chattering phenomenon is a serious problem that may
result in significant wear of the actuators [30]. Therefore, low-pass filtering methods were
suggested as a solution [31].

On the other hand, angle motion control plays a significant role in the landing process
of the DUAVs. The DUAV systems need to be tracked and kept in the right-angle posi-
tion before the start of autonomous or manual landing processes, as shown in Figure 1.
However, these systems may lose one or two of their steering actuators during their mis-
sion, which will reduce the control performances. This is an undesirable situation that
requires the control scheme with unchanged control gains to increase the power capacity
of the remaining actuators, thus maintaining the desired angle before landing the DUAV,
Figure 2a.

Figure 1. The manual landing process of the DUAV system on a ship deck.

Figure 2. The yaw angle motion control of the designed DUAV model: (a) The yaw angle control process before the landing;
(b) The structure of the DUAV model.

Based on these facts, this study proposes a new approach to overcome the high non-
linearity of the DUAV systems. The control method adopted is an adaptive super-twisting
sliding mode with time-delay estimation. Besides, a comparison between the ASTSMC-
TDE controller and a proportional-integral-derivative (PID) controller was conducted.
The performance of the proposed controller is investigated through two different operation
modes. A normal mode (NM) when the four actuators operate normally, and an abnormal
mode (AM) when one actuator is broken and another has a reduced power capacity.

The contributions of this paper are listed as follows:

• A novel control scheme (ASTSMC-TDE) is proposed to guarantee better performance
and system stability;
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• The introduction of the TDE technique, which is the key to cancel out the disturbances
the DUAV system is subjected to—the high nonlinearity [32–34], parametric uncer-
tainties [35,36], and unknown disturbances. Nonetheless, the TDE technique results
in errors since the estimation is delayed by one sample time [37].

• An adaptive sliding mode controller (ASMC) is introduced to suppress the TDE
errors. However, when the switching gains of the ASMC become somewhat larger,
the “parameter drift” phenomenon occurs [38].

• Hence, a smooth adaptive version of the ASMC with a dead-zone modification tech-
nique is introduced to guarantee system robustness.

On another note, the tracking error of ASTSMC-TDE is guaranteed to be uniformly
ultimately bounded (UUB) according to Lyapunov stability theory. Moreover, to determine
the practical feasibility of the proposed controller, simulations and experimental tests
were conducted.

This article is organized as follows. Section 2 presents the description and the modeling
of the yaw angle of the DUAV system. In Section 3, the design of the novel adaptive
super-twisting sliding mode with time-delay estimation is addressed in detail. Evaluation
methods to assess the performance of the proposed controller are described in Section 4.
In Section 5, simulations of the DUAV system yaw angle are illustrated. Section 6 presents
the experimental results of the proposed control scheme applied to a real DUAV system.
Finally, conclusions are drawn in Section 7.

2. Description and Modeling of DUAV System
2.1. Description of the DUAV System

The DUAV system, illustrated in Figures 2b and 3 consists of actuators (rudders),
brushless DC motor system (BLDC motor and propellers), hover, and fuselage. The BLDC
motor system has two main objectives. First, it generates the necessary thrust force to steer
the yaw angle of the DUAV to the right position alongside the rudder system. Second,
it counteracts gravitation during the landing. On the other hand, the rudder system is
operated by four servomotors that are controlled by PWM signals. A load-cell sensor
measures the thrust force of the BLDC motor. The yaw angle of the DUAV is fed back
through a gyro sensor. The communication between the computer and the system, as well
as with the sensors, is achieved via the RS-232 protocol. The experiment apparatus of the
DUAV system is detailed in the experiment section.

Figure 3. Schematic of the rudders and actuators and their corresponding order.

In this article, to enhance the force balance and aerodynamics of the DUAV system,
the rudders are arranged so that two successive actuators are positioned symmetrically.
In the AM mode, for instance, actuator four is inactive and the power capacity of actuator
three is reduced. Throughout the whole paper, the following assumptions are made:

Assumption 1 ([39]). We assume that the slipstream axis is coincident with the fan axis.
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Assumption 2 ([39]). We assume that there is no possibility for the slipstream to mix up with
other external duct flows.

Assumption 3 ([39]). We assume that there is no crosswind during the experimental tests.

2.2. Modeling of the DUAV System

The general mathematical model of the yaw channel of the DUAV system is described as:

Iz
..
ψ(t) = k(A, τu(t), ρ)τ(t) + f (τu(t), ρ) + fi(ψ(t)) + fg

( ..
ψ(t), τu(t)

)
(1)

where ψ(t) ∈ R,
.
ψ(t) ∈ R and

..
ψ(t) ∈ R are the yaw angle, the yaw angular velocity,

and the yaw angular acceleration, respectively. A is the area of the rudders and ρ is the
density of air. τu(t) ∈ R and τ(t) ∈ R are the control signals of the thrust force and the
rudder system, respectively. Iz is the moment of inertia in the z-direction. k(A, τu(t), ρ) ∈ R

is the identified control gains. f (τu(t), ρ) ∈ R is the spinning torque and fi(ψ(t)) ∈ R

is the initial torque of the rudder system. fg

( ..
ψ(t), τu(t)

)
∈ R represents the gyroscopic

torque resulting from the rotation of the DUAV system.
Generally, yaw motion control of the DUAV system is a difficult task due to the high

degree of nonlinearity that the system is subjected to. The spinning force, the gyroscopic
torque, and undesired factors are examples of these nonlinearities. The parametric un-
certainties refer to the uncertainty in the identified moment of inertia in the z-direction
and the control gains. Moreover, the mathematical model in Equation (1) is a single-input
single-output system, which has low maneuverability during normal mode motion control.
To enhance the versatility of motion control in normal and abnormal modes, the mathe-
matical representation of a multiple-input single-output system can be rearranged from
Equation (1) as follows:

..
ψ*(t) = Kτ(t) + f(τu(t), ρ) + fi(ψ(t)) + fg

( .
ψ(t),τu(t)

)
+ fu(t) (2)

where the vector ψ*(t) = (ψ1(t), ψ2(t), ψ3(t), ψ4(t))
T ∈ R4 is the yaw angle of the DUAV

system, the vector elements represent the rotation angles of the rudders. K ∈ R4×4 is a
constant gain matrix. τ(t) = (τ1(t), τ2(t), τ3(t), τ4(t))

T ∈ R4 is the control signal vector
fed to the rudders. f(·), fi(·), fg(·), and fu(·) are, respectively, the spinning force, the initial
force, the force of inertia of the gyro, and the undesired values.

Based on the research in [37], a simple representation of Equation (2) is obtained as:

..
ψ*(t) =

¯
Kτ(t) + Γ(t) (3)

where Γ(t) = f(τu(t), ρ) + fi(ψ(t)) + fg

( .
ψ(t),τu(t)

)
+ fu(t) ∈ R4 includes all the nonlin-

ear terms addressed in Equation (2).
¯

K = diag(k1, k2, k3, k4) ∈ R4×4 is a constant matrix to
be determined using MATLAB identification toolbox. In this paper, we assume that the

DUAV dynamics in Equation (3) satisfy
∥∥∥∥ ¯

K
∥∥∥∥

2
≤ δK for δK > 0. The yaw angle of the DUAV

is devised based on the output angle of the rudders, i.e., ψ*(t) =
¯
cψψ(t); where

¯
cψ ∈ R4

is a column vector of weights that results in ψ(t) = ψ1(t) + ψ2(t) + ψ3(t) + ψ4(t).

3. Novel Adaptive Super-Twisting Sliding Mode Control with Time-Delay Estimation
3.1. Control System Design

This article aims to control ψ(t) the yaw angle of the DUAV system to properly track
the reference ψd(t). This means that the yaw angle error e(t) = ψd(t) − ψ(t) should
approach zero.
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Subsequently, the yaw angle error of the actuator is defined as Cψ
¯
cψe(t), where

Cψ = diag
(
Cψ11, Cψ22, Cψ33, Cψ44

)
∈ R4×4 is a positive weighting matrix. Thus, a sliding

manifold variable is chosen as follows:

s(t) = Cψ
¯
cψ

.
e(t) + KsCψ

¯
cψe(t) (4)

where s(t) = (s1(t), s2(t), s3(t), s4(t))
T ∈ R4 and Ks = diag

(1Ks, , , 2Ks, , , 3Ks, , , 4Ks
)
∈ R4×4.

We note that Ks is a positive gain matrix preserving the stability condition. We construct
the control law with a super-twisting sliding manifold given by:

τ(t) = −
¯

K
−1 ^

Γ(t)

+
¯

K
−1

C−1
ψ

(
Cψ

¯
cψ

..
ψd(t) + ks ◦ ds(t)e◦1/2 ◦ sign(s(t)) +hs ◦

∫
sign(s(t))dt + KsCψ

¯
cψ

.
e(t)

) (5)

where ks = (ks1, ks2, ks3, ks4)
T ∈ R4 and hs = (h1, h2, h3, h4)

T ∈ R4 are positive gain
vectors. The operator d·e is defined as the absolute value of each element of the input
vector, where d(·)e = (d·ei). The operator ◦ is the Hadamard product [40,41]. sign(·) is
defined as the corresponding signum function of each element of the input vector, where

sign((·)) = (sign(·)i).
^
Γ(t) denotes the estimation obtained from one sampling time-

delayed measurement of Γ(t) using the TDE technique. This estimation can be expressed
as follows:

^
Γ(t) = Γ(t− L) =

..
ψ*(t− L)−

¯
Kτ(t− L) (6)

where L ∈ R is the sampling period. Substituting Equation (6) into Equation (5), we obtain
the following:

τ(t) = −
¯

K
−1 ..
ψ*(t− L) + τ(t− L)︸ ︷︷ ︸

TDE

+
¯

K
−1

C−1
ψ

(
Cψ

¯
cψ

..
ψd(t) + ks ◦ ds(t)e◦1/2 ◦ sign(s(t)) + hs ◦

∫
sign(s(t))dt + KsCψ

¯
cψ

.
e(t)

)
︸ ︷︷ ︸

STSMC

(7)

Consider the following Lyapunov function candidate chosen to guarantee the sys-
tem stability:

Vs(t) =
n=4

∑
i=1
ξT

i Piξi (8)

where ξi =
[
|si(t)|1/2sign(s(t)) −hi

∫
sign(s(t))dt

]T
∈ R2 and Pi is a positive semi-

definite symmetric matrix. i = 1, . . . , 4 ∈ R denotes the order of the actuators. Substituting
the control law in Equation (7) into Equation (3), and combined with the sliding manifold
variable from Equation (4), the time derivative of the Lyapunov function in Equation (8)
yields the following:

.
Vs(t) =

n=4

∑
i=1

(
|si(t)|−1/2ξT

i Pi

[
Cψii

(
Γ̂i(t)− Γi(t)

)
0

]
− 1

2
|si(t)|−1/2ξT

i Qiξi

)
(9)

Proof of Equation (9). The proof is given in Appendix A. �

Thus, if the term
^
Γ(t)− Γ(t) can be zero or Γ(t) can be properly estimated, where

Γ(t) = [Γ1(t), Γ2(t), Γ3(t), Γ4(t)]
T , then the time derivative of the Lyapunov function in

Equation (9) is semi-negative
.

Vs ≤ 0. According to Barbalat’s lemma and Equation (4),
we can verify that s(t) is bounded, i.e., e(t) is also bounded. Therefore, the stability of the
control law in Equation (7) is guaranteed.
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In this study, an STSMC is designed to stabilize the linear system obtained using the
TDE technique. The estimation of the nonlinear values in Equation (6) implies that the

estimated value
^
Γ(t) can be similar to that of Γ(t) if the sampling time L is sufficiently

small [35]. However, Γ(t) cannot be accurately estimated even for a small sampling
period due to the limitations of implementation conditions caused by measurement noises,
high nonlinearity, uncertain factors, etc.

The error value between
^
Γ(t) and Γ(t) is inevitable and it is called the TDE error.

Thus, the design of a control law to suppress the TDE error is of great interest. To achieve
this objective, an additional ASMC term is introduced to the control law in Equation (7).
The resulting control law is as follows:

τ(t) = −
¯

K
−1 ..
ψ*(t− L) + τ(t− L)︸ ︷︷ ︸

TDE

+
¯

K
−1

C−1
ψ

(
Cψ

¯
cψ

..
ψd(t) + ks ◦ ds(t)e◦1/2 ◦ sign(s(t)) + hs ◦

∫
sign(s(t))dt + KsCψ

¯
cψ

.
e(t)

)
︸ ︷︷ ︸

STSMC

+
¯

K
−1 ^

Φ(t)︸ ︷︷ ︸
ASMC

(10)

where
^
Φ(t) =

(
φ̂1(t), φ̂2(t), φ̂3(t), φ̂4(t)

)T ∈ R4 is an updating switching vector of TDE
errors. Therefore, when the TDE error equals zero, the proposed control law in Equation (10)
is equivalent to the one in Equation (7). Moreover, the signum function sign(s(t)) =

(sign(s1(t)), sign(s2(t)), sign(s3(t)), sign(s4(t)))
T ∈ R4 is defined as follows:

sign(si(t)) =


1, i f si(t) > 0
0, i f si(t) = 0
−1, i f si(t) < 0

(11)

However, instead of the signum function in Equation (11), an approximation is pro-
posed to reduce the chattering in the proposed controller. The approximation of the signum
function is given by:

sign(s(t)) , s(t)∅(ds(t)e+ ζ) (12)

where ζ = (ζ1, ζ2, ζ3, ζ4)
T ∈ R4 is a positive gain vector, and the operator ∅ is defined as

Hadamard division.
Substituting the approximation of the signum function from Equation (12) into Equa-

tion (10), the proposed control law can be rearranged as the following:

τ(t) = −
¯

K
−1 ..
ψ*(t− L) + τ(t− L)︸ ︷︷ ︸

TDE

+
¯

K
−1

C−1
ψ

(
Cψ

¯
cψ

..
ψd(t) + ks ◦ ds(t)e◦1/2 ◦ (s(t)∅(ds(t)e+ ζ))

)
︸ ︷︷ ︸

STSMC

+
¯

K
−1

C−1
ψ

(
hs ◦

∫
(s(t)∅(ds(t)e+ ζ))dt + KsCψ

¯
cψ

.
e(t)

)
︸ ︷︷ ︸

STSMC

+
¯

K
−1 ^

Φ(t)︸ ︷︷ ︸
ASMC

(13)
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The proposed control law in Equation (13) can be interpreted with a block diagram as
shown in Figure 4. The adaptive law of the proposed controller is defined by a positive
gain matrix Ω = diag(Ω11, Ω22, Ω33, Ω44) ∈ R4×4 given as:

.
φ̂i(t) = Ω−1

ii Cψii p1isign(si(t)) (14)

Figure 4. Block diagram of the proposed controller (ASTSMC – TDE).

In practice, the “parameter drift” phenomenon is inevitable and it is caused by un-
predicted disturbances—electrical noise, shaking, etc. In this regard, a smooth adaptation
law with dead-zone modification was introduced by Slotine and Coetsee in [38]. Accord-
ingly, we define a constant 0 < δ < 1 and an updating error ε > 0, and let us consider a
Lipschitz-continuous modulation function in the following form:

µ(|e(t)|) = max
(

0, min
(

1,
|e(t)| − δε

(1− δ)ε

))
(15)

By substituting the Lipschitz-continuous modulation function from Equation (15) into
Equation (14), the smooth adaptation law with dead-zone modification is derived as:

.
φ̂i(t) = µ(|e(t)|)Ω−1

ii Cψii p1isign(si(t)) (16)

The drawback of this equation is that when |e(t)| > ε then the adaptive law is operated
by Equation (16). However, when e(t) enters the area |e(t + T)| < ε as T → ∞ the adaptive

term is frozen, i.e.,
.

Φ̂(t + T) = 0 as T → ∞ .
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3.2. Stability Analysis

Lemma 1 ([37]). The control gain matrix
¯

K in Equation (3) is required to satisfy the following condition:∥∥∥∥∥I−K
¯

K
−1
∥∥∥∥∥

2

< 1

Thus for all t ≥ 0, then
∥∥∥ ..
ψ*(t− L)−

..
ψ*(t)

∥∥∥
2
→ 0 as L→ 0 and the TDE errors are bounded

by
~
Γ, i.e.,

∣∣∣∣Γ(t)− ^
Γ(t)

∣∣∣∣ ≤ ~
Γ.

Lemma 2. The DUAV actuators are controlled using the proposed control scheme in

Equations (10) and (14). The adaptation gain
^
Φ(t) is upper bounded by a positive constant for

t ≥ 0, i.e.:
^
Φ(t) ≤

~
Φ

Proof of Lemma 2. The proof is given in Appendix B. �

Given the following positive Lyapunov function candidate defined as:

V(t) =
n=4

∑
i=1

(
ξT

i Piξi +
1
2

[
Γ̃i − φ̂i(t)

0

]T[
Ωii 0
0 Ωii

][
Γ̃i − φ̂i(t)

0

])
(17)

Its time derivative yields:

.
V(t) =

n=4

∑
i=1

(
.
ξ

T
i Piξi + ξ

T
i Pi

.
ξi +

[
Γ̃i − φ̂i(t)

0

]T[
Ωii 0
0 Ωii

][
−

.
φ̂i(t)
0

])
(18)

Proof of Equation (18). The proof is given in Appendix C. �

Substituting Equations (4) and (9) into Equation (18) results in:

.
V(t) =

n=4

∑
i=1

(
|si(t)|−1/2ξT

i Pi

[
CψiiEi

0

]
− 1

2
|si(t)|−1/2ξT

i Qiξi + Λi(t)
)

(19)

where Λi(t) and the TDE errors Ei(t) are defined as
[

Γ̃i − φ̂i(t)
0

]T[
Ωii 0
0 Ωii

][
−

.
φ̂i(t)
0

]
and Γ̂i(t)− Γi(t), respectively.

By substituting Equations (6) and (10) into Equation (19), we obtain the
following expression:

.
V(t) =

n=4

∑
i=1

(
−1

2
|si(t)|−1/2ξT

i Qiξi + |si(t)|−1/2ξT
i Pi

[
CψiiEi − Cψiiφ̂i(t)

0

]
+ Λi(t)

)
(20)

Substituting Lemma 1 into Equation (20) results in:

.
V(t) ≤

n=4
∑

i=1

(
− 1

2 |si(t)|−1/2ξT
i Qiξi + |si(t)|−1/2ξT

i Pi

[
CψiiΓ̃i − Cψiiφ̂i(t)

0

]
+ Λi(t)

)

=
n=4
∑

i=1

(
− 1

2 |si(t)|−1/2ξT
i Qiξi +

[
Γ̃i − φ̂i(t)

0

]T((
|si(t)|−1/2PiξiCψii

)
+

[
Ωii 0
0 Ωii

][
−

.
φ̂i(t)
0

])) (21)
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Proof of Equation (21). The proof is given in Appendix D. �

From Equation (14), the term
(
|si(t)|−1/2PiξiCψii

)
+

[
Ωii 0
0 Ωii

][
−

.
φ̂i(t)
0

]
equals

zero, hence the derivative of the Lyapunov function in Equation (21) is semi-negative, i.e.,
.

V(t) ≤ 0. The application of Barbalat’s Lemma and Equation (4) indicates that si(t) is
bounded, which implies that e(t) is also bounded. Therefore, the global system stability is
guaranteed with the control law in Equation (10) or the extended controller in Equation (13).

4. Evaluation Methods

The authors conducted a series of independent evaluation methods as means to verify
the performance of the proposed controller in comparison with other control schemes.
The first evaluation tool is the root mean square error (RMSE) method, expressed in
Equation (22). This method serves as a tool to evaluate the behavior of the yaw angle
error e(t).

RMSE(t) =

√
1
n

n

∑
i=1

(ψd(t)− ψ(t))2 (22)

However, the RMSE method alone is unable to give a comprehensive evaluation
of the control algorithms. Therefore, the integral of the time multiplied by the absolute
value of the yaw angle error (ITAE), as well as the integral of the square value (ISV) of the
actuator’s control input signal τ(t) is additionally investigated [37]. The ITAE method in
Equation (23) is used to measure the tracking error of the entire error curve. The ISV method
in Equation (24) shows the energy consumption of the actuators. These performance indices
are defined as follows:

ITAE(t) =
t∫

0

t|e(t)|dt (23)

ISV(t) =
t∫

0

τ2(t)dt (24)

5. Simulation Studies
5.1. Simulation Setup

The simulation tests with the proposed control scheme (ASTSMC-TDE) are conducted
using the mathematical model described in Equation (3). The desired reference trajectory is
shown in Equation (25) and illustrated in Figure 5.

ψd(t) =


8t if t ≤ 10 s
80 if t ≤ 28 s
(−95/6)t + 1570/3 if t ≤ 34 s
−15 otherwise

(25)

Figure 5. The desired yaw angle trajectory.
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The identification and the tuning of the DUAV parameters were conducted using the
system identification toolbox integrated with MATLAB. The parameters in Equation (3) are

identified such that Lemma 1 is satisfied, thus
¯

K = diag(−0.501,−0.501,−0.501,−0.501).

The column vector of weights in Equations (4) and (13) is defined as
¯
cψ = (0.25, 0.25, 0.25, 0.25)T.

Besides, the actuators’ weighting matrices are defined as Cψ = diag(1, 1, 1, 1) in NM and
Cψ = diag

(
1.6, 1.25, 0.1, 1× 10−7) in AM configuration. In this study, especially, the

positive symmetric matrix Pi is chosen as a diagonal matrix given by Pi = diag(10, 1), [42].
The initial values of the DUAV at t0 = 0 are ψ(t0) = 0,

.
ψ(t0) = 0, τ(t0) = (0, 0, 0, 0)T ,

..
ψ*(t0 − L) = 0, and τ(t0 − L) = (0, 0, 0, 0)T . The sampling time is defined as L = 100ms
and the low pass filter is selected as 1/(s + 1).

5.2. Simulation Results
5.2.1. Simulation in NM Mode

The efficiency of the proposed control scheme (ASTSMC-TDE) is studied through
simulation tests in comparison with a PID controller. In all fairness, the control laws
adopted use unchanged control gains in both NM and AM modes.

The control gains of the ASTSMC-TDE from Equation (13) are calculated as
ks = (3258.843(1, 1, 1, 1))T , ζ = (85000(1, 1, 1, 1))T , hs = (517.965(1, 1, 1, 1))T ,
and Ks = diag(0.42024, 0.42024, 0.42024, 0.42024). The PID control gains are assigned
as kp = (−1.4865(1, 1, 1, 1))T , ki = (−9.9544(1, 1, 1, 1))T , and kd = (−7.1175(1, 1, 1, 1))T .

The updating error ε and the constant δ of the adaptive law in Equation (16) are de-
signed to balance between the adaptation speed and the tracking performance. This means
that with large control gains the ASMC is adapting faster but has an underdamped response.

Thus, the ASMC control gains are designed as
^
Φ(t0) = (0, 0, 0, 0)T ,

Ω = diag(0.0025, 0.0025, 0.0025, 0.0025), ε = 2, and δ = 0.9. The simulation results of
the NM mode are shown in Figures 6–11.

Figure 6. Simulation results of the yaw angle trajectory tracking in NM mode.

To begin with, Figure 6 shows the detailed yaw angle trajectory tracking performance.
The proposed ASTSMC-TDE controller has good tracking, fast adaptation, and fast conver-
gence to the reference signal. The controller adapts quickly with the time-varying reference,
which can be seen clearly at the curves where the rate of the desired orientation changes.
The tracking errors of the proposed control scheme, as shown in Figure 7, are less than
those of the PID controller. The control signals, which represent the amount of time the
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controllers take to send the PWM signals to the actuators, are illustrated and compared in
Figure 8.

The performance analysis of both control schemes is further conducted using the ISV
performance index. Additionally, the boundedness of the adaptive term and the chattering
phenomenon of the sliding manifold are two more features of the proposed control law that
are investigated and illustrated in Figure 9. Figure 9a shows that the adaptive term does
not diverge and it is bounded by an upper bound, as proven mathematically in Lemma 2.
While in Figure 9b, the amplitude of the chattering is small and keeps on diminishing.

Besides, the performance of both control schemes are evaluated through the phase por-
trait characteristics, RMSE in Equation (22), ITAE in Equation (23), and ISV in Equation (24).
As illustrated in Figure 10, the phase portrait of ASTSMC-TDE has a more stable node and
focus compared to the PID control. The phase portrait proves that the ASTSMC-TDE has a
fast adaptation and good tracking abilities compared to the PID controller.

Figure 11 shows the ISV values of both controllers throughout the simulation time.
For a clearer comparison, the last RMSE, ITAE, and ISV values of both control schemes are
summarized in Table 1.

Figure 7. The yaw angle errors.

Figure 8. The control signal: (a) Proposed controller; (b) PID.
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Figure 9. The performance of the proposed controller: (a) Updating switching gains of the ASTSMC-
TDE (ASMC term); (b) Sliding manifold variables.

Figure 10. The phase-portrait: (a) Proposed controller; (b) PID.

Figure 11. Cont.
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Figure 11. The performance indices: (a) ISV values of the proposed controller; (b) ISV values of
the PID.

Table 1. RMSE, ITAE, and ISV values in NM mode.

RMSE [deg] ITAE [s.deg] ISV [µs2]

ASTSMC-TDE 1.5422 5.4977

1635.1
1635.1
1635.1
1635.1

PID 1.6469 6.9611

1392
1392
1392
1392

5.2.2. Simulation in AM Mode

In the AM mode, failure in one or more actuators may occur unpredictably. Hence,
a modification in the weighting matrix of actuators is needed such that the influence of the
failed actuators can be neglected and the operating actuators would receive higher weights.
In this specific simulation of the AM mode, the failure occurs in the 3rd and 4th actuators;
the 4th actuator is completely inactive, while the 3rd actuator is provided with 10% of its
normal power capacity. The weighting matrix is tuned as previously mentioned, and the
system performances in this mode are investigated and illustrated in Figures 12–17.

Figure 12. Simulation results of the yaw angle trajectory tracking in AM mode.

Figure 13. The yaw angle errors in AM mode.
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Figure 14. The control signal in AM mode: (a) Proposed controller; (b) PID.

Figure 15. The performance of the proposed controller in AM mode: (a) The updating switching
gains of ASTSMC-TDE (ASMC term); (b) Sliding manifold variables.
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Figure 16. The phase-portrait in AM mode: (a) Proposed controller; (b) PID.

Figure 17. The performance indices in AM mode: (a) ISV values of the proposed controller; (b) ISV
values of the PID.

In the AM mode as well, the proposed ASTSMC-TDE controller shows good tracking
and fast adaptation to the reference. This means that before landing, the DUAV followed
the trajectory with the proper angular position. On the contrary, the PID control becomes
unstable, as can be seen in Figures 12–14 through the unstoppable amplitude increase of the
tracking trajectory and the control signals. The resulting errors of the proposed controller
are smaller than those of the PID controller. Moreover, the boundedness of the adaptive
term and the amplitude of the chattering are depicted in Figure 15.

Similarly, the performance results in AM mode are also evaluated by the phase portrait
characteristics, RMSE, ITAE, and ISV performance indices. In Figure 16a, the phase portrait
of ASTSMC-TDE has a more stable node and stable focus for a small range of position error
and velocity error. Meanwhile, the phase portrait of the PID control proves that the system
is unstable, as seen in Figure 16b. The ISV values in Figure 17 assert that the proposed
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controller has less error in the yaw angle compared to the PID controller. Accordingly,
the final RMSE, ITAE, and ISV values of both control schemes are listed in Table 2.

Table 2. RMSE, ITAE, and ISV values in AM mode.

RMSE [deg] ITAE [s.deg] ISV [µs2]

ASTSMC-TDE 2.0114 7.0281

7507
3569.8
1051.7

0

PID 6.7549 24.9629

9597.4
5857.8
37.49

0

6. Experimental Studies
6.1. Experiment Setup

The designed ducted-fan unmanned aerial vehicle is used for the yaw angle motion
control experimental study. In a similar fashion to the simulation study, the experiments
are also conducted in the NM and the AM modes, which can show the versatility and the
practical feasibility of the proposed control scheme. The DUAV is controlled by a LabVIEW
PC running on a real-time operating system. The thrust force is generated by a BLDC motor
and is measured by a load-cell sensor. The main structure of the DUAV and its parameter
specifications are illustrated in Figure 18 and listed in Table 3.

Figure 18. The experimental setup of the ducted fan unmanned aerial vehicle (DUAV).
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Table 3. The specification of DUAV apparatus.

Devices Specification Parameters

Hover diameter d = 410 [mm]

Propeller diameter dp = 393.7 [mm]

BLDC power P = 2.4 [kW]

DUAV mass m = 2.01132 [kg]

Communication method of Arduino board RS-232 (COM)

Communication method of the gyro sensor Bluetooth

I/O devices Arduino Mega 2560

Control software Labview 2016

Load-cell sensor (max) F = 20 [kgf] ~ Vout = 10 [V]

Gyro sensor ± 2000 (0/s)

Servo motor 0.17sec 600 at 4.8[V]

6.2. Experiment Results
6.2.1. Experiment in NM Mode

The efficiency of the proposed ASTSMC-TDE control scheme in Equation (13) has
been verified through a set of experiments, and a comparison of its performance with
the PID controller was conducted. As aforementioned, both controllers use unchanged
control gains during the experiments in NM and AM modes. The ASTSMC-TDE control
gains are assigned as Ks = diag(0.0555, 0.0555, 0.0555, 0.0555), ks = (2.562(1, 1, 1, 1))T ,
hs = (1.9001(1, 1, 1, 1))T , and ζ = (500(1, 1, 1, 1))T . The control gains of the ASMC in

Equation (16) are chosen as
^
Φ(t0) = (0, 0, 0, 0)T , Ω = diag(2.5, 2.5, 2.5, 2.5), the updat-

ing error ε = 5, and the constant δ = 0.9. For the PID controller gains, the values are
kp = (−9.98825(1, 1, 1, 1))T , ki = (−4.89544(1, 1, 1, 1))T , and kd = (−8.61475(1, 1, 1, 1))T .

The experiment results of the NM mode are illustrated in Figures 19–25. Figure 19
represents the detailed yaw angle response of the DUAV system with both control systems.

Figure 19. Experimental results of the yaw angle trajectory tracking in NM mode.
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Figure 20. The experimental yaw angle error in NM mode.

Figure 21. The experimental control signal: (a) Proposed controller; (b) PID.

Although the DUAV overshoots slightly at 80 degrees, the tracking error of the
ASTSMC-TDE controller is less than that of the PID controller, as depicted in Figure 20.
Figure 21 displays the control input obtained from the ASTSMC-TDE and the PID control
schemes. The details of their performance are best described with the ISV method, where
the energy consumption of both controllers is calculated.

The switching gains of the ASMC term in Equation (16) are proved by Lemma 2 to be
bounded by an upper bound, as shown in Figure 22a. The sliding manifold variables in
Equation (4) are small and slowly varying, as illustrated in Figure 22b. The control inputs
of ASTSMC-TDE and PID to each actuator are represented in Figure 23a,b, respectively.
The thrust force generated by the BLDC motor is measured and shown in Figure 23c.

The experiment results are also evaluated with the phase portrait characteristics,
the RMSE, the ITAE, and the ISV performance indices. In Figure 24, the phase portraits of
both controllers have the same error range. However, the ASTSMC-TDE has a more stable
focus than the PID controller.
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Figure 22. The performance of the proposed controller in NM mode: (a) Updating switching gains of
the ASTSMC-TDE (ASMC term); (b) Sliding manifold variables.

The ISV values of the proposed control system are less than those of the PID controller,
as shown in Figure 25. The last RMSE, ITAE, and ISV values of both control schemes
are summarized in Table 4. From these results, the system performance has improved
by 35.91% in RSME, 36% in ITAE, and 30.27% in ISV when the ASTSMC-TDE controller
was implemented.

Table 4. RMSE, ITAE, and ISV experimental values in NM mode.

RMSE [deg] ITAE [s.deg] ISV [µs2]

ASTSMC-TDE 6.8753 41.0508

1.9437 × 105

1.9437 × 105

1.9437 × 105

1.9437 × 105

PID 10.7277 64.1518

2.7873 × 105

2.7873 × 105

2.7873 × 105

2.7873 × 105
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Figure 23. The experimental performance of the actuators in NM mode: (a) Control gains of actuators
with the proposed controller; (b) Control gains of the actuators with the PID; (c) Thrust force
generated by the BLDC.

Figure 24. The experimental phase-portrait: (a) Proposed controller; (b) PID.
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Figure 25. The performance indices: (a) ISV values of the proposed controller; (b) ISV values of
the PID.

6.2.2. Experiment in AM Mode

Continuously, the setup in the AM mode is similar to that of the simulation tests.
The weighting matrix is tuned as aforementioned, and the experimental results are illus-
trated in Figures 26–32. The practical feasibility of the proposed control scheme in AM
mode has been verified through a series of experiments.

Figure 26. The experimental yaw angle trajectory tracking in AM mode.

Figure 27. The experimental yaw angle error in AM mode.
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Figure 28. The experimental control signal in AM mode: (a) Proposed controller; (b) PID.

Figure 29. The performance of the proposed controller: (a) The updating switching gains of the
ASTSMC-TDE (ASMC term); (b) Sliding manifold variables.

The ASTSMC-TDE scheme demonstrates good tracking performances and maintains
system stability compared to the PID controller. The ASTSMC-TDE controller has not
only the TDE part to cancel the nonlinear factors but also the ASMC term to suppress
the resulting TDE errors. Therefore, the error values of the proposed control scheme are
smaller than the PID control, as shown in Figures 26 and 27. Figure 28 depicts the detailed
control input signals from the ASTSMC-TDE and the PID controls that are evaluated with
the ISV performance index.
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Figure 30. The experimental performance of the actuators in NM mode: (a) The control gains of
actuators with the proposed controller; (b) Control gains of actuators with the PID; (c) Thrust force
generated by BLDC.

Figure 31. The experimental phase-portrait in AM mode: (a) Proposed controller; (b) PID.
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Figure 32. The performance indices in experimental AM mode: (a) ISV values of the proposed
controller; (b) ISV values of the PID.

The updating switching gains of the ASMC are also guaranteed by Lemma 2 to be
bounded by upper bounds, as shown in Figure 29a. The control inputs to the actuators of
both controllers as well as the thrust force in AM mode are illustrated in Figure 30.

The quality of the experimental results is also evaluated by the phase portrait char-
acteristics, RMSE, ITAE, and the ISV performance indices. The phase portrait of both
controllers in Figure 31 shows the same velocity error range. However, ASTSMC-TDE has
a stable focus and a stable node. On the contrary, the PID controller is more susceptible to
be unstable. The ISV values of the proposed controller are also less than those of the PID
controller, as shown in Figure 32. Furthermore, the last RMSE, ITAE, and ISV values of both
control systems are listed in Table 5. From the data represented in this table, the system
performance has recorded an improvement of 8.26% and 36.59% in RSME and ITAE values,
respectively, when the proposed controller was used.

Table 5. RMSE, ITAE, and ISV values in experimental AM mode.

RMSE [deg] ITAE [s.deg] ISV [µs2]

ASTSMC-TDE 13.7254 75.932

2.2801 × 106

1.3751 × 106

9.4316 × 103

0

PID 14.9606 119.7465

2.1967 × 106

1.3395 × 106

8.5648 × 103

0

7. Conclusions

A novel ASTSMC-TDE control scheme was proposed and applied to a DUAV system,
and its performance is investigated through simulations and experiments. The proposed
controller (ASTSMC-TDE) employs a TDE technique to cancel high nonlinearities and an
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ASMC strategy to suppress the resulting TDE error. On the other hand, the chattering
phenomenon is reduced using an approximation of the signum function and the STSMC
control configuration. Moreover, the tracking error of DUAV is guaranteed to be UUB
based on the Lyapunov stability theory.

A comparison study was conducted between the proposed control scheme and a PID
controller in NM and AM modes. This comparative study was executed in both simulation
and experiment tests to determine the versatility and practical feasibility of the proposed
controller. The quality of the control configurations was verified with performance indices.
The performance evaluation of the proposed controller was better than that of the PID
controller. For these reasons, the proposed controller had shown good tracking performance
and a reduced chattering. Therefore, the proposed ASTSMC-TDE can be considered as a
good solution to cope with the high nonlinearities of systems such as DUAVs.
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Appendix A

From Equations (3) and (4), the time derivative of the sliding manifold variable can be
written as:

.
s(t) = Cψ

¯
cψ

..
ψd(t)−Cψ

¯
Kτ(t)−CψΓ(t) + KsCψ

¯
cψ

.
e(t) (A1)

From Equations (4), (7), and (A1), the time derivative of the Lyapunov equation
candidate in Equation (8) can be assigned as:

.
Vs(t) =

n=4
∑

i=1

(
.
ξ

T
i Piξi + ξ

T
i Pi

.
ξi

)
.

Vs(t) =
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Appendix B

The Lyapunov equation candidate is needed to be bounded to prove Lemma 2, [37].
We assume that the Lyapunov function has a sufficiently larger constant value Ṽ as follows:

V(t) =
n=4

∑
i=1

(
ξT

i Piξi +
1
2

[
Γ̃i − φ̂i(t)

0

]T[
Ωii 0
0 Ωii

][
Γ̃i − φ̂i(t)

0

])
= Ṽ (A3)
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There are two terms in the Lyapunov function candidate of Equation (A3), however,
there is at least one term that should be sufficiently large. First, the time derivative of
the Lyapunov function candidate is negative following Equation (21) if ‖s(t)‖2

2 is suffi-
ciently large.

If the term 1
2

[
Γ̃i − φ̂i(t)

0

]T[
Ωii 0
0 Ωii

][
Γ̃i − φ̂i(t)

0

]
of the Lyapunov function can-

didate is sufficiently large, then its time derivative is also negative if considered as following:

~
Γ−

^
Φ(t) (A4)

1
2

[
Γ̃i − φ̂i(t)

0

]T[
Ωii 0
0 Ωii

][
Γ̃i − φ̂i(t)

0

]
= Π ≤ Ṽ, Γ ≥ 0,

^
Φ(t) ≥ 0 (A5)

where Π is a sufficiently large number less than or equal to Ṽ. Equation (A4) provides a
negative value since Π is a sufficiently large number.

In both cases, one of two terms in Equation (A3) is significantly large,
.

V(t) ≤ 0.
However, V(t) has the value Ṽ, the time derivative of V(t) is semi-negative. It means that

V(t) cannot exceed Ṽ. Therefore, V(t) is uniformly ultimately bounded and
^
Φ(t) is also

upper bounded for t ≥ 0 as follows:

^
Φ(t) ≤

~
Φ (A6)

Appendix C

Taking the time derivative of the Lyapunov candidate in Equation (17), we obtain:
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Appendix D

Substituting Lemma 1 into Equation (20), we can rearrange the time derivative of the
Lyapunov function as follows:
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