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Abstract: Active braking control systems are vital for the safety of high-speed trains by leading the
train operation at its maximum adhesion state. The train adhesion is a nonlinear function of the slip
ratio and varies with the uncertain wheel-rail contact conditions. A nonlinear active braking control
with rapid and accurate tracking performance is highly required for train braking systems. This paper
proposes a novel prescribed performance active braking control with reference adaptation to obtain
the maximum adhesion force. The developed feedback linearization controller employs a prescribed
performance function that specifies the convergence rate, steady-state error, and maximum overshoot
to ensure the transient and steady-state control performance. Furthermore, in the designed control
approach, a continuous-time unscented Kalman filter is introduced to estimate the uncertainty of
wheel-rail adhesion. The estimation is utilized to represent uncertainty and compensate for the
prescribed performance control law. Finally, based on the estimated wheel-rail adhesion, an on-line
optimal slip ratio generation algorithm is proposed for the adaptation of the reference wheel slip.
The stability of the system is provided, and experiment results validate the effectiveness of the
proposed method.

Keywords: active braking control; feedback linearization; prescribed performance; optimal slip ratio;
train adhesion

1. Introduction

Active braking control is essential for high-speed trains to enhance safe and reliable
train operation [1]. With the increase in train speed, the larger braking force should be
supported to obtain better braking maneuverability. The larger braking force is easy to
cause the wheel to skid or lock under the poor wheel-rail contact conditions. This skid or
lock phenomenon will lead to the reduction of braking force, flattened wheels, and perma-
nent rail damages, which endanger the operation safety of high-speed trains [2]. Therefore,
active braking control systems are indispensable to railway vehicles by preventing the
wheel skid, especially for high-speed trains [3].

Active braking forces of high-speed trains are produced at the contact surface between
the wheel and rail [4]. The braking performance is restricted to the train adhesion. The
maximum train deceleration can be obtained when the wheel slip ensures maximum wheel-
rail adhesion [5]. Thus the optimal wheel slip is the desired operating condition of the
train braking system. The active braking control can enhance the braking capacity by the
maximization of the train adhesion between the wheel and rail [6]. However, the train
adhesion characteristic is influenced by the wheel-rail contact conditions, including the
cleanliness, roughness, humidity, and so on. The uncertainty of wheel-rail adhesion and
system nonlinearity bring significant challenges for active braking control.
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Recently, numerous active braking control methods have been discussed for both road
vehicles and railway vehicles in a lot of literature, each with its advantages. Although
road vehicles with pneumatic tyres and railway vehicles with steel wheels have different
adhesion characteristics, the applied active braking control approaches are similar because
they have similar braking dynamic models [7,8]. A fuzzy logic controller was proposed
in [9] for road vehicles on different road conditions. A proportional-integral-differential
(PID) based wheel slip controller was developed in [10] for a train. The methods were
the most implemented ones in active braking control systems, where the validity of these
methods lacked theoretical supports.

To tackle the un-modeled dynamics and parametric uncertainty, fully data-driven
control techniques have been adopted for the braking systems of road vehicles, such as data-
driven inversion-based control [11], and reinforcement Q-learning [12]. However, these
methods were not easy to explain with practical meaning. The sliding-mode controller has
a simple structure and strong robustness to model uncertainties, which has been adopted to
the active braking control. A fuzzy sliding mode wheel slip controller was proposed in [13]
for electric vehicles to improve the braking performance. An improved super-twisting
sliding mode algorithm was developed in [14] for trains to obtain maximum adhesion
force. However, the inevitable chattering phenomenon of the sliding mode control was an
undesirable effect.

Control methods for nonlinear systems based on the feedback linearization theory
have made significant progress [15–17]. A feedback linearization technique requires the
exact information of nonlinearities, and thus the applicability of this method is restricted to
the real-world active braking control. In [18], Poursamad proposed a feedback linearization
controller integrated with the neural network, which was adopted to learn the uncertainties
of the train braking system. However, the neural network required a lot of training data
with an expensive computational cost. Recently, some uncertainty estimation strategies
have been leveraged for the design of various nonlinear controllers [19,20], where the
estimated uncertainty is fed back into the system model to make the original system similar
to a linear one. Moreover, in a train’s active braking control system, the wheel-rail adhesion
not only represents the system uncertainty, but also the critical train state, which can be
leveraged for obtaining the optimal wheel slip ratio. Therefore, a proper estimator design
plays an imperative role in the active braking control system with the uncertain train
adhesion state.

In recent years, some decent observer methods have been proposed for the active
braking control system, such as high gain observers [21], disturbance observers [22],
and inertial delay observer [23]. However, it is difficult to achieve a good compromise
between the estimation accuracy and noise sensitivity for the above observer method. The
unscented Kalman filter is a powerful technique for optimal state/parameter estimation of
nonlinear systems in the presence of noises [24]. This filter has been adopted in various
industrial applications due to its potential advantages in estimating parameters that change
dynamically. For example, the filter was adopted in [25] to estimate the attitude of a
moving object in 3D space. The unscented Kalman filter can achieve good convergence
characteristics and high accuracy for estimating states/parameters with wide variations.
It is promising to adopt the unscented Kalman filter for estimating the rapidly changing
adhesion of a train.

Different from general control techniques, an appropriate active braking controller
requires an optimal slip ratio as the reference under the time-varying wheel-rail contact
conditions. Existing optimal slip ratio generation methods are mostly carried out by using
various gradient methods based on adhesion curve characteristics [14,26]. However, sensor
measurement noises inevitably lead to estimation fluctuations, which means the ideal
optimal slip ratio is hardly achieved using sampling results of one control cycle. The recur-
sive least squares has been extensively explored for online parameter estimation [27,28]. It
seems to be an appreciated choice to generate the reference slip ratio. However, the normal
form of this method is only suitable for the time-invariant parameter estimation, and thus
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recursive least squares with forgetting factor [29] is introduced to predict the time-varying
gradient of adhesion curve in this paper.

Moreover, due to the time-varying characteristic of the reference slip ratio, a proper
active braking control requires a more rapid and accurate tracking performance. Besides,
compared with road vehicles with pneumatic tyres, the railway transportation systems are
less energy loss and lower adhesion between the rails and wheels [30]. This low friction
brings a higher requirement of the transient control performance for a train braking system,
especially for high-speed trains. However, the aforementioned active braking control
methods mostly focus on analyzing system stability and steady-state behavior, and the
transient performance indicators, such as the overshoot and the convergence rate, were
not investigated. From the perspective of braking safety, it is appreciable that the designed
active braking controller can ensure both the transient and steady-state control performance.
A novel technique of prescribed performance control (PFC) was proposed in [31,32] and
has been applied successfully to various industrial applications [33,34]. The design concept
of this technique is to transform the conventional tracking error into a new variable via
a prescribed performance function with certain properties [35]. Then, the constrained
issue of ensuring both transient and steady-state performance can be transformed into an
unconstrained one.

Motivated by the above discussions, a novel-prescribed performance active braking
control based on a feedback linearization technique together with uncertainty estimation
is proposed to achieve the optimal adhesion control of high-speed trains. The estimation-
based feedback linearization controller is developed to counteract the system nonlinearity
and uncertainty, wherein a continuous-time unscented Kalman filter is integrated to esti-
mate the uncertain wheel-rail adhesion. Benefiting from the estimated adhesion, an on-line
reference slip ratio generation algorithm is designed by using a forgetting factor recursive
least squares. Furthermore, both the transient and steady-state control performance is
strictly ensured by incorporating a prescribed performance function into this controller to
enhance the braking safety. The stability of the proposed controller is guaranteed. Extensive
experimental results validate the effectiveness and superiority of the proposed method.

The rest of this paper is organized as follows. Section 2 describes the high-speed train
models. Section 3 elaborates on the proposed active braking control method. Section 4
details the optimal slip ratio generation algorithm and Section 5 provides the experiment
results and the corresponding analysis. Finally, the conclusions are presented in Section 6.
Nomenclatures are included in Table 1.

Table 1. Nomenclature.

Symbol Definition

λ The slip ratio
λ∗ The desired slip ratio
µ The adhesion coefficient

µmax The maximum adhesion coefficient
Fa The adhesion force
F̂a The estimated adhesion force
ω The wheel angular velocity
vt The vehicle velocity
vs The velocity difference
Tb The total effective torque acting on the wheel
Iw The wheel moment of inertia
m The total mass of the high-speed train
n The numbers of wheels
Fz The wheel vertical load
FR The total wind resistance

c0, c1, c2 Davis resistance coefficients
r The wheel rolling radius
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2. Problem Formulation

In this section, the high-speed train model is constructed, which describes the driving
wheel dynamics and the longitudinal train dynamics, and the adhesion characteristics
between the wheels and rails are analyzed. Then, the proposed control approach is also
introduced.

2.1. High-Speed Train Model

Figure 1 shows the longitudinal dynamics of a high-speed train and the driving wheel
dynamics. From this figure, a quarter train model [3] is utilized in this paper to describe the
motion of a high-speed train. According to the law of the fixed-axis rotation and Newton’s
second law, the corresponding driving wheel model and train dynamics can be denoted as:

Iwω̇ = Tb − rFa, (1)

mv̇t = nFa − FR, (2)

FR = c0 + c1vt + c2v2
t . (3)

Rail track

anF

zF

arF

tv

RF

 bT

wheel

Figure 1. The longitudinal dynamics of a high-speed train and the driving wheel dynamics.

Specifically, both the adhesion force Fa and total effective torque Tb are negative
for the train braking scenarios. The adhesion force Fa can be expressed by the adhesion
coefficient µ:

Fa = Fzµ. (4)

Researches indicate that the adhesion coefficient µ is a highly nonlinear function about
the slip ratio λ [1]. The slip ratio represents the relative difference between the vehicle
velocity and wheel velocity and can be defined as:

λ =
vt −ωr

vt
. (5)

Due to the vehicle velocity vt being unknown, the slip ratio λ cannot be obtained
directly according to Equation (5). Thus, based on the multi-sensor data fusion method,
the slip ratio is usually inferred from acceleration and wheel speed sensors [36]. Moreover,
from Figure 2, it can be found that the relationship between the adhesion coefficient and
the slip ratio is complicated, which changes with the wheel-rail contact conditions and
vehicle velocities. The adhesion characteristics between the wheels and rails are coupled
with the external environment, which brings remarkable challenges to the design of an
active braking controller for high-speed trains.

2.2. Active Braking Control Approach

From Formula (4), we can know that the adhesion force is determined by the adhesion
coefficient and the wheel vertical load. During the train braking process, the wheel vertical
load is constant, but the adhesion coefficient changes with the slip ratio under different
wheel-rail contact conditions and vehicle velocities, which can be seen in Figure 2. It is
worth noting that an optimal slip ratio always exists that can make the adhesion coefficient
maximize, i.e., µmax = f (λ∗). If the real-time slip ratio is larger than the optimal slip
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ratio, the train will operate in an unstable area and the adhesion coefficient decreases
rapidly. In order to shorten the brake distance and alleviate the wear of wheels and rails,
the high-speed train should operate in a neighborhood of optimal slip ratio λ∗ so that the
maximum wheel-rail adhesion can be maintained. To this end, an advanced active braking
control with a rapid and accurate tracking performance is highly required for train braking
systems, where a reliable optimal slip ratio generation should be provided.

( )max f =

(a) Different wheel-rail contact conditions [26].

stable 

area

unstable area

*

(b) Different vehicle velocities [1].

Figure 2. Adhesion coefficient versus slip ratio curves under different wheel-rail contact conditions
and vehicle velocities.

Following the above discussion, there are three main difficulties in active brake control
design: (i) The uncertainties and nonlinearities of the train dynamics, (ii) the time-varying
and unknown optimal slip ratio for use as the reference, and (iii) the high requirements
of tracking performance. Therefore, this paper proposes an estimation-based prescribed
performance feedback linearization controller with reference adaptation for active brak-
ing control systems of high-speed trains. Particularly, the prescribed performance is
incorporated into this controller to guarantee both the transient and steady-state control
performance. For the proposed control architecture, an unscented Kalman filter is inte-
grated to estimate the uncertain train adhesion. The estimated train adhesion will be fed
back into the system model to update the designed controller, and further be utilized to
generate the reference slip ratio. Figure 3 elaborates the block diagram of the proposed
active braking controller.

Feedback Linearization 

Controller

Feedback Linearization 

Controller

Plant

Prescribed Performance Prescribed Performance 

UKF for Train 

Adhesion Estimation

UKF for Train 

Adhesion Estimation

Reference Generation 

Algorithm

Reference Generation 

Algorithm
Train StatesTrain States

-+-+



 



bT

ˆ
aF

ˆ
aF

,a

( )1 t

Figure 3. Proposed prescribed performance active braking controller based on feedback linearization
with adhesion estimation.

3. Prescribed Performance Feedback Linearization Controller with
Adhesion Estimation

This section details the development of an active braking controller based on a pre-
scribed performance feedback linearization method with the purpose of enhancing the ride
quality and braking capacity. Wheel slip dynamics are firstly established, and the controller
is designed to regulate the wheel slip to its desired value, where both the transient and
steady-state control performances are ensured by incorporating a prescribed performance
function. Stability analysis of the proposed controller is also discussed.
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3.1. Wheel Slip Dynamics

The wheel slip dynamics is required for the design of an active braking controller.
Differentiating Equation (5), we can obtain:

λ̇ =
v̇t(1− λ)− ω̇r

vt
. (6)

By substituting Formulas (1) and (2) into Formula (6), the wheel slip dynamics can be
obtained as:

λ̇ =

[
n(1− λ)

mvt
+

r2

Iwvt

]
Fzµ− Tbr

Iwvt
, (7)

where the influence of total wind resistance FR is neglected. Since n
m �

r2

Iw
, where n = 4,

the wheel slip dynamics (7) is further simplified as follows:

λ̇ =
r

Iwvt
(rFzµ− Tb). (8)

Defining the tracking error as λ̃ = λ−λ∗, we can derive the tracking error dynam-
ics as:

˙̃λ =
r

Iwvt
(rFzµ− Tb)− λ̇∗. (9)

3.2. Prescribed Performance
3.2.1. Prescribed Performance Function

To investigate the steady-state and transient tracking performance, a specific pre-
scribed performance function is introduced. Based on the studies of [31,32], we select a
positive decreasing smooth function as:

η(t) = [η0 − η∞]e−kt + η∞, (10)

where η0 > η∞ and k > 0 are the designed parameters. The constrained control perfor-
mance object is to hold the tracking error λ̃(t) within the bounds:

− δη(t) < λ̃(t) < δη(t), ∀t > 0, (11)

where δ and δ are the selected positive constant parameters.
Clearly, the transient and steady-state control performance for tracking error λ̃ can be

determined by the constrained condition (11). In Formulas (1) and (11), the upper bound
of an overshoot is prescribed by the δη0. The lower bound of the undershoot is determined
by −δη0. In addition, the parameter k determines the lower bound on convergence rate,
and η∞ represents the permitted steady-state error [34]. Therefore, such control objects can
be characterized by a priori selection of parameters δ, δ, k, η0, and η∞.

3.2.2. Error Transformation

To handle the above prescribed performance control issue, a tracking error transfor-
mation is adopted to transform the control error behavior into an equivalent unconstrained
one [32]. For this purpose, we define the following error transformation function:

λ̃(t) = η(t)S(ε1), (12)

where the variable ε1 is the transformed tracking error, and S(ε1) is a smooth, strictly
increasing function, satisfying the following properties:

(1) −δ < S(ε1) < δ, ∀ε1 ∈ L∞,
(2) lim

ε1→−∞
S(ε1) = −δ, and lim

ε1→+∞
S(ε1) = δ.
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Thus, the following error transformation function is employed in this section:

S(ε1) =
δeε1 − δe−ε1

eε1 + e−ε1
. (13)

Due to the properties of function S(ε1) and η(t) ≥ η∞ > 0, the inverse function of
S(ε1) exists and we can obtain:

ε1 = S−1
(

λ̃(t)
η(t)

)
=

1
2

ln
[

ξ(t) + δ

δ− ξ(t)

]
, (14)

where ξ(t) = λ̃(t)
η(t) is a measurable variable.

Remark 1. At the initial condition t = 0, the parameters η0, δ, δ should be appropriately selected
such that −δη(0) < λ̃(0) < δη(0) satisfies, and the boundedness of ε1 (i.e., ε1 ∈ L∞, ∀t > 0 ) is
guaranteed. Then, the condition −δ < S(ε1) < δ holds and the tracking error can be constrained
within the prescribed region −δη(t) < λ̃(t) < δη(t). Therefore, the following Lemma can be
provided.

Lemma 1 ([32]). The tracking error dynamics (9) is invariant through the error transformation
of (14). Thus, the control issue of (9) with the constrained condition (11) can be transformed into
stabilizing the transformed error ε1.

3.3. Unscented Kalman Filter-Based Feedback Linearization Controller

In this subsection, a feedback linearization controller based on an unscented Kalman
filter is developed to stabilize the transformed error (14), thus guaranteeing both the steady-
state and transient tracking performance under the uncertainty and nonlinearity of the
train braking system.

3.3.1. Feedback Linearization Controller

Differentiating the transformed error (14), we can obtain:

ε̇1 = ∂S−1

∂ξ ξ̇ = 1
2

[
1

ξ+δ −
1

ξ−δ

]( ˙̃λ
η −

λ̃η̇

η2

)
= `
(

r2

Iwvt
Fzµ− r

Iwvt
Tb − λ̇∗ − λ̃

η̇
η

)
,

(15)

where ` = 1
2η

[
1

ξ+δ −
1

ξ−δ

]
.

Define f (t) = r2

Iwvt
`Fzµ − ` η̇

η λ̃ and g(t) = r
Iwvt

` for vt > 0, the transformed error
dynamics (15) is simplified:

ε̇1
∆
= f (t)− g(t)Tb − `λ̇∗. (16)

Let us first assume that the parameters in (16) are definitely known, then a feedback
linearization controller can be designed as:

Tb = g′(t)
(
K1ε1 + f (t)− `λ̇∗

)
, (17)

where K1 > 0 is the control gain, and g′(t) = 1
g(t) .

The controller (17) requires the full state signals, especially for vehicle velocity. As
mentioned above, vehicle velocity vt can be obtained by using the measurements of
acceleration and wheel speed [36]. Besides, the control parameter ` is updated by λ̃ and η
and thus can be regarded as a measurable variable.

Moreover, the resolution of the uncertain term r2

Iwvt
`Fzµ in the ideal feedback lineariza-

tion controller (17) is another challenge. Except for the uncertain adhesion coefficient,
the train mass also varies with the number of passengers, which cannot be accurately
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measured. To address this issue, a continuous-time unscented Kalman filter is developed
to estimate this uncertain term Fzµ (i.e., adhesion force Fa), then the estimated uncertainty
will be utilized to compensate for the controller (17).

3.3.2. Unscented Kalman Filter for Adhesion Estimation

This paper introduces a continuous-time unscented Kalman filter (CTUKF) algorithm
to estimate the uncertain adhesion force Fa using the measurements of braking torque and
wheel speed. In [37], the CTUKF algorithm is originally designed for the system state
estimation. We will utilize it to achieve the uncertain parameter estimation with some minor
changes in this paper. The estimated adhesion force Fa is represented by the estimated
parameter ϕ, and on the basis of the driving wheel model (1), the continuous-time filtering
model can be expressed as:

ϕ̇(t) = ḋv(t), (18)

ż(t) = h(ϕ(t), ω(t), Tb(t), t) + ḋw(t), (19)

where z(t) represents the nonlinear observation on ϕ(t), dv(t), h(ϕ(t), ω(t), Tb(t), t) de-
notes the driving wheel dynamics, and both dv(t) and dw(t) are independent Brownian
motions with diagonal diffusion matrices Rv(t) and Rw(t), respectively.

Under the assumption of ∆t nearing zero sufficiently, using the approximation of
numerical Euler method, we can obtain:

ϕ(t + ∆t)− ϕ(t) = ∆dv(t) + o(∆t), (20)

z(t + ∆t)− z(t) = h(ϕ(t), ω(t), Tb(t), t)∆t + ∆dw(t) + o(∆t), (21)

where ∆v(t) ∼ N(0, Rv(t)∆t), ∆w(t) ∼ N(0, Rw(t)∆t) and o(∆t) is a function satisfying
o(∆t)/∆t→ 0 when ∆t→ 0.

The initial parameter ϕ(t0) can be set as a random value. The mean and covariance
are initialized with the known ϕ̂(t0) and P̄(t0), where t0 is the initial time. Based on
Formula (20), the estimated mean and covariance can be given as ϕ̂(t) and P̄(t). Then, a
collection of sigma points are generated around the estimated mean as:

h̄(t) =
[

ϕ̂(t) ϕ̂(t) +
√

σP̄(t) ϕ̂(t)−
√

σP̄(t)
]
, (22)

ˆ̄h(t + ∆t) = h̄(t) + o(∆t), (23)

where σ is a scaling parameter and represents the spread of sigma points.
Then, the prediction of mean and covariance can be obtained as:

ϕ̂−(t + ∆t) = ϕ̂(t + ∆t)wm, (24)

P̄−(t + ∆t) = ϕ̂(t + ∆t)W'(t + ∆t) + Rv(t)∆t, (25)

where wm =
[

W(m)
0 . . . W(m)

2N

]
, N = 3, and weighting parameters W(m)

i are defined as:

W(m)
0 = σ/(N + σ),

W(m)
i = 1/(2N + 2σ), i = 1, ..., 2N.

W =
(

I −
[

wm . . . wm
])

×diag
(

W(c)
0 . . . W(c)

2N

)
×
(

I −
[

wm . . . wm
])T ,
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and the weighting parameters W(c)
i are defined as:

W(c)
0 = σ/(N + σ) + (1− α2 + β),

W(c)
i = 1/(2N + 2σ), i = 1, ..., 2N.

In formula (25), the diagonal diffusion matrix Rv(t) determine the convergence rate of
parameter estimation. This matrix can be set as Rv(t) = γP̄(t), where γ ∈ [0, 1]. Then, the
sigma point prediction matrix h̄−(t + ∆t) can be obtained. Further, the estimated function
output difference can be achieved as:

ẑ(t + ∆t) = Z−(t + ∆t)wm, (26)

where the prediction matrix Z−(t + ∆t) = h(ω(t), h̄−(t + ∆t), Tb(t), t) + o(∆t).
Furthermore, according to the statistics of the transformed sigma points, the measure-

ment covariance Πp(t+∆t) and the cross-correlation covariance ΠTp(t+∆t) are computed
as follows,

h̄z(t + ∆t) = Z−(t + ∆t)W[Z−(t + ∆t)]T + Rw(t)∆t,
h̄Tz(t + ∆t) = h̄−(t + ∆t)W[Z−(t + ∆t)]T .

(27)

Then, the Kalman gain is computed as:

K(t + ∆t) = h̄Tz(t + ∆t)h̄z
−1(t + ∆t), (28)

and the parameter ϕ̂ and the error covariance matrix can be computed as:

ϕ̂(t + ∆t) = ϕ̂−(t + ∆t) +K(t + ∆t)(∆z− ẑ(t + ∆t)), (29)

P̄(t + ∆t) = P̄−(t + ∆t)−K(t + ∆t)h̄z(t + ∆t)KT(t + ∆t), (30)

where the term ∆z = z(t + ∆t)− z(t) denotes the measured difference.
Finally, substituting Z−(t + ∆t), ẑ(t + ∆t), h̄z(t + ∆t) , h̄Tz(t + ∆t), ϕ̂−(t + ∆t), and

P̄−(t + ∆t) into Formulas (28)−(30), we can obtain the following differential equations to
estimate the uncertain adhesion force iteratively.

K(t) = h̄(t)WhT(ω(t), h̄(t), Tb(t), t)[Rw(t)]
−1, (31)

˙̂ϕ(t) = K(t)[ω̇(t)− h(ω(t), h̄(t), Tb(t), t)wm], (32)
˙̄P(t) = Rv(t)−K(t)Rw(t)KT(t). (33)

The convergence of the designed unscented Kalman filter is analyzed as follows.
Based on the contraction of Theorem 3.7 and the incremental stability of Corollary 3.8
in reference [38], there exists the following Lemma to guarantee the convergence of the
unscented Kalman filter.

Lemma 2 ([38]). If the designed unscented Kalman filter satisfies the following conditions: (i) The
contraction which requires that the process noise matrix is positive definite and the covariance of the
estimated state is bounded and (ii) the incremental stability which requires that the estimation model
has a Lipschitz continuity and restriction on growth, the estimation error exponentially converges
to a bounded region, satisfying:

lim
t→∞

E
{
‖x̂(t)− x(t)‖2

}
≤ q,

where x̂(t) denotes the estimated mean of system state, x(t) is the corresponding actual mean, the
upper bound q relates to an evaluate of stochastic contraction, and E{·} is the expectation operator.

Remark 2. For the designed unscented Kalman filter, the convergence conditions in Lemma 2 can
be satisfied due to the positive definite Rv(t) (the process noise matrix), the bounded covariance
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P̄, and the driving wheel model (1) meeting the Lipschitz continuity and restriction on growth
because of the passivity of friction characteristics [39]. Therefore, the estimated mean ϕ̂(t) (i.e.,
F̂a(t)) exponentially converges to the actual mean ϕ(t) (i.e., Fa(t)) with a bounded region.

With the above parameter estimation procedures, we can obtain the estimated adhe-
sion force F̂a. Then, the estimated adhesion force F̂a is fed back into the ideal controller (17)
to compensate for the defect of feedback linearization controller. Consequently, the feed-
back linearization controller with the prescribed performance is established as follows:

Tb = g′(t)
(

K1ε1 + f̂ (t)− `λ̇∗
)

, (34)

where the control parameter f̂ (t) is updated by f̂ (t) = r2

Iwvt
`F̂a − ` η̇

η λ̃.

3.3.3. Stability Analysis

In this subsection, the stability of the overall system is detailed in the following
theorem.

Theorem 1. Consider the wheel slip tracking error dynamics (9) with the uncertainty and nonlinearity.
To incorporate the desired tracking performance, (9) is transformed into the error dynamics (15) with
the error transformation (14) as well as the prescribed performance constraint (11). Then, the designed
control law (34) can guarantee the transformation error ε1 is asymptotic convergence, and the tracking
error λ̃(t) satisfies the prescribed performance constraint (11), remaining valid for all time.

Proof of Theorem 1. Substituting the designed control law (34) into the error dynamics
(15), one can have:

ε̇1 = −K1 · ε1 + f (t)− f̂ (t). (35)

The estimation error term f (t)− f̂ (t) can be defined as Λ(t), and then the error
dynamics (15) is rewritten as:

ε̇1
∆
= −K1 · ε1+Λ(t). (36)

Further, a Lyapunov function candidate can be selected as Vε = 1
2 ε1

2. Taking the
differentiation of Vε, we can obtain:

V̇ε = ε1 · ε̇1 ≤ −K1 · ε1
2 + |ε1| · |Λ| ≤ −K1 ·Vε+

√
Vε · |Λ|. (37)

Then, we obtain: √
V̇ε ≤ −K1 ·

√
Vε+|Λ|. (38)

Solving (38), we have:

√
Vε ≤ e−

∫ t
0 K1·dτ ·

√
Vε(0) +

∫ t

0
e−
∫ t

τ K1·dτ · |Λ|dτ. (39)

According to Lemma 2 and Lyapunov’s theory,
√

Vε is uniformly ultimately bounded,
which means that the transformation error ε1 is bounded and its upper bound depends
on the control gain K1 and the designed parameter estimator performance. Then, based
on the inherent properties of S(ε1) and the transformation (12), we can further obtain
−δη(t) < λ̃(t) < δη(t), ∀t > 0, meaning that the tracking error λ̃(t) can obtain the
prescribed control performance to guarantee the transient and steady-state response.

Remark 3. In the designed prescribed performance control law (34), the control parameter terms
f̂ (t), g′(t) are updated by the vehicle velocity vt, estimated uncertain adhesion force F̂a, and
prescribed performance parameter `. Specifically, the control parameter ` is related to the tracking
error λ̃, selected positive decreasing smooth function η, and constraint parameters δ, δ. The control
parameter ` can be guaranteed not to be equal to zero by setting the parameter η∞, and thus the
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singularity issue can be avoided. Besides, the function η and constraint parameters δ, δ can be
selected offline to determine the prescribed control performance based on a preliminary parameter
tuning criteria [34]. Moreover, the designed active braking controller should be rectified at the
extremely small value of the vehicle velocity vt, i.e., vt → 0. Under this case, the wheel slip
dynamics (8) will lose its controllability. For the specific condition, the braking controller will exert
a constant braking torque according to the reference deceleration.

4. Reference Slip Ratio Generation Algorithm

Besides the controller design, a reliable reference slip ratio generation algorithm
should be developed. According to the analysis of Figure 2, when the slope of the adhesion
curve equals to zero (i.e., ∂µ

∂λ = 0), the maximum adhesion coefficient can be obtained. For
the extremum seeking, the real-time adhesion coefficient should be known. Fortunately,
a continue-time unscented Kalman filter is developed for train adhesion estimation in
Section 3.3.2. Benefiting from the estimated train adhesion, an on-line optimal slip ratio
generation algorithm is proposed for the adaptation of the reference slip ratio.

It is worth noting that the characteristics of adhesion curves remain invariant when
adhesion coefficient µ is replaced by the adhesion force Fa. Defining the adhesion slope
χ = ∂Fa

∂λ , the reference slip ratio seeking approach can be designed as (42) based on the
characteristics of adhesion curves.

λ∗(t + ∆t) = λ∗(t)− h̄1 · sgn(χ), (40)

where h̄1 denotes the step size of searching, sgn(·) represents the sign function, and λ∗(t0)
is initialized as 0.1 based on experience.

For the proposed seeking approach, the precise slope χ information is crucial, which
is usually calculated by the ∂Fa/∂t and ∂λ/∂t. Due to the sensor measurement noises, the
estimation fluctuations of train adhesion and slip ratio are inevitable. It means that the
ideal reference slip ratio is difficult to obtain by just using sampling data of one control
cycle. Moreover, the normal form of recursive least squares is only suitable for the time-
invariant parameter estimation. In this paper, the slope χ is identified by a recursive least
squares with a forgetting factor to cope with the measurement noises and the varying
adhesion slope. The designed forgetting factor recursive least squares algorithm for the
slope identification can be expressed as:

χ̂(t + ∆t) = χ̂(t) + β(t) ·
[
∂F̂a/∂t− (∂λ/∂t) · χ̂(t)

]
,

β(t) = P(t)·(∂λ/∂t)
ρ+P(t)·[∂λ/∂t]2

,

P(t + ∆t) = 1
ρ [1− β(t) · (∂λ/∂t)]P(t),

(41)

where χ̂ denotes the predicted adhesion slope, ρ represents the forgetting factor, χ̂(0) is set
as 0, and P(0) is initialized as a sufficiently large positive real number.

In this designed algorithm, the forgetting factor ρ determines the influence of historical
sampling data on parameter identification, and the parameter gain P can be reset as the
initial value to handle the parameter variation issue. To be specific, when detecting
adhesion changes, the designed algorithm will reset the parameter gain P and regulate the
forgetting factor ρ to achieve forgetting the past wheel-rail contact features while capturing
the new ones. Further, the forgetting factor ρ is designed to fit the adhesion changes
as follows: {

ρ(t) = ρ1 i f |∂Fa/∂t| ≤ ζ,
ρ(t) = ρ2 i f |∂Fa/∂t| > ζ,

(42)

where ζ is a positive real number, which is selected based on the statistic characteristics of
∂Fa/∂t.
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5. Experimental Validation

In this section, the proposed active braking control approach is verified by the hard-
ware in loop simulation (HILS) train braking test platform. Firstly, the performance of the
unscented Kalman filter for train adhesion estimation is verified. Then, the performance of
proposed optimal slip ratio generation algorithm is provided and analyzed under differ-
ent wheel-rail contact conditions. Finally, detailed control performance comparisons are
conducted to verify the effectiveness and superiority of the proposed method.

5.1. Experimental Setup

As shown in Figure 4, a HILS train braking test platform is established to simulate
a real system. The braking system consists of the brake cylinder, pressure sensor, electro-
pneumatic (EP) valve module, and brake control unit (BCU), which operate as the actual
equipment. The braking torque Tb is provided by the brake cylinder pressure Pc and the
corresponding relationship is represented by: Tb = ϑ · Pc, where the parameter ϑ can
be obtained as ϑ = −33.56 by experimental tests. The designed active braking control
approach is implemented in the BCU.

EP valve module

Pressure sensor

BCU

CAN BUS

Wheel 

velocity 

signal

Control 

signal

Pressure 

signal

Pressure 

value

Wheel 

velocity 

sensor

Wheel velocity control signal

Wheel velocity 

controller
Simulator

Brake cylinder 

pressure  measurement

Brake cylinder

Wheel velocity  

measurement

Active braking controller
High-speed train motion 

equations

Figure 4. Experimental platform for the pneumatic braking system of the high-speed train.

Based on the high-speed train motion equations, the train states, including the train
velocity vt, the wheel angular speed ω are updated in a real-time simulator. The BCU
can obtain the actual gear rotational velocity from the wheel velocity sensor. The actual
gear rotational velocity corresponds to the updated wheel angular speed ω. Moreover, a
Burckhardt and Reimpell friction model [26] is utilized by the simulator to emulate the
train adhesion µ, and its function is µ = (−1)

(
α0
(
1−e−α1λ

)
− α2λ

)
for the train braking

process, where constant parameters α0, α1, α2 vary with different rail conditions. Therefore,
the changes of wheel-rail contact condition can be simulated through altering these friction
parameters. The electrical interface between the real braking system and the virtual train
dynamics is established to simulate that of an actual high-speed train.

The high-speed train parameters and the proposed control system parameters are
listed in Tables 2 and 3, respectively. The UKF is an abbreviation of the unscented Kalman
filter; the RSRGA is an abbreviation of the reference slip ratio generation algorithm; and
the E-PPFC is an abbreviation of the proposed estimation-based prescribed performance
feedback linearization control. The initial train velocity vt(t0) is set to 50 m/s, and the
initial wheel speed is equal to the initial train velocity. The sampling time is set to 1 ms.
Furthermore, to better analyze the control performance of the proposed control approach,
different wheel-rail contact conditions are considered as follows: (i) for t = [0, 2) s, the dry
contact condition is set (α0 = 0.3546, α1 = 23.129, α2 = 0.1246); (ii) for t = [2, 4) s, the snowy
contact condition is set (α0 = 0.1646, α1 = 26.731, α2 = 0.1646); and (iii) for t = [4, 6] s, the
wet contact condition is set (α0 = 0.2546, α1 = 24.617, α2 = 0.1360). The varied wheel-rail
contact conditions will cause the adhesion coefficient µ changes in the slip dynamics (9),
and the reference optimal slip ratio λ∗ changes.
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Table 2. The main high-speed train parameters.

Parameters Values Parameters Values

m 13,800 kg Iw 60.35 kg·m2

r 0.43 m n 4
vt(t0) 50 m/s - -

Table 3. The control system parameters.

Methods Parameters Values Parameters Values

UKF
P̄(t0) 0.5 γ 0.23

σ 2 Rw(t0) 1
β 2 - -

RSRGA
h̄1 0.01 ρ2 0.7
ζ 1 P(t0) 1
ρ1 0.98 - -

E-PPFC
η0 0.1 δ 1.2
η∞ 0.005 δ 1.2
k 30 K1 100

5.2. Experimental Results

This subsection presents the experimental results to validate the proposed active
braking control approach under the varying wheel-rail contact conditions. Firstly, we
provide and analyze the experimental results of the train adhesion estimation and the
reference slip ratio generation. Then, comparative braking experiments are conducted to
indicate the effectiveness and superiority of the proposed active braking control approach.

Figure 5 presents the train adhesion estimation results based on an unscented Kalman
filter. As shown in Figure 5, the designed train adhesion estimator provides a rapid and
accurate adhesion estimation under the different wheel-rail contact conditions. Moreover,
whether the wheel-rail contact conditions are in positive or negative jump, the estimated
adhesion can rapidly converge to the actual value. The accurate estimated adhesion will be
used to compensate for the uncertainty in the designed prescribed performance feedback
linearization control law, and it will provide the critical information for obtaining the
reference optimal slip ratio.

The experimental results of the optimal slip ratio estimation are illustrated in Figure 6.
As shown, when the wheel-rail contact condition is changed, the corresponding optimal
slip ratio can be obtained in a short period. For example, when the first wheel-rail contact
condition jump occurs at t = 2 s, the estimated optimal slip ratio converges to the reference
value within 50 ms. Then, the estimated slip ratio will be input into the active braking
controller as the control target.

Furthermore, in order to verify the superiority of the proposed active braking con-
troller (represented by E-PPFC), it is conducted by comparing with estimation-based
feedback linearization control (represented by E-FC), PID control, and fixed reference slip
ratio-based control (represented by Fixed-slip). Specifically, the fixed reference slip ratio
is set as 0.1 according to the engineering experience, and the parameters of PID control
are set as Kp = 100, Ki = 10, Kd = 1. Figures 7–9 provide the corresponding braking
experimental results.

Figure 7 presents train states including the vehicle velocity, wheel velocity, and train
adhesion coefficient under the four different control approaches. As shown in Figure 7,
although the Fixed-slip control method can prevent the wheel from locking, the obtained
adhesion coefficient is not optimal compared with the other control methods. It indicates
that the Fixed-slip control method has the maximum braking distance among the four
control approaches. For the other control methods that use the optimal slip ratio as the
reference, all of them can make the train in the maximum adhesion state quickly and ensure
the maximum braking capacity.
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Figure 5. Experimental results of train adhesion estimation based on unscented Kalman filter under
the varying wheel-rail contact conditions.
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Figure 6. Optimal slip ratio estimation results based on forgetting factor recursive least squares
algorithm under the varying wheel-rail contact conditions.



Actuators 2021, 10, 313 15 of 19

0 1 2 3 4 5 6
Time (s)

30

35

40

45

50

V
el

oc
ity

 (
m

/s
)

v
t
 (E-PPFC)

r (E-PPFC)

v
t
 (E-FC)

r (E-FC)

v
t
 (PID)

r (PID)

v
t
 (Fixed-slip)

r (Fixed-slip)

(a) Actual vehicle velocity versus wheel velocity (ω · r represents the wheel velocity).

0 1 2 3 4 5 6
Time (s)

-0.4

-0.3

-0.2

-0.1

0

A
dh

es
io

n 
C

oe
ffi

ci
en

t

E-PPFC
E-FC

PID
Fixed-slip

(b) Actual train adhesion coefficient.

Figure 7. Train states under different control approaches.

Figure 8 describes the slip ratio control performance of different control approaches
under the varying wheel-rail contact conditions. As can be seen from the figure, the PID
control method has the slowest convergence rate, the maximum overshoot, and adjustment
time. The PID parameters can be regulated to obtain an ideal control performance, but
the parameter determination process is typically time-consuming. Compared with the
PID control method, the estimation-based feedback linearization control method that only
needs to adjust one control parameter, obtain a better control performance. As for the
proposed estimation-based prescribed performance feedback linearization control method,
it obtains the best transient performance and steady-state performance among these meth-
ods. As shown in Figure 8b, the tracking error of the proposed control method satisfies
the prescribed performance constraints during the whole period. The experimental results
show that the proposed method can achieve the best slip ratio tracking performance under
the varying wheel-rail contact conditions when compared with the other two methods.

Figure 9 shows the braking torque under different control approaches. From this
figure, compared with the other methods, it can be found that the proposed feedback
linearization control with the prescribed performance method has the fastest response
speed when the slip ratio changes at 0 s and 2 s. Specifically, the rail condition becomes
worse at 2 s, then the braking torque should reduce to make the wheel slip track the
decreased reference value. As can be seen from the enlarged figure, the proposed control
method makes the braking torque decrease rapidly and converge to the steady-state value.
Compared with the PID control method and the estimation-based feedback linearization
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control method, the proposed control method does not have the overshoot, and has the
minimum convergence time.

(a) Slip ratio.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

T
ra

ck
in

g 
er

ro
r 

of
 s

lip
 r

at
io E-PPFC

E-FC
PID

0.002 0.1 0.2
-0.2

0

0.2

2 2.05 2.1
-0.02

0

0.02

(b) Tracking errors of slip ratio.

Figure 8. Experimental results of slip ratio tracking under different control approaches.

Figure 9. Experimental results of braking torque under different control approaches.

Table 4 summarizes the braking performance comparisons of different control meth-
ods, where the braking distances are adopted to evaluate the braking capacity and the
acceleration variances are utilized to evaluate the driving comfort. The train braking
distances are obtained by integrating vehicle velocity, and the acceleration variances are
calculated by using the data of three stages, including the first braking action, as well as
the first and second wheel-rail contact condition changes. In the three stages, the train
acceleration will vary significantly. As can be seen from Table 4, the Fixed-slip control
method results in the longest braking distance because it does not make full use of the train
adhesion. Moreover, the proposed prescribed performance active braking control method
obtains the shortest braking distance and the minimum acceleration variance, which means
that the proposed method has the best braking performance and driving comfort. The
above experimental results further demonstrate the effectiveness and superiority of the
proposed method.
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Table 4. Braking performance comparisons of fixed reference slip ratio-based control, PID controller,
estimation-based feedback linearization control, and the proposed control method.

Methods Braking Distances (m) Acceleration Variances (m/s2)

Fixed-slip 256.8391 —
PID 254.4313 0.0679
E-FC 254.1955 0.0637

E-PPFC 254.0479 0.0564

6. Conclusions

In this paper, a novel prescribed performance active braking control is proposed,
which can ensure a high-speed train operates at its maximum adhesion state under the
different wheel-rail contact conditions. The developed active braking controller consists of
four parts: Prescribed performance function, feedback linearization, unscented Kalman fil-
ter, and reference generation algorithm. The prescribed performance function is integrated
to guarantee both steady-state and transient control performances. The estimation-based
feedback linearization control is designed to handle the uncertainty of wheel-rail adhesion
and system nonlinearity, wherein the wheel-rail adhesion is estimated by an unscented
Kalman filter and fed back into the control law to achieve active compensation. Finally,
an optimal slip ratio generation algorithm is designed to provide a reliable reference. The
proposed controller is demonstrated to stabilize the wheel slip at its desired value with the
specific tracking performance, thus significantly improving the braking capacity. Compara-
tive experiment results verify the superiority and effectiveness of the developed controller.
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