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Abstract: Human papillomaviruses (HPVs) and the Epstein–Barr virus (EBV) are the most common
oncoviruses, contributing to approximately 10%–15% of all malignancies. Oncoproteins of high-risk
HPVs (E5 and E6/E7), as well as EBV (LMP1, LMP2A and EBNA1), play a principal role in
the onset and progression of several human carcinomas, including head and neck, cervical and
colorectal. Oncoproteins of high-risk HPVs and EBV can cooperate to initiate and/or enhance
epithelial-mesenchymal transition (EMT) events, which represents one of the hallmarks of cancer
progression and metastasis. Although the role of these oncoviruses in several cancers is well
established, their role in the pathogenesis of colorectal cancer is still nascent. This review presents an
overview of the most recent advances related to the presence and role of high-risk HPVs and EBV in
colorectal cancer, with an emphasis on their cooperation in colorectal carcinogenesis.
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1. Introduction

Colorectal cancer is one of the most prevalent types of cancers worldwide [1] that is known to
progress gradually over long periods of time [2]. Genetic factors and familial history are considered
the principle causative factors for the disease, in addition to environmental factors such as obesity,
smoking and consumption of alcohol and red meat [3]. Advanced age is also linked to the onset of
colorectal cancer, with incidences increasing sharply between the ages of 30 to 50 years [4]. However,
many recent studies have highlighted infectious agents such as oncoviruses as high-risk factors for the
disease [5].

As the number of malignancies linked to oncoviruses increases, it is estimated that at least 20% of
cancers are attributed to viral infections [6]. To date, a small number of viruses are associated with both
solid and non-solid malignancies in humans. The most common oncoviruses include Epstein–Barr
virus (EBV), hepatitis viruses B and C (HBV and HCV), human herpes virus 8 (HHV8, also known as
Kaposi’s sarcoma-associated herpesvirus) and human papillomaviruses (HPVs) [7,8].

Today, around 150 types of HPVs are recognized and identified as either high- or low risk viruses.
There are at least 17 high-risk types (16, 18, 31, 33, 35, 39, 45, 51, 52, 55, 56, 58, 59, 68, 73, 82 and 83);
it is believed that persistent infection with high-risk HPVs may lead to malignancies in cooperation
with other oncogenes [9,10]. On the other hand, low-risk HPVs (6 and 11) are not linked to cancer, and
their infections result in the development of benign gynecological papillomas and skin warts [11,12].
HPVs-16 and 18 account for around 70% of cervical cancer cases, as well as other cancers of the
anogenital tract, e.g., the vulva, vagina, penis and anus [13]. However, recently HPVs have been found
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to be associated with cancers of non-sexual regions like colon, rectum, esophagus, breast, skin, bladder
and head and neck cancers [9,14–17]. HPV as an infectious agent can infect epithelial cells (like those
of the colon), subsequently triggering carcinogenesis [18]. However, according to a few studies, the
link between HPV and colorectal cancer is still controversial [19–22]; other studies have shown almost
40%–80% of colorectal and 30% of head and neck cancer cases are positive for high-risk HPVs [21–25].

On the other hand, EBV—a member of gamma-herpes viruses—is one of the first oncoviruses to
be studied in human carcinogenesis [26]. The primary mode of transmission of the virus is through the
saliva [27]. EBV is ubiquitously present among human adult populations, with an estimated prevalence
of over 90% in individuals by the age of 35 years. EBV is known to cause infectious mononucleosis,
as well as cancers such as Hodgkin’s, several subtypes of non-Hodgkin lymphomas [(B and T-cell,
Natural Killer (NK)], as well as gastric and nasopharyngeal carcinomas [28–30]. Moreover, EBV has
also commonly been linked to several other cancers such as breast, cervix, prostrate, oral cavity and
salivary glands [10,31–34].

Currently, the role of HPVs and EBV in the pathogenesis of colorectal cancer is still ambiguous. In
addition, reports detailing their oncogenic activity in colorectal cancer are sparse. Here we attempt
to review and summarize the presence/co-presence and role of high-risk HPVs and EBV in the
pathogenesis of colorectal cancer.

1.1. Human Papillomaviruses (HPVs) and Their Role in Colorectal Cancer

HPVs are non-enveloped double-stranded DNA viruses that are capable of infecting the epithelial
cells of the skin and mucosa. The genome of HPVs consists of an 8-kb circular DNA encased in a
capsid shell that is composed of a major (L1) and minor (L2) capsid proteins. The HPV viral genome
codes for both early (E1, E2, E4, E5, E6 and E7) and late (L1 and L2) proteins that are critical for host
infection [35,36].

HPV-inflicted carcinogenesis is a multistep process. It often begins through the primary infection
of the proliferating epithelium. The virus maintains its DNA at low copy numbers in the infected basal
cells of the host. However, during differentiation of epithelial cells, HPV displays its virulence by
replicating to a high copy number, thus expressing the capsid envelope genes (L1 and L2) resulting in
virion production that are subsequently released from the epithelial surface [37] spreading infection
and leading to a hyperproliferative state [38]. Almost all high-risk HPV types prevent host immune
recognition and promote persistent infection leading to neoplastic transformation. Moreover, the HPV
cycle is entirely intraepithelial, non-lytic and inhibits activation of pro-inflammatory signals, leading to
the recruitment of antigen presenting cells, followed by the subsequent release of cytokines triggering
growth and proliferation [37].

In addition to binding and inhibiting the activity of tumor suppressor molecules like p53 and
pRB [39,40], the E6/E7 oncoproteins display alternate mechanisms of inflicting oncogenesis. E6 functions
to cause telomerase activation, causing deregulation of pathways involved in cellular proliferation,
differentiation, immune recognition and survival signaling [37]. In contrast, E7 enhances genomic
instability, thereby resulting in the accumulation of chromosomal abnormalities [41]. This cell-cycle
deregulation, telomerase activation and induced genomic instability creates a favorable environment
for neoplastic transformation of cells. Furthermore, HPVs can also trigger oncogenesis through the
inactivation of the E2 gene, the main inhibitor of E6/E7 oncoproteins [42].

In recent years, a number of studies have attempted to examine the relationship between HPVs and
colorectal cancer. Most of these studies are based on utilizing polymerase chain reaction (PCR) analyses
to determine the presence of high-risk viral DNA in fresh and formalin fixed paraffin embedded tumor
tissue. As mentioned above, high-risk HPVs have carcinogenic effects in around 40%–80% and 30%
of colorectal as well as head and neck, respectively [21–25], especially in their invasive forms [43].
Several studies have highlighted the presence of high-risk HPVs (HPVs-16, 18, 31, 33 and 35) in human
colorectal cancers [44–47]. A meta-analysis has also confirmed the presence of high-risk HPVs in
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colorectal cancers [48]; however, the prevalence of high-risk HPVs differs from one geographic location
to another [49,50].

While studies carried out from the Middle East region, such as Iran [51–54] report low-to-medium
frequencies of high-risk HPV types, in contrast, studies carried out in other parts of the
world [14,24,55–58], report medium-to-high prevalence of high-risk HPV infections in adenocarcinoma
colorectal tissue, in comparison to normal tissue. The most frequently expressed HPV types found
in colorectal cancer include HPV 16, 18 and 33 [59]. Our group reported a frequency of around 54%
of high-risk HPVs in colorectal samples in the Syrian population [44], and established an association
between high-risk HPVs and invasive cancer phenotype. We also demonstrated that high-risk HPV
type 16 oncoprotein converts non-invasive and non-metastatic human cancer cells into invasive and
metastatic forms [9].

The underlying mechanism of HPV in cancer pathogenesis involves integration of its pro-viral
DNA into host DNA resulting in direct inactivation of the E2 gene [23]. The E2 gene is a negative
regulator of the E6/E7 oncoproteins that bind to tumor suppressor molecules like p53 and pRB
respectively, thus disrupting their tumor suppressing activity [60]. This phenomenon is known to mark
oncogenesis that further leads to genomic instability and consequently cellular transformation [61,62];
indicating mechanism of HPV-induced colorectal carcinogenesis.

In another study, we reported that E6/E7 oncoproteins of high-risk HPV type 16 cooperate
with the ErbB-2 receptor to provoke cellular transformation of normal epithelial cells [63]. We also
found that D-type cyclins (D1, D2 and D3) are elemental for cellular transformation induced by
E6/E7/ErbB-2 cooperation [63–65] via β-catenin tyrosine phosphorylation through pp60 (c-Src) kinase
activation [66–68]. Additionally, we found that E6/E7 of HPV type 16 provoke cell-invasive and
metastatic abilities in vitro and in vivo, accompanied by Id-1 overexpression, which regulates cell
invasion and metastasis of cancer cells [63]. To determine the role of high-risk HPVs in colorectal
cancer, we assessed the effect of E6/E7 of HPV type 16 in two human primary normal colorectal
“mesenchymal” cell lines (NCM1 and NCM5), established in our laboratory [69]. E6/E7 oncoproteins
stimulated the upregulation of D-type cyclins and cyclin E as well as Id-1 to enhance cell proliferation,
transformation and migration [65]. While it is important to state that the role of E5 oncoprotein in these
malignancies still lies nascent, it has been reported that E5 of high-risk HPVs can affect cell alteration
and consequently lead to oncogenesis via its interaction with EGF-R1 pathways, MAP kinase and
PI3K-Akt, as well as pro-apoptotic proteins [70–72].

In general, the expression of E6 in cancer cells is associated with overexpression of Fascin, Id-1
and P-cadherin— all of which are actively involved in cell invasion and metastasis [44,73–75]. Also, it
has been pointed out that E5 and E6/E7 oncoproteins can cooperate in cancer progression via the EMT
event [76]; indicating the potential cooperation of HPVs oncoproteins in the progression of human
cancers including colorectal.

Several other studies reveal that high-risk HPVs may also lead to the activation of oncogenes like
KRAS and C-MYC. HPV DNA integration is often found in fragile sites around regions of the C-MYC
locus [60–62,77,78]. C-MYC belongs to the multi-genic family of Myc, and is located on chromosome
8q21. It encodes for a transcription factor that is largely involved in differentiation, apoptosis and
regulation of the cell cycle [79]. C-MYC is activated through the deregulation of DNA expression,
followed by gene amplification that increases the production of excess gene copies, which is a hallmark
of most malignancies, often known to increase with tumor grade [80–82]. Similarly, the proto-oncogene,
KRAS—located on chromosome 12—encodes for a protein involved in proliferation, differentiation
as well as signal transduction. Its pathogenesis in colorectal cancer is linked to several mutations at
codons 12, 13 and 61 that lead to uncontrolled proliferation [83]. KRAS mutations are responsible for
the transition of adenomas to carcinomas [84,85]; and are present in 56% of HPV positive tumors [46].
However, an earlier study showed no association between KRAS and C-MYC activation and infection
through HPVs [46]. Therefore, roles of oncogenes like C-MYC and KRAS need to be further analyzed
in order to understand the underlying mechanism of HPV-associated colorectal cancers.
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Moreover, it has been revealed that tumors escape recognition by the immune system through
the acquisition of apoptosis resistance that may occur due to the downregulation of pro-apoptotic
molecules [86]. E6/E7 viral oncoproteins inhibit host-triggered apoptosis either through the inactivation
of p53 or via the downregulation of TNF-R1 that leads to the disruption of apoptosis [87]. Studies
have confirmed downregulation of two pro-apoptotic genes in particular, TNFRSF6 and DR5 in
HPV-associated colorectal cancers [88,89].

Earlier studies have shown that HPV oncoproteins may play a co-stimulatory role with commonly
known colorectal cancer mutations. However, one study shows a lack of association between HPV
status and microsatellite instability that is a common biomarker of colorectal cancer [90]. Nevertheless,
the role of HPV oncoproteins in cancer, particularly in colorectal cancer is not fully elucidated.

1.2. Epstein Barr Virus and its Role in Human Colorectal Cancer

The Epstein–Barr virus is a DNA virus that belongs to the family of the herpes virus and was
first identified in a Burkitt lymphoma cell line. The virus was found to be distinct from other viruses
including herpes simplex, herpes zoster or cytomegalovirus [91,92]. Its genome is represented by a
double-helix DNA of approximately 1.1 × 108 Daltons in size [93] that mainly infects the epithelial as
well as B-cells, often leading to malignancies. Infection is brought about through the fusion of the viral
and cellular lipid bilayer membranes, involving complex mechanisms of multiple viral factors and
host receptors.

The presence of EBV is found to be ubiquitous. Nearly 90% of the human adult population is
infected by the virus [94,95]. Moreover, lifelong persistence is often the hallmark of most herpesvirus
infections. EBV infections occur typically during early childhood. However, most of them are
termed mild infections. While infections that occur during early adulthood are linked to infectious
mononucleosis, this disease is defined by a triad of symptoms including fever, lymphadenopathy and
pharyngitis [95].

The virus exhibits dual tropism; it is capable of infecting both B and epithelial cells [96] by
alternating its envelop proteins [97]. EBV infection is commonly associated with B-cell lymphomas
(Burkitt and Hodgkin lymphoma) as well as epithelial malignancies (nasopharyngeal [98], gastric [99]
and probably rectal carcinomas [26]). Additionally, it is also associated with T-cell and/or Natural
Killer (NK) cell lymphoproliferative disease as well as those found in immunosuppressed individuals
(HIV infected or patients who have undergone transplantation surgeries) [100].

During lytic infection, genes encoded by EBV selectively replicate virion components (viral DNA
genomes and proteins). However, during latent infection cycles, EBV encodes viral genes including the
six nuclear antigens (EBNA-1, -2, -3A, -3B, -3C and LP), three Latent Membrane Proteins (LMP-1, -2A
and -2B), two small non-coding Ribonucleic acids (EBER-1 and -2) as well as the BamHI-A rightward
transcripts [101]. The main function of these EBV proteins is to help maintain viral existence by evading
the natural mechanisms of immune surveillance [102]. In addition, it is established today that these
genes can play an important role as “oncogenes” in infected cells.

EBV exerts a number of immune-suppressive effects that aid in carcinogenic transformation such
as silencing the anti-EBV effect of interferon-gamma (INF-γ) in B cells and modulating the production
of anti-viral cytokines like TNF-α, IL-1β and IL-6 [103]. Furthermore, EBV is capable of mimicking the
characteristics of IL-10 thereby permitting its escape from the host’s anti-viral response [103,104]. On
the whole, a compromised immune system and a chronic inflammatory microenvironment enhances
the oncogenic properties of EBV [105].

When it comes to colorectal cancer, several studies have established a causative link between
EBV and colorectal carcinogenesis [106–108]. The presence of viral EBV DNA was detected in tumor
samples through the utilization of techniques like in situ hybridization (ISH), Immunohistochemistry
(IHC) and Polymerase Chain Reaction (PCR)-based methods [26]. These techniques may have different
sensitivities for detecting EBV targets (genes or proteins) which may partially explain discrepancies
in the percentage of EBV positivity that has been reported in current literature (0%–46%) (Table 1).
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IHC and ISH assays typically detect EBNA or LMP family of proteins all of which can be readily
visualized by a microscope (LMP proteins are cytoplasmic/membranous while EBNA proteins are
nuclear products). In case of PCR-based assays, the detection of viral load by specific primers may be
substantially affected (contaminated) by the EBV load within inflammatory cells (lymphocytes) that
frequently accompany colorectal cancer samples [26].

Table 1. Human papillomaviruses (HPV) prevalence in human colorectal cancers in different populations
around the world.

Population
(Year)

Number of
Samples

HPV Status
(%)

Assay
(Detection Method) References

Bosnian
(2020) 106 Positive

(50%) PCR and IHC [109]

Syrian
(2020) 102 Positive

(37%) PCR and IHC [110]

Portuguese
(2020) 144 Negative RT-PCR [111]

Polish
(2017) 50 Positive

(20%) PCR [112]

Puerto Rican
(2016) 45 Positive

(42%) PCR [23]

Brazilian
(2016) 1,549 Positive

(52%) Meta-analysis [113]

Syrian
(2012) 78 Positive

(54%) PCR and IHC [44]

Turkish
(2011) 106 Negative PCR [47]

Argentinian
(2010) 75 Positive

(44%) PCR [114]

Israeli
(2010) 106 Negative RLB and LiPA [19]

USA
(2010) 73 Negative RLB and LiPA [19]

Spain
(2010) 100 Negative RLB and LiPA [19]

Turkish
(2009) 56 Positive

(82%)
PCR and southern blot

hybridization [45]

Italian
(2008) 66 Positive

(33%) PCR [115]

Brazilian
(2007) 72 Positive

(83%) PCR [21]

Turkish
(2006) 53 Positive

(81%) PCR [46]

USA
(2005) 55 Positive

(51%) PCR [116]

Argentinian
(2005) 27 Positive

(74%) PCR [117]

USA
(1992) 50 Negative PCR [118]

IHC: immunohistochemistry; ISH: in situ hybridization; PCR: polymerase chain reaction: RLB: Reverse line blot;
LiPA: Line Probe Assay.
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EBV has also been associated with nasopharyngeal carcinomas, a distinct subtype of head and
neck carcinoma with a prominent lymphoid component. Also, a particular type of primary colorectal
cancer [119], lymphoepithelioma-like carcinoma (LEC) is morphologically similar to nasopharyngeal
carcinoma [120] and is often associated with EBV infection [121–123]. Moreover, although rare,
non-epithelial colorectal malignancies are also associated with EBV infection. Most of these are
often hematological malignancies like Hodgkin’s or non-Hodgkin’s lymphomas originating from
B-cells, T-cells or NK-cells. In addition, Burkitt lymphoma has also demonstrated the presence
of EBV. Interestingly, ISH and IHC assays revealed that EBV may be linked with the onset of
colorectal cancer in post-transplant patients [26,124–127]. Notably, studies conducted by three different
groups [124,126,128] also analyzed EBV status in smooth muscle tumors of the colon using ISH, IHC
and PCR. Although, the number of cases was small in these investigations, all three of them reported
the presence of EBV in 100% of their population [124,126,128]. Worldwide, studies using RT-PCR
and IHC assays have reported a prevalence of 20%–50% for EBV in colorectal cancer [116,129–132].
Although, reports pertaining to the presence of EBV in the Middle East are sparse; nevertheless, studies
from Syria and Iran used PCR and revealed the presence of EBV in 36% [133] and 38% [116] of the
cases, respectively. A particular investigation using methylation-specific PCR reported that although
EBV infection was found in 19% of colorectal cancer cases, viral DNA showed no association with the
methylation of thirteen cancer-related CpG islands that were addressed [134].

Table 2 briefly summarizes worldwide EBV prevalence in human colorectal cancers in
different populations.

On the other hand, recent studies on colorectal and related gastric cancers have focused on
a new tumor suppressor gene ARID1A (AT-rich Interactive Domain-containing 1A protein) [146–156].
The ARID1A gene encodes a large nuclear protein involved in the regulation of several cellular processes
including cell differentiation and DNA repair [157]. ARID1A is mutated in colorectal and gastric
cancers [146–154,157]. Interestingly, data pooled by a meta-analyses on colorectal and gastric cancer
confirmed the presence of EBV infection [158] as well as reported loss of ARID1A protein expression
associated with advanced grade and tumor differentiation [158]. However, further investigations are
required to address the mechanism of interaction between EBV and mutation in ARID1A to gain a
better understanding of their combined effect in initiating/mediating tumor progression.

In addition, a number of studies have reported the role of Fascin gene in the progression of
several cancers including colorectal [159–161] as Fascin is often over-expressed in several types of
invasive cancers [73,162–164]. Presence of EBV in colorectal cancer is frequently accompanied with
an over-expression of Fascin [133]. Our previous study showed that expression of EBV oncoprotein
(LMP1) correlates with Fascin overexpression and an invasive form of colorectal cancer (moderately to
poorly differentiated adenocarcinomas) [133]. Earlier investigations reported that LMP1 and EBNA1
oncoproteins of EBV enhance cancer progression and metastasis of nasopharyngeal carcinoma through
the initiation of the epithelial-mesenchymal transition (EMT) event [165–167]. Initial studies showed
LMP1-mediated over-expression of Fascin is dependent on NF-κB as both, Fascin and NF-κB, aid in
invasion and migration of LMP-1 expressing lymphocytes [168]. Similar to cancer progression in
nasopharyngeal carcinoma, we postulated that the presence of EBV in colorectal cancer can promote
cancer progression through the initiation of EMT event via EGF-receptor and/or Akt-signaling pathways
as well as Wnt/β-catenin-signaling [166,169,170]. Thus, it is clear that EBV may play an important role
in colorectal cancer progression; however, more comprehensive studies are necessary to test these
hypotheses and determine the role of EBV in colorectal cancer.
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Table 2. Epstein–Barr virus (EBV) incidence in colorectal cancer samples in different populations.

Population
(Year)

Number of
Samples

EBV Status
(%)

Assay
(Detection Method) References

Bosnian
(2019) 108 Positive

(25%) PCR and IHC [92]

Iranian
(2018) 210 Positive

(1.4%) PCR [118]

Syrian
(2017) 102 Positive

(36%) PCR and IHC [133]

Iranian
(2016) 35 Negative PCR [135]

Iranian
(2015) 50 Positive

(38%) PCR [116]

Chile
(2015) 37 Positive

(46%) PCR [136]

Italian
(2014) 44 Negative RT-PCR and IHC [130]

North
America

(2013)
117 Positive

(21%) PCR [131]

Polish
(2011) 186 Positive

(19%) PCR [134]

South Korean
(2010) 72 Positive

(30.6%) IHC and ISH [127]

Japanese
(2010) 1 Negative IHC [137]

Italian
(2009) 100 Positive

(2.8–39%) RT-PCR and sequencing [138]

Chinese
(2006) 90 Positive

(30%) IHC and ISH [129]

Chinese
(2003) 130 Positive

(5–8%) IHC, ISH and PCR [117]

Scotland
(2003) 26 Negative ISH [139]

Argentina
(2002) 19 Positive

(5%) ISH [140]

Japanese
(2001) 102 Negative ISH [141]

South Korean
(2001) 274 Negative ISH [142]

Chinese
(1994) 36 Negative ISH [143]

Czechoslovakia
(1988) 13 Negative PCR [144]

New Guinean
(2004) 46 Positive

(46%) ISH [145]

IHC: immunohistochemistry; ISH: in situ hybridization; PCR: polymerase chain reaction.
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1.3. The Interaction of High-Risk HPVs and EBV in Human Cancers

Epithelial cells can be co-infected with more than one viral species including HPVs and
EBV [171–173]. Various studies showed co-infection of HPVs and EBV in different cancers including
cervical, oral as well as breast [28,34,174–178]. HPVs and EBV co-infections may have a major role in
the initiation and/or progression of cancer [175]; co-infection with more than one type of oncoviruses is
necessary to attain complete transformation [10,64,65,171]. As stated above, E6/E7 onco-proteins of
HPV 16 cooperate with HER-2 to provoke cellular transformation and initiate EMT of human normal
oral epithelial cells [65,171]. Furthermore, HPVs and EBV can enhance the onset and spread of human
carcinomas via the crosstalk of oncoproteins and signaling pathways (β-catenin, JAK/STAT/SRC,
PI3k/Akt/mTOR and/or RAS/MEK/ERK pathways), as illustrated in Figure 1 [10,179].
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Figure 1. Schematic outline showing plausible crosstalk between the oncoproteins of high-risk
human papillomaviruses (HPVs) and Epstein–Barr virus (EBV) in the induction of angiogenesis,
cancer progression, apoptosis as well as cell cycle progression. We note that high-risk HPVs and
EBV oncoproteins share various downstream-signaling pathways including MAPK/ERK/JNK/JNK3,
PI3k/Akt and p53/p21 as well APOBEC; HPVs/EBV oncoproteins can closely cooperate in cancer
development and/or enhance cancer progression.

As one of the most potent oncoviruses, HPVs and EBV infect epithelial tissues in a similar pattern
that enables them to transform normal cells into malignant ones in cooperation with another oncogene.
Both viruses can infect and replicate in upper aerodigestive epithelial cells as well as in the epithelium
of the colon and rectum stimulating the productive and lytic phases of the HPV and EBV life cycle,
respectively. A study by Makielski et al. revealed that high-risk HPV stabilizes the EBV genome
and promotes EBV lytic reactivation in differentiated epithelial cells suggesting that EBV and HPV
co-infection elevates EBV-mediated pathogenesis of cancer [173]. Although E6/E7 oncoproteins of HPV
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are essential to provoke EBV lytic reactivation in the suprabasal layer of oral epithelia, the underlying
mechanisms still lies nascent.

Moreover, studies also state that EBV may play an indirect role in promoting the oncogenic
pathogenesis of HPV by inhibiting natural immune responses directed towards HPV-transformed
cells. This can take place through the production of the viral BCRF1 gene product, which is an
interleukin-10 homolog [180,181]. If EBV gene products are secreted in the exosome, cells infected
with EBV may affect tumor-tumor microenvironment, thus leading to the suppression of immune
responses towards HPV [182,183]. Studies have also shown that the presence of EBV may also enhance
the genomic instability of HPV-infected epithelial cells thereby further promoting the progression of
cancer [184,185].

Interestingly, other than lytic replication, oncogenic viruses can enhance cancer by promoting
immunosuppression in human virus-associated cancers and triggering DNA damage response [186,187].
Lately, the apo lipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) was found to
stimulate intrinsic immunity from several pathogens, including viral infection [188,189]. APOBEC3
can excise both HPV and EBV by stimulating cytidine-to-uracil mutations in viral DNA [190]. While in
breast cancer, HPV-18 stimulates APOBEC3B activity—leading to genome instability [191]—in cervical
cancer, beta interferon prompt E2 hypermutation in HPV-16 by APOBEC3 [192]; thus, suggesting
viral infection results in APOBEC3 induced integration of viral DNA in the host genome via genome
instability (Figure 1).

HPVs and EBV co-infections promote invasion ability of human oral cancer [193] as well as breast
cancer [172,176,194,195]. While HPVs and EBV were detected in 15%–20% of oral SCCs [178,196],
HPVs and EBV co-prevalence in tonsillar and tongue SCCs was 25% and 70%, respectively [197]. In our
previous study using Syrian breast cancer samples, we found 32% of the cases were positive for both
high-risk HPVs and EBV; co-infection was associated with high-grade invasive ductal carcinomas and
lymph node involvement [10]. Furthermore, in cervical cancers, HPVs and EBV were co-present in
approximately 29% of the cases and were correlated with an invasive cancer phenotype [28,198]. On
the other hand, in prostate cancer co-presence of HPV and EBV was significantly higher (55%) than
normal and benign tissues [32]. Additionally, experimental evidence show that HPV and EBV work
together to promote the proliferation of cultured cervical cells [199], suggesting the same may be true
for prostate epithelial cells. Although, studies examining co-presence of HPVs and EBV in colorectal
cancers were performed [130,134], their co-presence was rarely detected [131]. A study performed by
our group analyzed one-hundred and eight rectal cancers for the co-presence of EBV and HPV. Based
on our findings, the co-incidence of these oncoviruses was detected in 11% of the samples [91]. We also
recently reported that the co-presence of high-risk HPVs and EBV in colorectal cancer correlates with
tumor aggressiveness in Syrian colorectal cancer patients [92].

Various plausible mechanisms have been proposed to further elucidate the mechanism of
co-infection with HPVs and EBV in the pathogenesis of cancers originating from the epithelia. Increase
in HPV results in loss of microRNA, miR-145 [200] which down-regulates KLF4 expression. Thus,
HPV has shown to elevate the expression of KLF4, which further results in EBV lytic reactivation [201].
A study by Makielski et al. showed that EBV alone stimulates E2F-responsive protein expression; thus,
indicating that EBV reprograms lethally differentiating cells to support cell cycle progression by HPV
oncogenes [173]. Since HPV increases the capacity of epithelial cells to support the EBV life cycle
during the lytic phase, EBV accumulation in epithelial cells may increase malignancy [173]. While
stimulation of the lytic cycle in cells can also elevate the expression of different viral and cellular
cytokines resulting in increased cellular differentiation by activating signaling pathways including
the protein kinase R, mitogen-activated protein kinase (MAPK) pathways and NF-κB [202–204]. In
addition, other studies state that infection through EBV can boost the invasive properties displayed by
epithelial cells expressing E6 and E7 oncoproteins of HPV [179]. This further confirms that EBV may
be responsible for the rapid progression of EBV/HPV–related cancers. Therefore, based on the various
roles of HPVs and EBV in cancer pathogenesis, we postulate that oncoproteins of HPVs can interact
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with those of EBV (LMP1 and/or EBNA1) and result in progression and metastasis by enhancing the
EMT event of different types of cancers including colorectal (Figure 1) [179].

2. Conclusions

Oncovirus-associated cancers are now becoming a worldwide concern. It has become evident
that HPVs and EBV can be co-present in several types of human carcinomas including colorectal. Thus,
the role of HPVs and EBV co-infection in cancer development should be further addressed including
the epigenetic role of this cooperation, which can help to understand the underlying mechanism of
this co-infection in the onset and development of malignant tumors. Additionally, chromatin control
of viral co-infection also exemplifies a new field with candidate targets for the development of novel
antiviral therapies.

The current research indicates a potentially plausible relationship between the co-presence of
HPV and EBV in the pathogenesis of colorectal cancer. The functional roles of both viruses span
over the beginning of oncogenesis or neoplastic transformation to tumor progression, and finally,
the attainment of metastatic properties. The intricate mechanisms through which the viruses escape
immune recognition are complex multi-stage processes that still need to be studied in considerable
depth. However, further studies involving both translational and clinical aspects in a larger cohort are
required to elucidate the oncogenic importance of their co-presence and its clinical impact.

Large-scale functional genomic analyses have previously identified viral lytic genes co-expressed
with cellular cancer-associated pathways, indicating that the lytic cycle plays a role in virus-mediated
oncogenesis [205,206]. Further research using genome-wide approaches can pave the way for the
development of inclusive models of persistent HPV and EBV interactions and its underlying roles in
infected cells.

Finally, understanding the mechanisms through which the viruses sustain and promote shared
virulence is a major step towards developing therapeutic strategies in oncoviruses-related cancers.
Meanwhile, EBV and HPVs vaccines, upcoming and available, respectively, can be used as a preventive
strategy against infections with these oncoviruses and their associated cancers.
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