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Abstract: In this paper, an adaptive sliding mode fault-tolerant control scheme based on prescribed
performance control and neural networks is developed for an Unmanned Aerial Vehicle (UAV)
quadrotor carrying a load to deal with actuator faults. First, a nonsingular fast terminal sliding mode
(NFTSM) control strategy is presented. In virtue of the proposed strategy, fast convergence and
high robustness can be guaranteed without stimulating chattering. Secondly, to obtain correct fault
magnitudes and compensate the failures actively, a radial basis function neural network-based fault
estimation scheme is proposed. By combining the proposed fault estimation strategy and the NFTSM
controller, an active fault-tolerant control algorithm is established. Then, the uncertainties caused by
load variation are explicitly considered and compensated by the presented adaptive laws. Moreover,
by synthesizing the proposed sliding mode control and prescribed performance control (PPC), an
output error transformation is defined to deal with state constraints and provide better tracking
performance. From the Lyapunov stability analysis, the overall system is proven to be uniformly
asymptotically stable. Finally, numerical simulation based on a quadrotor helicopter is carried out to
validate the effectiveness and superiority of the proposed algorithm.

Keywords: quadrotor UAV; fault-tolerant control; sliding mode control; prescribed performance

1. Introduction

With the rapid development of onboard computer technology, communications and
microelectronics systems, multi-rotor unmanned aerial vehicles (MUAVs) are increasingly
popularized in the market [1]. UAVs can be widely used in military and civil fields by
loading robot arms, cameras or other equipment, such as agricultural pesticide spraying,
parcel delivery, and surface exploration [2].

Therefore, the control system of UAVs for load transportation is a topic of current
interest [3]. Since UAV systems are susceptible to interference, the complex flight envi-
ronment and long-term high-load operation may lead to faults. When faults occur, they
may influence the stability of the whole control system and even lead to a catastrophic
crash [4]. To save on costs and ensure safety, keeping the stability of UAV systems with the
occurrence of faults is becoming increasingly important [5].

In [6], a general survey was presented on fault-tolerant control (FTC), and the authors
categorized it into two types in a general framework: passive FTC (PFTC) and active FTC
(AFTC). PFTC is designed aiming at a class of presumed faults [7]. This can stabilize the sys-
tem by relying on robustness and does not need to adjust the structure of the controller [8].
Since PFTC would sacrifice nominal control performance, the research of AFTC has been
explored to meet the high-performance requirements [9]. In contrast to PFTC, AFTC was
designed based on online detection of faults and controller reconfiguration [10,11]. With
the help of the FDD module, an AFTC can deal with faults by adjusting the control law [12].
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In terms of fault diagnosis, a sliding mode observer was proposed in [13] for quadrotor
actuator faults estimation. Moreover, reference [14] further proved that the system using
the certain observer could be globally stable. In [15] a finite-time extended state observer
was presented to obtain the state information of spacecraft. With the advent of the big
data era, some data-driven diagnosis methods have been raised. In [16], by using an
RBFNN-based estimation observer, the parameters of the sliding mode can be adjusted
adaptively so that the tracking trajectory is more effective. A parallel bank of recurrent
neural networks with an extended Kalman filter was designed to improve the reliability
and accuracy of fault severity estimation in [17].

As for the control scheme, SMC has the advantage of strong robustness against uncer-
tainties and disturbances; therefore, it is widely used in fault-tolerant control for quadrotor
UAVs [18]. By combining SMC and back-stepping method, the authors in [19] proposed a
fault-tolerant controller for a quadrotor. In [20], a scheme to deal with the sinusoidal wind
model was designed based on the integral adaptive sliding mode control method.

A comparative survey study was presented in [21], and the authors elaborated both
the advantages and disadvantages of each technique used for the controller to drive a
QUAV. According to the survey results, the terminal sliding mode was considered as the
most suitable method for quadrotor systems. In [22], a nonlinear terminal sliding mode
controller was proposed for the attitude loop of a quadrotor. The authors in [23] designed
a time-varying combinational terminal SMC method and expanded it to an adaptive fuzzy
time-varying fast terminal SMC scheme for a quadrotor flight control.

To ensure fast convergence of the whole process, the authors in [24] proposed a global
fast terminal sliding mode controller for second-order systems. Moreover, an adaptive
nonsingular fast terminal sliding-mode tracking control algorithm is presented in [25] for a
QUAV with modeling uncertainties, and a switching function was introduced to reduce
the chattering.

From the model point of view, most of the existing studies for UAVs are based on
the assumption that the mass and inertia of the system is time-invariant. However, this
assumption ignores the effects of various loads. For example, some loads, such as robot
arms, may change their shapes during flight, which will lead to changes in the momentum
of inertia. The weight of the load is time-varying when quadrotors are applied for aerial
refueling and pesticide seeding, so that both the mass and inertia are unknown.

In [26], a nonlinear dynamic inversion method was proposed to deal with the problem
of a UAV with a suspended load. To deal with the influence of time-varying loads, an
adaptive correcting coefficient is designed to estimate the amount of load in [27]. The
researchers in [28] established a precise model for UAVs with time-varying load and
proposed a compensation control law.

In this paper, inspired by the aforementioned practical problems, an adaptive robust
flight fault-tolerant controller based on NFTSM control and prescribed performance func-
tion is developed for a quadrotor. The objective of this flight control algorithm is to stabilize
the system and to track the flight path in the presence of actuator loss of effectiveness fault
and effects of time-varying payloads. The main novelties and the critical features of this
work are summarized as follows:

(1) A new nonsingular fast terminal sliding mode is designed to deal with the quadrotor
trajectory tracking problem and load disturbances. Strong robustness and fixed-time
convergence are achieved by this algorithm.

(2) To compensate for the uncertainty of mass and inertia caused by the loads, adaptive
laws are designed to estimate the corresponding parameters online.

(3) An RBFNN-based fault estimation observer is designed, so that we can obtain an
accurate value of the actuator failure rate and disturbances.

(4) A prescribed performance function is proposed and incorporated into the position
control algorithm, which optimizes the dynamic performance to be more practical for
real applications.
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The remainder of this paper is organized as follows: the system model of the quadrotor
UAV is given in Section 2. Section 3 presents an RBFNN-based fault estimation algorithm.
In Section 4, the detailed design procedures of the proposed active NFSTM controller
are addressed. The corresponding experimental results are given in Section 5 to show
the effectiveness of the proposed control scheme. Finally, our general conclusions of this
subject are summarized in the last section.

2. The Model Description

As shown in Figure 1, the quadrotor UAV is an underactuated vehicle with two pairs
of propellers driven through four motors mi(i = 1, 2, 3, 4). By adjusting the speed of
propellers, we can adjust the attitude angle and horizontal position of the UAV. In order to
analyze the dynamics and kinematics of the system, position, and attitude equations for
a quadrotor are described in two frameworks: the internal framework (B) located at the
center mass of quadrotor and external framework (E), which is fixed with respect to the
ground [29].

Figure 1. Model of the quadrotor UAV.

2.1. Quadrotor Kinematics

Euler angles are used to describe the quadrotor attitude dynamics: Θ = [φ, θ, ψ]T

represent the roll, pitch and yaw respectively. P = [x, y, z]T represents the relative position
in the inertia system. The angular velocity and linear velocity are described by Ω = [p, q, r]T

and V = [u, v, w]T . m and g are the mass of UAV and the acceleration of gravity. The main
input is defined as: 

Uφ = l( f3 − f4)
Uθ = l( f1 − f2)
Uψ = b( f1 + f2 − f3 − f4)
Uz = f1 + f2 + f3 + f4

(1)

where l is the distance from the center of mass of the aircraft to the propellers, fi(i =
1, 2, 3, 4) is the thrust generated by the corresponding propeller. b is a constant coefficient
and τi=b · fi presents the torque generated by propellers. Neglecting the shape and the
rotation of the Earth, then the kinematic and the dynamic equations can be established as:{

dM
dt = d(mV)

dt = F
dH
dt = d(JΩ)

dt = Mb
(2)
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where M, H, Mb, and J stand for the linear momentum, angular momentum, torque, and
inertia. Due to the time-varying payload of UAVs, m and J are time-varying. Therefore, we
can obtain the following formulas by combining Newton’s second law [30]:

mV̇ = F− ṁV=RE
B

 0
0

Uz −mg

− ṁV (3)

JΩ̇ = Mb − J̇Ω = UR − K− J̇Ω (4)

where UR = [Uφ, Uθ , Uψ]T , K =
[
kφ p2, kθq2, kψr2]T , kφ, kθ , kψ are drag coefficients. RB

E is
the translational matrix, which can be given as [31]:

RE
B = (RB

E)
−1

=

 cos θ cos ψ cos ψ sin θ sin ψ− sin ψ cos φ cos ψ sin θ cos φ + sin ψ sin φ
cos θ sin ψ sin ψ sin θ sin φ + cos ψ cos φ sin ψ sin θ cos φ− cos ψ sin φ
− sin θ sin φ cos θ cos φ cos θ

 (5)

Remark 1. In this paper, ṁV and J̇Ω in Equation (3) are additional terms of time-varying loads,
which are merged with external disturbances. m and Ji(i = x, y, z) are variables.

2.2. Problem Formulation

For the quadrotor system, the occurrence of actuator faults is inevitable. The faults
discussed in this paper are modeled as loss of control effectiveness. Then, the system
subject to actuator faults can be described as follows:

ẋ11 = x12
ẋ12 = 1

m σ1U1 + d1
ẋ21 = x22
ẋ22 = 1

m σ2U2 + d2
ẋ31 = x32
ẋ32 = 1

m σ3U3 + d3

(6)



ẋ41 = x42
ẋ42 = T4x52x62 − 1

Jx
kφx42

2 + σ4
Jx

Uφ + d4

ẋ51 = x52
ẋ52 = T5x42x62 − 1

Jy
kθ x52

2 + σ5
Jy

Uθ + d5

ẋ61 = x62
ẋ62 = T6x42x52 − 1

Jz
kψx62

2 + σ6
Jz

Uψ + d6

(7)

where xi1 = (x, y, z, φ, θ, ψ)T , xi2 = (u, v, w, p, q, r)T . [T1, T2, T3]
T is used to represent

[
Jy−Jz

Jx
, Jz−Jx

Jy 2
, Jx−Jy

Jz
]T for simplification, di is the sum of external disturbance and load

disturbance, which would be called by disturbance term in the following, Ui is virtual
control quantity: 

U1 = (cos φ sin θ cos ψ + sin φ sin ψ)Uz
U2 = (cos φ sin θ sin ψ− sin φ cos ψ)Uz
U3 = (cos φ cos θ)Uz

(8)

0 ≤ σi ≤ 1 represents the actuator effectiveness of ith actuator. When σi = 1, it shows that
the ith actuator works properly. If 0 < σi < 1, it means that the ith actuator partially loses
its effectiveness but still works.

The purpose of this paper is to design an active fault-tolerant controller against
actuator faults and the variation of the payload so that the safety and stability of the system
can be guaranteed. To increase the trajectory tracking performance, the position state
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constraints are taken into consideration. In order to achieve the goal, certain lemmas and
assumptions are used in this paper:

Assumption 1. The disturbance term is bounded, and the upper bound is denoted by known
constants: |di| ≤ D̄i, (i = 1, 2, 3, 4, 5, 6), therefore, D(t) = [d1, d2, d3, d4, d5, d6]

T , ‖D(t)‖ ≤ D̄.

Lemma 1. Based on RBFNN technology, a nonlinear function f (x) : Rp → Rq can be ap-
proximated in a compact set as [32]: f (x) = WTΦ(x) + ε with any designated precision,
where W ∈ Rm×q denotes the ideal weight matrix whose Euclidean norm is bounded. Φ(x) =
[φ1(x), φ2(x), · · · , φm(x)]T represents the basis function and m is the number of implicit layer. ε
is the approximation error of network, which satisfies |ε| ≤ εmax.

Lemma 2. Consider a ‘constrained’ system with the prescribed error performance:

− κµ(t) < e(t) < κ̄µ(t) (9)

where κ and κ̄ are positive constants and µ(t) is a positive decreasing smooth function, which satis-
fies: limt→∞µ(t) = µ∞ > 0. If there is a smooth, strictly increasing function, S(η) satisfies [33]:

(1) −κ < S(η) < κ̄, ∀η ∈ L∞.
(2) limη→+∞S(η) = κ̄, and limη→−∞S(η) = −κ.

Define transformed error as η = S−1( e
µ ), where S−1( e

µ ) is the inverse function of S(η). The
inequality holds when the transformed error is convergent.

3. Estimation Observer DESIGN

In this section, an RBFNN-based fault estimate observer is designed to obtain the
failure rate of actuators and the value of the disturbance term. First, Equations (6) and (7)
can be manipulated into a state-space form:{

Ẋ1(t) = Ẋ2(t)
Ẋ2(t) = F(X2) + BEU + D(t)

(10)

where X1(t) and X2(t) represent the state variables, U is the control input vector, and B
is the control effectiveness matrix, E = diag{σ1, σ2, ..., σ6} represents the failure rate of
actuators, D is the disturbance term.

According to Lemma 1, E can be approximated by E = We
TΦe(X2) + εe. Therefore,

Equation (10) can be written as:{
Ẋ1(t) = Ẋ2(t)
Ẋ2(t) = F(X2) + B(We

TΦe(X2) + εe)U + D(t)
(11)

Then, a novel fault estimation observer is designed for the Equation (11) as follows:

˙̂X2(t) = F(X̂2) + BU(ŴT
e Φe(X2) + ε̂e) + D̂(t) + L(X̂2(t)− X2(t)) (12)

where X̂2(t), ŴT
e and ε̂e are the estimated values of X2(t), We

T and εe respectively. L is a
Hurwitz matrix. The adaptive updated laws are designed as:

˙̂We =

{
0, i f

∥∥Ŵe
∥∥ = W̄e and− k1Φe(x)X̃T

2 PBU − k4(Ŵe − Ŵea) > 0
−k1Φe(x)X̃T

2 PBU − k4(Ŵe − Ŵea), otherwise
˙̂Wea = k2(Ŵe − Ŵea)

˙̂εe = −k3(BU)T PX̃2(t)

(13)
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The compensation of disturbance term is designed as:

D̂(t) =

{
0, i f

∥∥PX̃2
∥∥ = 0

− PX̃2
‖PX̃2‖ D̄, otherwise (14)

where X̃2 = X̂2 − X2, W̃e = Ŵe −We and ε̃ = ε̂ − ε. k1, k2, k3, k4 are positive constants
indicating gains; W̄e is the upper bound of the norm of Ŵe and Ŵea. P is an unknown
positive definite matrix to be select. After simple calculation, the error dynamics equation
is given by:

X̃2(t) = F(X̂2)− F(X2) + BUW̃T
e Φe(X2) + BUε̃e + LX̃2(t) + D̂(t)− D(t) (15)

According to Equations (6) and (7), it is easy to obtain that there exist a positive
constant γ makes the following inequality hold:∥∥F(X̂2)− F(X2)

∥∥ ≤ γ
∥∥X̃2

∥∥ (16)

Theorem 1. Considering a UAV system described by Equation (10), a RBFNN-based fault observer
is designed as Equation (11). If the positive definite matrix P satisfies LP + PL + 2γP < 0 for a
given L, the value of faults and disturbance term can be obtained [34].

4. Fault Tolerant Controller Design

After fault diagnosis, the next problem is to construct fault-tolerant controllers for the
UAV system with actuator faults and parametric uncertainties. The control block model
and flowchart of the proposed control method are illustrated in Figures 2 and 3. In this
section, the overall UAV system is decoupled into the position subsystem and attitude
subsystem as shown in Figure 2.

With the fault magnitudes and disturbance value obtained in Section 3, an adaptive
NFTSMC scheme is presented for the corresponding subsystem to track the desired trajec-
tory. It can be seen in Figure 2 that the algorithm is composed of an inner loop and an outer
loop. The outer loop that gives the desired angles, and the total thrust is applied to perform
robust path tracking. The inner loop is used to maintain the UAV attitude stabilization.

With the desired angles, this loop generates the yawing, pitching, and rolling torques
to control the angular and the velocity of the attitude subsystem. The proposed scheme
is not only able to handle the faults and disturbance term but also able to guesstimate
the unknown mass and inertia caused by time-varying payloads. Additionally, for better
dynamic performance, an error transformation based on the PPF method is designed on
the position subsystem.

4.1. Position Subsystem

Considering Equation (6), the tracking error is defined as:

e1i = xi1 − xid(i = 1, 2, 3) (17)

where xid is the desired trajectory.

4.1.1. Prescribed Performance

To avoid collision and optimize the control performance, we designed Prescribed
Performance Functions (PPF) to ensure a maximum overshoot less than a prescribed value.
An error transformed system is derived from the original system so that the stability of the
transformed system can ensure that the tracking error of the original system is within the
prescribed bounds. The constraints of error variables are set as:

− κiµi(t) < ei < κ̄iµi(t) (18)
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The prescribed performance functions µi(t) are set as µi(t) = (µi0 − µi∞)e−hit + µi∞,
(i = 1, 2, 3), where µi0, µi∞, κi and κ̄i are positive constants.

Figure 2. The general control scheme of the quadrotor.

Figure 3. The flowchart of the control system.

Remark 2. In (18), we can see that κiµi(t) and κ̄iµi(t) define the upper bound and lower bound of
error variables separately. The decreasing rate hi represents the lower bound of convergence speed,
µi∞ confines the steady-state tracking error. Therefore, the transient performance can be designed
by turning corresponding parameters.

According to Lemma 2, we set the following transform to guarantee that the tracking
errors remain within the prescribed performance bounds:

ei(t) = µi(t)Si(η)

Si(ηi) =
κ̄ieηi−κie

−ηi

eηi+e−ηi

(19)

Since Si(η) is strictly monotonic increasing, we can obtain its inverse function:

ηi = Si
−1(

ei
µi
) =

1
2

ln
µiκi + ei
µiκ̄i − ei

(20)

4.1.2. Position Control Design

In this part, controllers based on NFTSMC are proposed for the output error trans-
formed system. The main advantage of this kind of algorithms is fast convergence and
strong robustness under the effect of model uncertainties and disturbance terms. Two
different controllers are discussed in this section. The first one is an NFTSMC algorithm
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developed for the position control subsystem without the uncertainty terms. Since the
time-varying loads are considered in this paper, the adaptive method is introduced aiming
at the uncertainty of mass, which can improve the control performance.

Without loss of generality, we take [x11,x12]
T as an example to show the detailed

design procedures. First, an NFTSM surface is introduced as follows:

S1 = η1 + k11|η1|α1 sign(η1) + k12|η̇1|β1 sign(η̇1) (21)

where k11 > 0, k12 > 0. To avoid singularity, 1 < β1 < 2 and β1 < α1.
By setting Ṡ1 = 0, the equivalent term in control signal is derived as:

U1eq =
m
σ1

[ẍ1d − d̂1 +
ė1µ̇1 + e1µ̈1

µ1
−

e1µ̇2
1

µ1
2 −

η̇1(1 + α1k11|η1|α1−1)

h1β1k12|η̇1|β1−1 − ḣ1(ė1µ1 − e1µ̇1)

h1µ1
] (22)

To achieve strong robustness to deal with disturbance terms, the switching control
law is designed as:

U1sw =
m
σ1

[−p1sign(S1)− q1S1] (23)

Finally, the complete control law is defined as:

U1 = U1eq + U1sw=
m1τ1

σ1

τ1 = ẍ1d − d̂1 − p1sign(S1)− q1S1 −
e1µ̇2

1
µ1

2 + ė1µ̇1+e1µ̈1
µ1

− η̇1(1+α1k11|η1|α1−1)

h1β1k12|η̇1|β1−1 − ḣ1(ė1µ1−e1µ̇1)
h1µ1

(24)

where p1 and q1 are positive constants, σ1 and d̂1 are obtained from the observer proposed
in Section 3, h1 = 1

2 (
1

µ1κ1+e1
+ 1

µ1κ̄1−e1
).

The stability of this controller is proved with following Lyapunov function:

V1 =
1
2

S1
2 (25)

V̇1 = S1Ṡ1

= S1[η̇1 + α1k11|η1|α1−1η̇1 + β1k12|η̇1|β1−1ḣ1(ė1 −
e1µ̇1

µ1
) + β1k12|η̇1|β1−1h1τ1

+ β1k12|η̇1|β1−1h1(
e1µ̇2

1
µ1

2 −
ė1µ̇1 + e1µ̈1

µ1
− ẍ1d + d1)]

= −β1k12|η̇1|β1−1h1(q1S1
2 + p1|S1|)

≤ 0

(26)

Therefore, according to the Lyapunov theory, the NFTSM surface would converge
to zero with respect to disturbance terms. Due to the time-varying load, the mass m is
unknown. Now, adaptive laws are designed to approximate the value of mass. The control
law can be modified as:

U1 =
m̂1

σ1
τ1 (27)

where m̂1 is the estimate of m. By defining m̃1 = m̂1 −m, the corresponding adaptive law
is designed as:

˙̂m1 = −δ1h1τ1S1β1k12|η̇1|β1−1 (28)

where δ1 is a positive constant. Moreover, the controllers for [x21, x22]
T and [x31, x32]

T can
be designed in the same way.

Theorem 2. For system with time-varying load described in Equation (6) with controllers U1, U2,
U3 and adaptive laws ˙̂m1, ˙̂m2, ˙̂m3, we can conclude that the system states converge to the sliding
surface in a finite and the constraints will never be violated.
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Proof of Theorem 2. A Lyapunov function for [x11, x12]
T is defined as:

Va1 =
1
2

S1
2 +

m̃2
1

2mδ1
(29)

Combing Equations (6) and (26)–(28) ,the time derivative is given as:

V̇a1 = S1Ṡ1 +
m̃1 ˙̂m1

mδ1

= S1[η̇1 + α1k11|η1|α1−1η̇1 + β1k12|η̇1|β1−1ḣ1(ė1 −
e1µ̇1

µ1
) + β1k12|η̇1|β1−1h1(1 +

m̃1

m
)τ1

+ β1k12|η̇1|β1−1h1(
e1µ̇2

1
µ1

2 −
ė1µ̇1 + e1µ̈1

µ1
− ẍ1d + d1)] +

m̃1 ˙̂m1

mδ1

≤ −β1k12|η̇1|β1−1h1(q1S1
2 + p1|S1|) +

m̃1

m
(β1k12|η̇1|β1−1h1τ1S1 +

˙̂m1

δ1
)

= −β1k12|η̇1|β1−1h1(q1S1
2 + p1|S1|)

≤ 0

(30)

According to the Lyapunov stability theory, subsystem [x11, x12]
T is stable. By the same

principle, we can conclude that [x21, x22]
T and [x31, x32]

T are stable too. The NFSTM can
track the trajectory well, and the adaptive laws can accurately approximate the unknown
mass. Moreover, we can conclude that the tracking errors remain within the prescribed
performance bounds by combining Equations (23)–(34) and Lemma 2. This completes
the proof.

4.2. Attitude Subsystem

In this part, an NFSTM tracking control strategy is proposed for the attitude subsystem.
First, we propose a robust NFSTM controller under the assumption that the inertia of
UAV is exactly known. Then, adaptive laws are designed to compensate for the system
uncertainties. According to Equation (8) the desired trajectories x4d and x5d are derived
from the position subsystem. Considering Equation (7) the tracking error is defined as:

e1i = xi1 − xid(i = 4, 5, 6) (31)

Similar to Equation (21) in Section 4.1.2, the sliding mode surfaces are proposed as:

Si = ei + ki1|ei|αi sign(ei) + ki2|ėi|βi sign(ėi) (32)

where i = 1,2,3, ki1 > 0, ki2 > 0. To avoid singularity, 1 < βi < 2 and βi < αi.
Without loss of generality, [x41, x42]

T is taken as an example. First, a NFSTM algorithm
for attitude subsystem without the uncertainty terms is designed. By the same processes,
the control law U4 is given as:

U4 = U4eq + U4sw = Jx
σ4

τ4 +
kφx42

2

σ4

τ4 = −T4x52x62 + ẍ4d − d̂4 − |ė4|2−β4

β4k42
(1 + α4k41|e4|α4−1)sign(ė4)− q4S4 − p4sign(S4)

(33)

where p4 and q4 are positive constants.
The stability of this controller is proven with following Lyapunov function:

V4 =
1
2

S4
2 (34)
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V̇4 = S4Ṡ4

= S4[ė4 + α4k41|e4|α4−1 ė4 + β4k42|ė4|β4−1τ4 + β4k42|ė4|β4−1(T4x52x62 + d4 − ẍ4d)]

= S4β4k42|ė4|β4−1[−q4S4 − p4sign(S4)]

= −β4k42|ė4|β4−1(q4S4
2 + p4|S4|)

≤ 0

(35)

Therefore, according to the Lyapunov theory, the NFTSM surface would converge to
zero with respect to the disturbance terms.

To compensate the uncertainties of inertia, the control law can be modified as:

U4 = Ĵx
σ4

τ4 +
kφx42

2

σ4

τ4 = −T̂4x52x62 + ẍ4d − d̂4 − |ė4|2−β4

β4k42
(1 + α4k41|e4|α4−1)sign(ė4)− q4S4 − p4sign(S4)

(36)

where T̂4 and Ĵx are the estimated value of T4 and Jx. By defining T̃4 = T̂4− T4, J̃x = Ĵx − Jx,
the corresponding adaptive laws are designed as:{

˙̂Jx=− δ4τ4S4β4k42|ė4|β4−1

˙̂T4 = c4x52x62S4β4k42|ė4|β4−1 (37)

where δ4 and c4 are positive constants. Moreover, the controllers and adaptive laws for
[x51, x52]

T and [x61, x62]
T can be designed in the same way.

Theorem 3. For the system described in Equation (7) with controllers and adaptive laws designed
as Equations (36) and (37), respectively, we can conclude that the system states converge to the
sliding surface, and the constraints will never be violated.

Proof of Theorem 3. A Lyapunov function for [x41, x42]
T is defined as:

Va4 =
1
2

S4
2 +

J̃2
x

2δ4 Jx
+

T̃2
4

2c4
(38)

Combing Equations (7) and (33)–(37), the time derivative is given as:

V̇a4 = S4Ṡ4 +
J̃x

˙̂Jx
δ4 Jx

+
T̃4

˙̂T4

c4

= S4[ė4 + α4k41|e4|α4−1 ė4 + β4k42|ė4|β4−1(1 +
J̃x

Jx
)τ4

+ β4k42|ė4|β4−1(T4x52x62 + d4 − ẍ4d)] +
J̃x

˙̂Jx
δ4 Jx

+
T̃4

˙̂T4

c4

= S4β4k42|ė4|β4−1[−q4S4 − p4sign(S4)]

+
J̃x

Jx
(

˙̂Jx
δ4

+ S4β4k42τ4|ė4|β4−1) + T̃4(
˙̂T4

c4
+ S4β4k42τ4|ė4|β4−1)

≤ −β4k42|ė4|β4−1(q4S4
2 + p4|S4|)

≤ 0

(39)

According to the Lyapunov stability theory, subsystem [x41, x42]
T is stable. By the same

principle, we can conclude that [x51, x52]
T and [x51, x52]

T are stable too. This completes
the Proof.

Remark 3. The control law of the NFTSM controller includes two parts: the equivalent term and
the switching term. The equivalent term is adopted to construct a reaching law, which ensures fast
convergence when the system states are not on the sliding surface. The other part Uisw makes the
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system more robust against the disturbance terms and uncertainties. This controller can make the
tracking error converge to zero when the system uncertainties are known. However, this assumption
is not satisfied due to the time-varying load. With the help of adaptive laws, the ANFTSMC scheme
can eliminate the effects of system uncertainty. Moreover, the ANFTSM controller still has the
advantage of high precision, strong robustness, and fast convergence.

5. Simulation

In this section, numerical simulations of the UAV control system are conducted to
show the efficiency of the designed control strategy using the RBFNN-based observer
and ANFTSMC technology with time-varying loads and actuator faults. Referring to
the relevant data of Qdrone quadrotor designed by the Canadian Quanser company, the
main parameters of UAV are chosen as: Jx0 = 0.04, Jy0 = 0.04, Jz0 = 0.08, m0 = 2 kg, g =

9.8 m/s2, the air drag coefficient are given as kϕ = kθ = kφ = 6× 10−3.
Considering the real situation, white noise with upper bound D̄i = 0.1 is given as the

external disturbances. The initial position and Euler angle are set as: Θ(0) = [0, 0, 0]T ,
P(0) = [−0.6, 1.2, 0]T , and the desired trajectory is set as: [xd, yd, zd, ψd]

T = [0.8 sin(0.2πt),
0.8 cos(0.2πt), 0.2t, π/3]T .

Finally, considering the effects of time-varying loads, we simulate the scene where the
UAV is used for pesticide spraying. The mass variation of the load is set as:

ρ =

{
2kgt ∈ [0, 5)
2e−0.4(t−5)kgt ∈ (5, 25]

(40)

Thus, the total mass of UAV and load is m = m0 + ρ, and the total momentum of
inertia are given as

[
Jx, Jy, Jz

]T
=
[

Jx0, Jy0, Jz0
]T

+ [0.05ρ, 0.05ρ, 0.02ρ]T . The variation of
the total mass is shown in Figure 4.

Figure 4. The mass variation.

5.1. Fault Diagnosis

The efficiency of the fault observer is the first to be examined. Without loss of general-
ity, we set a time-varying fault in both the attitude subsystem and position subsystem. The
actuator control effectiveness fault scenario is given as:

σ2 =

{
1, t ∈ [0, 3)
0.3 + 0.1 cos(0.4πt), t ∈ [3, 25]

σ5 =

{
1, t ∈ [0, 5)
0.5 + 0.1 sin(0.4πt), t ∈ [5, 25]

σ1 = σ3 = σ4 = σ6 = 1

(41)

The parameters of the observer are set as: γ = 4.35, W̄e = 32.4, k1 = 1, k2 = 5, k3 =
0.5, k4 = 3. In order to validate the superiority of the proposed schedule, a two-stage
extended Kalman filter (TSEKF) fault estimator [35] is utilized for the sake of comparative
study. The comparison curves of fault estimation between the proposed method and
TSEKF-based observer are shown in Figure 5.
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Figure 5. Fault estimation performance.

According to Figure 5, the proposed fault observer can accurately and instantaneously
recognize the fault severity. However, due to the model uncertainties caused by time-
varying loads, the TSEKF estimator has a minor fault estimation error. TSEKF is a model-
based method that relies on a detailed mathematical model and is sensitive to the changes
in certain model parameters. The RBFNN-based observer presented in this work could
tolerate influences of model uncertainties. Therefore, the proposed fault observer can
accurately approximate the control effectiveness in about 2 s when dealing with actuator
loss of effectiveness faults.

5.2. Trajectory Tracking in Presence of Actuator Fault

In this section, the performance of the proposed controller under the disturbance of
faults with loss of control effectiveness in the actuator is studied. In order to validate the
superiority of the ANFTSMC algorithm, a conventional adaptive SMC similar to [36] is
introduced for comparison. To achieve better performance of the UAV system, the toolbox
of optimization in MATLAB software and an optimization method proposed in [37] are
utilized to obtain the gains of the controllers.

According to Equation (36), the parameters should make the control laws consistent
with the performance of the motors. The parameters of the proposed control law are chosen
as: αi = 2, βi = 1.67, ki1 = 0.1, ki2 = 1, qi = 1.7, pi = 0.8 , and the gains in the adaptive laws
are given as [δ1, δ2, δ3, δ4, δ5, δ6]

T = [0.3, 0.3, 0.5, 0.6, 0.6, 0.7]T , [c4, c5, c6]
T = [1.2, 1.2, 1]T .

Considering the working environment and performance requirements of the aircraft,
the parameters of prescribed performance functions are given as: κi = 1, κ̄i = 1, µi0 =
0.71, µi∞ = 0.18, hi = 0.75. To demonstrate the robustness of the proposed method, a 40%
loss of control effectiveness fault occurs in the fourth actuator at 12s. The purpose of the
control schemes is to achieve trajectory tracking in a short time and overcome the influence
of time-varying load and actuator failure.

Figures 6–8 show the tracking errors of position variables(i.e., x, y, z respectively)
under the designed scheme and a conventional sliding mode controller in the presence
of time-varying load and actuator faults. Furthermore, the tracking errors of the attitude
angles and inputs are shown in Figures 9 and 10 separately. The simulation results show
that the proposed method can make the attitude tracking curves converge in about 1 s, and
the position tracking curves converge in about 1.7 s.

The position subsystem can deal with the disturbance of time-varying load in about
1.2 s, and the error tracking curves would converge to zero in 1.5 s. Moreover, these
disturbances can not make the curves out of the range of constraints. As for the attitude
subsystem, the algorithm can dispose of the disturbance caused by the changes of the mass
in 1 s, and the maximum oscillation amplitude of the curves is within 0.1. After the faults
occur, the curves can converge within 1.2 s and the maximum amplitude is within 0.2.



Actuators 2021, 10, 323 13 of 17

Figure 6. Tracking error plot of position x.

Figure 7. Tracking error plot of position y.

As shown in Figures 6–8, when the mass of load changes at 5 s, the conventional
ASMC can hardly compensate for it. After 10 s, when the mass of the load tends to be
constant, the system gradually stabilized. As gravity acts directly on the vertical, the
variation of the load has a significant impact on the altitude of the UAV. From Figure 9,
we can see that under the effect of time-varying load, the attitude curves of the quadrotor
would fluctuate violently too.

It is difficult for the controller to deal with the problem of time-varying load only
by the robustness of sliding mode. Compared to the conventional ASMC, the proposed
method can effectively weaken the influence. With the help of RBFNN-based fault estimate
observer and the strong robustness of NFTSM controller, the external disturbance and the
influence caused by time-varying loads can be effectively disposed of. Benefiting from the
adaptive law, the uncertainty terms can be estimated immediately. The error curves of the
proposed scheme fluctuated only slightly.
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Figure 8. Tracking error plot of position z.

Figure 9. Tracking error plot of attitude angles.

It can be concluded from Figures 6–9 that the curves fluctuated when the faults
occurred after 12 s. Both controllers can deal with the actuator failures and achieve the
convergence of system errors. With the information obtained by the proposed estimator
integrated into the fault-tolerant controller, the proposed active fault-tolerant algorithm is
more targeted. Therefore, once faults occur, the proposed active FTC scheme can instantly
reduce the impact of faults and maintain the system stability in contrast to the compared
ASMC without the FDD module.

Moreover, because the terminal sliding mode surface presented in this work is fast
convergence, compared with the scheme in [36], the system response is faster, and the tra-
jectory can be tracked more quickly and more accurately, which can be seen in Figures 6–9.
Moreover, it can be seen in Figure 10 and Equations (24), (27), (28), (36) and (37) the control
torques generated by the proposed algorithm meet the characteristics of UAV.

In addition, from Figures 6–8, it can be seen that the proposed active FTC method
has less overshoot than conventional SMC when tracking the position signal. Due to the
introduction of the prescribed performance function and the transformed system, it can be
guaranteed that all the variables in the position subsystem are bounded, and the prescribed
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performance constraints are not transgressed. Finally, by comparing the simulation results,
we can obtain that the proposed active fault-tolerant has better tracking performance and
higher steady precision than conventional ASMC.

Figure 10. The inputs of UAV.

6. Conclusions and Future Works

In this paper, an active fault-tolerant control strategy based on NFTSM and RBFNN
was proposed for a quadrotor UAV to accommodate actuator faults and time-varying
payloads. With the help of the developed strategy, the fault value and the disturbance term
can be precisely estimated online to reconfigure the controller to deal with actuator faults.
First, the whole system was decoupled into the position and attitude subsystem.

By designing a prescribed performance function that characterizes the maximum over-
shoot, the position state of the UAV was limited within the prescribed performance bounds.
Then, an adaptive nonsingular fast terminal sliding mode control scheme that could make
system states converge within a finite time was presented to stabilize the system.

Moreover, a practical engineering problem about time-varying loads was considered,
and the effect of load variations was attenuated by suggesting corresponding adaptive laws.
Finally, simulation results validated the effectiveness of the control scheme proposed in
this paper by comparing it with a two-stage extended Kalman filter (TSEKF) fault estimator
and a conventional sliding mode controller.

The proposed method has the advantages of strong robustness. The estimator and
adaptive laws can precisely and reliably compensate for the actuator faults and mode
uncertainties. Furthermore, the overshoot can be effectively suppressed. However, the
proposed method also has some disadvantages. The PPFs were designed to constrain the
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states of UAV, which makes the initial values of the state variables constrained as well.
In future work, the constraints on the initial value will be removed, and the proposed
algorithm will be tested on a real UAV system.
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