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Abstract: Background: Neospora caninum is an apicomplexan parasite that infects many mammals
and particularly causes abortion in cattle. The key factors in its wide distribution are its virulence
and ability to transform between tachyzoite and bradyzoite forms. However, the factors are not
well understood. Although Puf protein (named after Pumilio from Drosophila melanogaster and
fem-3 binding factor from Caenorhabditis elegans) have a functionally conserved role in promoting
proliferation and inhibiting differentiation in many eukaryotes, the function of the Puf proteins in
N. caninum is poorly understood. Methods: The CRISPR/CAS9 system was used to identify and
study the function of the Puf protein in N. caninum. Results: We showed that N. caninum encodes
a Puf protein, which was designated NcPuf1. NcPuf1 is found in the cytoplasm in intracellular
parasites and in processing bodies (P-bodies), which are reported for the first time in N. caninum in
extracellular parasites. NcPuf1 is not needed for the formation of P-bodies in N. caninum. The deletion
of NcPuf1 (∆NcPuf1) does not affect the differentiation in vitro and tissue cysts formation in the
mouse brain. However, ∆NcPuf1 resulted in decreases in the proliferative capacity of N. caninum
in vitro and virulence in mice. Conclusions: Altogether, the disruption of NcPuf1 does not affect
bradyzoites differentiation, but seriously impairs tachyzoite proliferation in vitro and virulence in
mice. These results can provide a theoretical basis for the development of attenuated vaccines to
prevent the infection of N. caninum.
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1. Introduction

Neospora caninum is an apicomplexan protozoan parasite that is closely related to Toxoplasma gondii.
However, N. caninum does not infect humans [1]. N. caninum is the primary pathogen causing an
abortion in cattle and brings enormous economic losses to the cattle industry around the world [2–4].

Similar to T. gondii, N. caninum tachyzoites can differentiate into bradyzoites that cause chronic
infections, which is asymptomatic in immunocompetent hosts. However, upon host immunosuppression,
N. caninum switches from its bradyzoite form to its fast-replicating tachyzoites form, resulting in severe
tissue damage and abortion [5]. Bradyzoites in tissue cysts cannot be eliminated by anti-parasitic drugs or
vaccines that can limit the proliferation of tachyzoites. Therefore, understanding the factors that regulate
the virulence of N. caninum and the molecular mechanism of the conversion between tachyzoites and
bradyzoites are critical for identifying new molecular targets for the treatment of neosporosis.

Most eukaryotic organisms rely on tight control of gene expression to complete their life
cycle. The expression of many genes is altered in the tachyzoite-to-bradyzoite differentiation [6,7].
The post-transcriptional regulation of genes is more rapid than that at the transcriptional, which is
considered a powerful growth strategy in various environments. In eukaryotic cells, RNA-binding
protein (RBP) is vital for posttranscriptional gene regulation by RNA metabolism [8]. Puf (named after
Pumilio in Drosophila melanogaster and fem-3 binding factor in Caenorhabditis elegans) protein is an
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RBP [9,10]. Some Puf proteins can be recruited into ribonucleoprotein (RNP) granules to control
target mRNA’s fate under stress. RNP granules include stress granules (SGs) and processing bodies
(P-bodies). However, the functions of these two RNPs are different. SGs can inhibit the translation of
the targeted mRNAs while P-bodies degrade the targeted mRNAs. Poly(A)-mRNA-binding protein
(PABP) was only found in SGs while decapping enzymes (Dcps) were only detected in P-bodies, so we
can distinguish these two structures by PABP and Dcps. Although Puf proteins have various functions,
they play a functionally conserved role in promoting proliferation and inhibiting differentiation [9].
For example, the deletion of PfPuf2 (∆PfPuf2) or PbPuf2 (∆PbPuf2) promotes the differentiation of
gametocytes in Plasmodium [11–13]. Although Puf proteins have been studied in many eukaryotes,
their function in N. caninum is poorly understood.

Here, we showed that N. caninum encodes a Puf protein named NcPuf1. NcPuf1 is found in the
cytoplasm in intracellular parasites and in P-bodies, which are reported for the first time in N. caninum
in extracellular parasites. The deletion of NcPuf1(∆NcPuf1) does not affect the formation of P-bodies
in N. caninum and the differentiation in vitro and tissue cysts formation in the mouse brain. However,
∆NcPuf1 resulted in decreases in the proliferative capacity of N. caninum in vitro and virulence in mice.

2. Materials and Methods

2.1. Cell and Parasite Culture

Human foreskin fibroblast cells (HFFs, ATCC® SCRC-1041™, Manassas, VA, USA) were cultured
in DMEM with 25 mM glucose and 4 mM glutamine, supplemented with 10% fetal bovine serum
(FBS, Gibco, Rockville, MD, USA). N. caninum parasites were maintained in HFFs by serial passages,
as described previously [14]. Both cells and parasites were incubated at 37 ◦C with 5% CO2 in
a humidified incubator.

2.2. Construction of Transgenic Parasite Strains

To identify the expression of NcPuf1 in N. caninum, we used the CRISPR/CAS9 system to add
a HA epitope at the C-terminus of NcPuf1. The primer sequences used in this study are listed in
Supplementary Table S1. pSAG1::CAS9-NcU6::sgNcPuf11 was constructed as previously described [14,15].
In brief, we used the pSAG1::CAS9-NcU6::sgNcUPRT stored in our laboratory as a template to amplify
the cas9 (P1-2 primers), NcU6 (P3-4), and the backbone fragment (P5-6) containing the NcPuf1 gRNA
sequence (5′-GCGGCGGGAGGGTTGAACGA-3′). The cas9, NcU6, and the backbone fragment
were ligated with ClonExpress MultiS One Step Cloning Kit (Vazyme, Nanjing, China). To obtain
homologous recombination fragments, upstream (1147 bp) (P7-8) and downstream (1169 bp) region
(P9-10) of the gNcPuf11 sequence were amplified, the backbones (pLIC and HA-DHFR) (P11-14) were
amplified from pLIC-HA-DHFR-NcGRA17 stored in our laboratory, then upstream and downstream
region and the backbones were ligated to construct the plasmids (pLIC-HA-DHFR-NcPuf1). Nc-Liv was
co-transfected with the pSAG1::CAS9-NcU6::sgNcPuf11 and the linearized pLIC-HA-DHFR-NcPuf1
(P15-16) that was obtained from the pLIC-HA-DHFR-NcPuf1. The NcPuf1-HA-tagged strains were
screened using pyrimethamine (1 µM). The selected NcPuf1-HA-tagged strains were identified using
PCR (P17-20), western blotting, and immunofluorescence assay (IFA).

The NcDcp-FLAG tagged strain was constructed to detect the expression of NcDcp1 in
N. caninum. We used the pSAG1::CAS9-NcU6::sgNcUPRT as a template to amplify the cas9 (P1-2),
the backbone(P6, P21), and NcU6 fragment (P3, P22) containing the NcDcp1 gRNA sequence
(5′-AAAGAGAAACGACCGGTCGC-3′). The cas9, NcU6, and the backbone fragment were ligated to
construct the plasmids (pSAG1::CAS9-NcU6::sgNcDcp1). Upstream (P23-P24) (677 bp) and downstream
(P25-P26) (777 bp) regions of the gNcDcp1 sequence were amplified, the backbones (pLIC and
FLAG-CAT)(P27-P30) were amplified from pLIC-FLAG-CAT stored in our laboratory, then upstream and
downstream region and the backbones were ligated to construct the plasmids (pLIC-FLAG-CAT-NcDcp1).
The NcPuf1-HA-tagged strain was co-transfected with the pSAG1::CAS9-NcU6::sgNcDcp1 and the
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linearized pLIC-FLAG-CAT-NcDcp1(P15-P16). The NcDcp1-FLAG-tagged strains were screened
using chloramphenicol (20 µM). The selected NcDcp1-FLAG-tagged strains were identified using PCR
(P31-P34), western blotting, and IFA.

pSAG1::CAS9-NcU6::sgNcPuf12 for disrupting the NcPuf1 gene was constructed by replacing the
gRNA of NcUPRT in the above plasmid with the gNcPuf12 sequence(5′-GTGCGCTAAGGGCATCGGGT-3′)
(P1-P2, P3, P6, P35, P36). 5’flanking (P37-P38) (923 bp) and 3’flanking sequences (P39-P40) (857 bp) of
the NcPuf1 gene were amplified, the backbones (PTCR and CAT-RFP) (P41-P44) were amplified from
pTCR-CAT-RFP stored in our laboratory, then 5’ and 3’flanking sequence and the backbones were ligated
to construct the plasmid (pTCR-NcPuf1-CAT-RFP). The parental Nc-Liv strain was co-transfected with
pSAG1::CAS9-NcU6::sgNcPuf12 and the linearized pTCR-NcPuf1-CAT-RFP (P45-P46). The parasites
were screened using chloramphenicol (20 µM). The selected NcPuf1-deficient clones obtained by
limiting dilution method, designated ∆NcPuf1, were identified by PCR (P47-P54), quantitative real-time
PCR (qRT-PCR) (P55-P58), and red fluorescent signal.

To obtain the NcPuf1 complementary strain, the NcPuf1 gene was amplified, the backbones
(pNcUPRT and HA-DHFR) (P59-P62) were amplified from pNcUPRT::DHFR-NcGRA17 stored in our
laboratory, then the NcPuf1 gene (P63-P64) and the backbones were ligated to construct the plasmids
(pNcUPRT::DHFR-NcPuf1). ∆NcPuf1 strain was co-transfected with pSAG1::CAS9-NcU6::sgNcUPRT
and the linearized pNcUPRT::DHFR-NcPuf1(P15-16) to complement NcPuf1 with an HA-tag in
∆NcPuf1 strain by targeting the NcUPRT gene. Then, the parasites were selected with pyrimethamine
(1 µM). The selected NcPuf1 complementary clones, designated i∆NcPuf1, were confirmed via PCR
(P65-P70), western blotting assay, and IFA.

We construct the NcDcp-HA tagged strains to analyze the localization of NcDcp1 in the ∆NcPuf1
strain. Upstream (P71-P72) (639 bp) and downstream (P73-P74) (739 bp) regions of the gNcDcp1
sequence were amplified, the backbones (pLIC and HA-DHFR) (P75-P78) were amplified, then upstream,
downstream region and the backbones were ligated to construct the plasmid (pLIC-HA-DHFR-NcDcp1).
The ∆NcPuf1 strain was co-transfected with the pSAG1::CAS9-NcU6::sgNcDcp1 and the linearized
pLIC-HA-DHFR-NcDcp1 (P15-16). The NcDcp1-HA-tagged strains were screened using pyrimethamine
(1 µM). The selected NcDcp1-HA-tagged strains were identified using PCR (P31, P79, P34, P80), western
blotting, and IFA.

2.3. Western Blotting Assay and Immunofluorescence Assays

Western blotting assay and immunofluorescence assays were performed as previously
described [14].To obtain N. caninum tachyzoites, we scraped the parasites and the cells with a scraper
and passed through a 27-gauge needle 8 times, and then the parasites were passed through a 5.0 µm
filter and centrifuged. The obtained parasites were lysed with RIPA buffer (Solarbio, Beijing, China).
Then, the lysates were run in 12.5% SDS-PAGE and transferred to a polyvinylidene fluoride membrane.
Then, it was blocked with 5% skim milk for 1 h at room temperature and incubated with primary
antibodies used in this study were rabbit anti-FLAG (Sigma-Aldrich, Saint Louis, MO, USA; 1:500),
mouse anti-HA (Sigma-Aldrich, Saint Louis, MO, USA; 1:500), or rabbit anti-N. caninum F-actin
subunit beta (Ncactin, National Animal Protozoa Laboratory, China Agricultural University) (1:5000)
and HRP-labeled secondary antibody. Finally, the reactive bands were visualized using enhanced
chemiluminescence reagents (Huaxinbio, Beijing, China).

For IFA, HFF cells were cultured on a glass slide in a 12-well plate, 1 × 105 parasites per well
were added into 12-well plate and cultured at 37 ◦C with 5% CO2 for 28 h, then 4% paraformaldehyde
was added to fix for 30 min at room temperature before being permeabilized with 0.25% TritonX-100.
Subsequently, parasite-infected cells were blocked with 3% BSA at 37 ◦C for 1 h and incubated
with primary antibodies antibodies that used in this study were mouse anti-FLAG (Sigma-Aldrich,
Saint Louis, MO, USA; 1:100), rabbit anti-FLAG (Sigma-Aldrich, Saint Louis, MO, USA; 1:100),
mouse anti-HA (Sigma-Aldrich, Saint Louis, MO, USA; 1:100), rabbit anti-human PABP with 60.59%
sequence identity with N. caninum (Proteintech, Wuhan, China; 1:100), rabbit anti-HA (Sigma-Aldrich,
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Saint Louis, MO, USA; 1:100), FITC-labeled Dolichos biflorus agglutinin (DBA-FITC) (1:100), or a rabbit
anti-NcSRS2 antibody (National Animal Protozoa Laboratory, China Agricultural University) (1:250)
and secondary antibodies. To analyze the localization of NcPuf1 in extracellular parasites, we collected
freshly purified parasites, and then added the parasite on the glass slide. The procedure of IFA was the
same as described above.

2.4. Quantitative Real-Time PCR

The purified parasites (Nc-Liv and ∆NcPuf1) were obtained as described above. Then, total RNA
was extracted and reverse transcribed into cDNA as described previously [16,17]. The transcription
levels of NcPuf1 (P49-P50) was checked by qRT-PCR using the SYBR Green Master Mix (Vazyme
Biotech, Nanjing, China) on the Roche LightCycler 480 Real-Time PCR System. The Ncactin (P47-P48)
was used as an internal reference. The experiments were repeated three times independently, each with
three technical replicates.

2.5. Plaque Assay and Parasite Intracellular Replication Assay

The plaque assay was performed as previously described [14,16]. In brief, three hundred freshly
purified parasites were seeded into HFF cells, followed by incubation at 37 ◦C with 5% CO2 for 9 d.
Then, the plates were fixed and stained with 2% crystal violet. These samples were washed with PBS.
Plaque size was measured via the Pixel plugin using Adobe Photoshop CC2018 software (Adobe,
San Jose, CA, USA). One of three independent experiments is presented.

The parasite intracellular replication assay was performed as previously described [14,16].
HFF cells grown on 12-well plates were infected with 5 × 105 parasites per well. The unbound
parasites were removed by washing with PBS after 1 h, followed by incubation again for 30 h.
Then, the replication ability of the parasites was observed by IFA using rabbit anti-NcSRS2 antibody.
The numbers of parasites per vacuole were determined by counting 100 parasitophorous vacuoles
under a fluorescence microscope (Olympus Co., Tokyo, Japan). The data were obtained from three
independent experiments.

2.6. Bradyzoite Differentiation Assay In Vitro

1 × 104 parasites were seeded into HFF cells in 12-well plates with a culture medium. We replaced
the culture medium with pH 8.2 medium after 6 h, followed by incubation again for 4 d under
differentiation conditions (pH 8.2, low CO2). Then, the samples were performed as described for
the immunofluorescence assay. Cyst was detected by IFA using FITC-labeled Dolichos biflorus
agglutinin (DBA-FITC) and rabbit anti-NcSRS2 antibody [18]. Numbers of the cyst were determined
by counting 100 randomly selected parasitophorous vacuole. The experiments were repeated three
times independently.

2.7. Animal Infection Experiments

For the parasite virulence assay, BALB/c mice (5 weeks old) were raised in sterile cages in a barrier
environment and had free access to clean water and food. 2 × 106 tachyzoites were used to infect mice
(five mice per group) by intraperitoneal injection (i.p.) as previously described [14,16]. All mice were
observed for 45 days. They were monitored every day for their clinical signs and mortality. If the
mouse could not eat or drink for more than 24 h or lose 20% of its normal body weight, we would
humanely euthanize the mouse by cervical dislocation.

For the brain cyst assay, the Nc-Liv strain produced few cysts in the BALB/c mouse brain, while more
cysts were detected in Kunming mice. Thus, female Kunming mice (7 weeks old) were raised in sterile
cages in a barrier environment and had free access to clean water and food. 4 × 106 tachyzoites were
used to infect female Kunming mice (nine mice per group) by i.p. All mice were observed for 3 months.
The mice were monitored and humanely euthanized as described above. The brains were homogenized
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in PBS. Then, the brain homogenate was incubated with FITC-tagged DBA for 30 min. Brain cyst
counts were determined by DBA-FITC staining.

All animal experiments were approved by the Institutional Animal Care and Use Committee of
China Agricultural University (Approval No.: 18049).

2.8. Statistical Analysis

The statistical analyses were performed by GraphPad Prism 5 (GraphPad Software Inc., La Jolla,
CA, USA). Data were analyzed using the two-tailed, unpaired Student’s t-test or one-way ANOVA or
Chi-square test or Log-rank test. p-values are represented by asterisks: * 0.01 < p < 0.05; ** 0.001 < p < 0.01;
*** p < 0.001.

3. Results

3.1. NcPuf1 Protein Is Expressed in N. caninum

A BLASTP search of the N. caninum genome in the ToxoDB database (http://toxodb.org) using the
Puf domain of T. gondii identified two putative Puf genes (NCLIV_026460 and NCLIV_011170).
The NCLIV_026460 gene encoding of 1537 amino acids shares 78.71% similarity with TgPuf1,
the NCLIV_011170 gene encoding of 2011 amino acids shares 57.13% similarity with TgPuf2. Based on
their homology degrees to the T. gondii Pufs, the NCLIV_026460 and NCLIV_011170 genes were named
NcPuf1 and NcPuf2, respectively. NcPuf1 protein shares 25.83% similarity with NcPuf2. The homology
of them is limited to the Puf domain.

Next, to identify the expression and localization of the NcPuf1 in N. caninum, we tagged the NcPuf1 with
HA tag in N. caninum. The parental Nc-Liv strain was cotransfected with the pSAG1::CAS9-NcU6::sgNcPuf11
and linearized pLIC-HA-DHFR-NcPuf1 (Figure 1A). Then, the parasites were screened using
pyrimethamine. The transfected parasites were recombined correctly by PCR (Figure 1B). We detected
a protein band by western blot, consistent with the predicted sizes of the NcPuf1-HA (Figure 1C).
As expected for a conserved function of Pufs in translational regulation, the NcPuf1 protein was located
in the cytoplasm in intracellular parasites (Figure 1D). When parasites were released from host cells,
the NcPuf1 protein showed a granular cytoplasmic staining pattern in the cytoplasm (Figure 1D).
Overall, these results demonstrated that NcPuf1 protein was expressed in N. caninum.
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Figure 1. Identification and localization of NcPuf1 protein. (A) Schematic representation of adding an HA
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These primers are used to identify the recombination of the NcPuf1-HA strain. (B) The NcPuf1-HA-tagged
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strains were identified using PCR. PCR1 and PCR2 were used to identify the 5′ and 3′ insertions of
HA-DHFR, respectively. The Nc-5 gene is a positive control gene. (C) Western blotting showed NcPuf1
was expressed in N. caninum. (D) HA-tagged NcPuf1 was located in the cytoplasm in intracellular
parasites and presented a granular cytoplasmic staining pattern in extracellular parasites. Bars, 5 µm.

3.2. NcPuf1 Is Recruited into Processing Bodies in Extracellular Parasites

It has been previously described that RNP granules of T. gondii are present in extracellular
parasites [19]. Therefore, we speculated that the observed punctate cytoplasmic structures might be
RNP granules. The RNP granules likely control the fate of these mRNAs. RNP granules usually
include SGs and P-bodies. SGs contain many repressed mRNAs and RBPs, while P-bodies have
many mRNA decay factors and RBPs. To verify whether NcPuf1 is located in SGs, we examined its
colocalization with PABP, and found that they did not colocalize (Supplementary Figure S1). Therefore,
we surmised that NcPuf1 might be located in P-bodies, but P-bodies have not previously been reported
in N. caninum. Decapping enzymes (Dcps) are evolutionarily conserved markers of P-bodies in most
eukaryotic organisms [20,21]. A BLASTP search of the N. caninum genome in the ToxoDB database
identified a putative Dcp gene (NCLIV_003520) encoding of 577 amino acids. It shares 23.40% and
22.43% similarity with Cryptosporidium hominis and Plasmodium vivax Dcp1, respectively. So we named
it NcDcp1 (decapping enzyme 1).

To identify the expression and localization of the NcDcp1 in N. caninum, we tagged the NcDcp1
with FLAG tag in the NcPuf1-HA parasite strain. The parental NcPuf1-HA parasite strain was
cotransfected with the pSAG1::CAS9-NcU6:: sgNcDcp1 and linearized pLIC-FLAG-DHFR- NcDcp1
to generate a NcPuf1-HA-NcDcp1-FLAG parasite strain (Figure 2A). The transfected parasites were
recombined correctly by PCR (Figure 2B). Western blotting using rabbit anti-FLAG antibody was used
to confirm that N. caninum expressed the NcDcp1 (Figure 2C). IFA using mouse anti-FLAG antibody
showed that the NcDcp1 protein presented a granular cytoplasmic staining pattern in intracellular
parasites (Figure 2D), which was consistent with the characteristics of P-bodies. Then, we found that
the NcPuf1 proteins colocalized with NcDcp1 in extracellular parasites by IFA using rabbit anti-FLAG
and mouse anti-HA antibody (Figure 2D). Together, the results showed that NcPuf1 was recruited into
P-bodies in extracellular parasites.
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Figure 2. The subcellular localization of NcPuf1 in extracellular parasites. (A) Schematic representation
of adding a FLAG epitope at the C-terminus of NcDcp1 in the parental NcPuf1-HA strain.
PCR3/PCR4-F/R represent primers used to identify the recombination of the NcDcp1-FLAG-tagged
strains. (B) The NcDcp1-HA-tagged strains were identified using PCR. PCR1 and PCR2 were used to
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identify the 5′ and 3′ insertions of FLAG-CAT, respectively. The Nc-5 gene is a positive control gene.
(C) Western blot analysis showed that N. caninum expressed decapping enzyme 1 (Dcp1), a conserved
marker of P-bodies. (D) The HA-tagged NcPuf1 protein colocalized with the FLAG-tagged NcDcp1
protein in extracellular parasites. IFA analysis showed that the FLAG-tagged NcDcp1 protein presented
a granular cytoplasmic staining pattern in intracellular parasites and colocalized with the HA-tagged
NcDcp1 protein in extracellular parasites. Bars, 2 µm.

3.3. NcPuf1 Knockout and Complementary Strains

To study the role of NcPuf1 in tachyzoites, we constructed a NcPuf1 knockout strain.
The parental Nc-Liv strain was co-transfected with pSAG1::CAS9-NcU6::sgNcPuf12 and the linearized
pTCR-NcPuf1-CAT-RFP to replace the NcPuf1 gene with the chloramphenicol resistance gene (CmR)
and red fluorescence protein gene (RFP) (Figure 3A). Following CmR selection, we isolated NcPuf1
knockout clones. ∆NcPuf1 was confirmed via PCR and quantitative qRT-PCR analysis (Figure 3B,C).
In addition, RFP was expressed in the ∆NcPuf1 strains (Figure 3D), further supporting the deletion
of NcPuf1.
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Figure 3. Identification of the ∆NcPuf1 strain. (A) Schematic representation of deleting NcPuf1
gene. PCR5/PCR6-F/R represent primers used to identify the recombination of the ∆NcPuf1 strains.
PCR7-F and PCR7-R were used to identify the deletion of the NcPuf1 gene. (B) The deletion of
the NcPuf1 gene in the Nc-Liv strain was confirmed by PCR. The Nc-5 gene is a positive control
gene. (C) The deletion of the NcPuf1 gene in the Nc-Liv strain was further confirmed via qRT-PCR.
The Ncactin was used as an internal reference. *** p < 0.001. (D) The ∆NcPuf1 strain was further
evaluated using an inverted fluorescence microscope. The ∆NcPuf1 strain could show red fluorescence.

Then we constructed the NcPuf1 complementary strain (i∆NcPuf1) (Figure 4A). ∆NcPuf1 strain was
co-transfected with pSAG1::CAS9-NcU6::sgNcUPRT and the linearized pNcUPRT::DHFR-NcPuf1 to
complement NcPuf1 with an HA-tag in ∆NcPuf1 strain by targeting the NcUPRT gene. Then, the parasites
were selected with pyrimethamine. The i∆NcPuf1 clones were confirmed via PCR (Figure 4B). NcPuf1 was
expressed in i∆NcPuf1 strains via western blotting assay and IFA using mouse anti-HA antibody
(Figure 4C,D).
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Figure 4. Identification of the i∆NcPuf1 strain. (A) Schematic representation of the complement of
NcPuf1 gene. PCR8/PCR9-F/R represent primers used to identify the recombination of the ∆NcPuf1
strains. PCR10-F and PCR10-R were used to identify the deletion of the NcUPRT gene in the i∆NcPuf1
strain. (B) T the complement of NcPuf1 gene in the ∆NcPuf1 strain was confirmed by PCR. The Nc-5
gene is a positive control gene. (C) Western blotting showed NcPuf1 was expressed in the i∆NcPuf1
strain. (D) The NcPuf1 gene was successfully complemented by IFA. The NcPuf1 gene in the i∆NcPuf1
strain was located in the cytoplasm in intracellular parasites and presented a granular cytoplasmic
staining pattern in extracellular parasites. Bars, 5 µm.

3.4. NcPuf1 Is Vital for Parasite Growth In Vitro and Virulence in Mice

Plaque assay can fully reflect the vitality of N. caninum in vitro [22]. We first assessed the effect of
∆NcPuf1 on parasites by plaque assays. We found that the plaque size of ∆NcPuf1 strain was smaller
than Nc-Liv (p < 0.05), and the plaque size was restored in the complementary strain (Figure 5A,B).
The decrease in plaque size could have been caused by intracellular replication. We found that the
replication of ∆NcPuf1 clones was slower than that of the Nc-Liv strain and the i∆NcPuf1 strain
(p < 0.05) (Figure 5C).Pathogens 2020, 9, x FOR PEER REVIEW 9 of 15 
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(Adobe, San Jose, CA, USA) using the Pixel plugin. Data are analyzed with One-way ANOVA with Tukey.
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(C) Intracellular replication of the ∆NcNcPuf1, Nc-Liv and i∆NcNcPuf1 strains. Data are analyzed
with Chi-square test. (D) Mouse survival after infection with different strains (Nc-Liv, ∆NcPuf1 and
i∆NcPuf1). A log-rank test was used to analyze significant differences between groups. ns = no
significant difference, * 0.01 < p < 0.05, *** p < 0.001.

To determine the influence of ∆NcPuf1 on the virulence in vivo, mice were infected with ∆NcPuf1,
Nc-Liv, and i∆NcPuf1 tachyzoites by i.p. The results showed that all ∆NcPuf1-infected mice survived
while the survival rate of the Nc-Liv-infected mice was 40%, and that of the i∆NcPuf1-infected mice
was 40% (p < 0.05) (Figure 5D). Together, these results showed that NcPuf1 was vital for parasite
growth in vitro and virulence in mice.

3.5. NcPuf1 Is Not Required for the Formation of P-Bodies in N. caninum

It is reported that the RNP granule would affect the viability of the extracellular parasites.
Since NcPuf1 was located in P-bodies in the extracellular parasites, we wanted to know whether the
deletion of NcPuf1 would affect the formation of P-bodies. The ∆NcPuf1 strain was co-transfected
with the pSAG1::CAS9-NcU6::sgNcDcp1 and the linearized pLIC-HA-DHFR-NcDcp1(Figure 6A).
The NcDcp1-HA-tagged strains were screened using pyrimethamine. The transfected parasites were
recombined correctly by PCR (Figure 6B). The ∆NcPuf1 strain expressed the NcDcp1 protein by western
blotting using mouse anti-HA antibody (Figure 6C). Then, we found that ∆NcPuf1 did not affect the
formation of P-bodies by IFA using mouse anti-HA antibody (Figure 6D). This showed that NcPuf1
was not required for the formation of P-bodies in N. caninum.Pathogens 2020, 9, x FOR PEER REVIEW 10 of 15 
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Figure 6. The localization of NcDcp1 in the NcPuf1 deficient strain. (A) Schematic representation of
adding a HA epitope at the C-terminus of NcDcp1 in the parental ∆NcPuf1 strain. PCR11/ PCR12-F/R
represent primers used to identify the recombination of the NcDcp1-HA-tagged strains. (B) The
NcDcp1-HA-tagged strains were identified using PCR. PCR1 and PCR2 were used to identify the 5′

and 3′ insertions of HA-DHFR, respectively. The Nc-5 gene is a positive control gene. (C) Western blot
analysis showed that N. caninum expressed decapping enzyme 1 (Dcp1) in the parental ∆NcPuf1 strain.
(D) The HA-tagged NcDcp1 protein presented a granular cytoplasmic staining pattern in intracellular
∆NcPuf1 strain. Bars, 5 µm.
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3.6. ∆NcPuf1 does Not Affect the Differentiation from Tachyzoites to Bradyzoites In Vitro and Tissue Cysts
Formation In Vivo

It is generally believed that the cyst formation is related to a slowing of parasite growth. Therefore,
we examined the effect of ∆NcPuf1 on the formation of bradyzoites. To determine the role of NcPuf1 in
the differentiation from tachyzoites to bradyzoites in vitro, the Nc-Liv, ∆NcPuf1 and i∆NcPuf1 strains
were induced to form cysts in vitro under alkaline conditions. Cyst walls were detected by using
FITC-labeled Dolichos biflorus agglutinin (DBA-FITC) (Figure 7A). Unlike T. gondii, the bradyzoites
of N. caninum has been difficult to obtain in vitro [23]. The parasites were cultured under the
differentiation condition for 4 d in vitro. We found that ∆NcPuf1 and i∆NcPuf1 showed very similar
DBA-FITC-positive rates to the parental Nc-Liv strain (p > 0.05) (Figure 7B).
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Figure 7. The effect of the NcPufs genes on the differentiation in vitro and tissue cysts formation
in the mouse brain. (A) Cysts were detected by using FITC-labeled Dolichos biflorus agglutinin
(DBA-FITC). The differentiation was induced under differentiation conditions (pH 8.2, low CO2) for 4 d.
DBA-FITC-positive vacuoles are cysts. The scale bar represents 10 µm. (B) The positive staining for
DBA-FITC vacuoles in different strains (Nc-Liv, ∆NcPuf1 and i ∆NcPuf1) were quantified by counting
100 parasitophorous vacuoles selected at random under a fluorescence microscope. (C) Tissue cysts
from mouse brains were observed by IFA using DBA-FITC. (D)Tissue cysts were counted by IFA using
DBA-FITC. Data are analyzed with One-way ANOVA with Tukey. ns = no significant difference.

To assess the effect of ∆NcPuf1 on the tissue cyst formation in vivo, we counted the number of
brain cysts by DBA-FITC staining (Figure 7C). The Nc-Liv strain produced few cysts in the BALB/c
mouse brain (data not shown), while more cysts were detected in Kunming mice. Thus, the brain cyst
assay was performed by Kunming mice. The number of tissue cysts in mice infected with the ∆NcPuf1
strain was not reduced compared with that in Nc-Liv and i∆NcPuf1-infected mice brains (p > 0.05)
(Figure 7D). We found that ∆NcPuf1 did not affect the formation of cysts in the mouse brains. Together,
these results showed ∆NcPuf1 did not affect the differentiation in vitro and tissue cysts formation
in vivo.

4. Discussion

Puf proteins have been identified in many organisms, but the number of them is different.
Three Pufs were characterized in Plasmodium [24]. Additionally, two Pufs were found in T. gondii [12].
Two putative Puf genes were identified in N. caninum based on the conserved Puf domain, indicating
that they may have some overlapping functions in N. caninum. However, their fulllengths share limited
homology, suggesting that they may play different roles in N. caninum.
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According to the primary function of Puf proteins, they are mainly located within the cytoplasm.
However, a few Puf proteins are located in the nucleus or nucleolus. For example, Puf7 is located in
the nucleolus in T. brucei [25], and Puf6p is found in the nucleus in S. cerevisiae. Here, we have shown
that N. caninum possesses two putative Puf gene (NcPuf1 and NcPuf2). As expected, NcPuf1 localizes
to the cytoplasm in intracellular parasites.

RNP granules have been detected in many eukaryotes and play an important role in the
post-transcriptional regulation of genes [26]. Puf proteins were also found in RNP granule, including both
SGs and P-bodies. Several have shown that Puf proteins are located in P-bodies. For example,
both T. cruzi PUF6 and C. elegans germline FBF-2 localize to P-bodies [27,28]. PUM1 and PUM2 are
also enriched in P-bodies [29]. Puf1, 2, and 3 are located in P-bodies under glucose deprivation in
Schizosaccharomyces pombe [30]. Pufs are also found in SGs. Mammalian Pum2 is recruited to the SGs of
hippocampal neurons during stress [31]. RNP granules, as a response to starvation, were reported
in T. cruzi [32]. These indicated that Puf proteins might be localized in RNP granule when the cells
were cultured under stress. Compared with intracellular parasites, extracellular parasites would be
exposed to more stressful conditions. As expected, NcPuf1 forms punctate cytoplasmic structures in
extracellular parasites. Finally, we found that NcPuf1 was located in P-bodies in extracellular parasites.
Saccharomyces cerevisiae Puf3 can stimulate deadenylation of target mRNA by recruiting CNOT and
Dhh1p [33]. For example, Puf3p promotes the degradation of COX17 mRNA in yeas [34]. Yeast Puf
can bind Pop2p and subsequently recruited Ccr4p to the target mRNA to control deadenylation [35].
These suggest that Puf can bind the CCR4-NOT complex, a potentially conserved mechanism for target
mRNA deadenylation. SGs and P-bodies contain many RBPs, including Puf proteins. P-bodies have
many mRNAs and mRNA decay factors. Therefore, the result indicates that NcPuf1 may be involved
in the degradation of the targeted mRNAs in extracellular parasites.

The knockout of NcPuf1 did not affect the formation of P-bodies. This result is similar to the
finding that the deletion of the Schizosaccharomyces pombe puf1, 2, 3, and 4 genes did not affect the
formation of P-bodies [30]. However, it differs from several reports that the loss of Puf affects the
formation of P-bodies and SGs. Yeast Pufs are SGs components and are required for SGs formation [30].
The loss of mammalian Pum2 affects the formation of SGs in hippocampal neurons. This shows that
NcPuf1 is not needed for P-bodies in N. caninum. NcPuf1 may use P-bodies as a signaling hub to
coordinate the stress response in extracellular parasites.

The disruption of Mammalian PUM1 decreases cell proliferation via the posttranscriptional
suppression of Cdkn1b [36]. PUF-8 promotes germline stem cell proliferation in C. elegans [37].
PUM2 participates in the positive control of adipose-derived stem cell proliferation [38]. While the
PUM1 gene was silenced, the cell proliferation was significantly inhibited [39]. The deletion of PUM1
can decrease the proliferation of MIA, PaCa-2, and PANC-1 cells and promote their apoptosis [40].
Therefore, we speculate that the conserved function of the Puf protein is to promote proliferation. In this
study, we found that NcPuf1 was critical for parasite growth in vitro. This shows that the functions of
NcPuf1 conform to the conserved role of the Puf protein in promoting parasite proliferation.

Malaria gametocyte and sporozoite stages express two Puf proteins. The depletion of Puf1
does not result in a noticeable phenotype, whereas Puf2 plays vital roles in both the gametocyte and
sporozoite stages. The deletion of PfPuf2 (∆PfPuf2) or PbPuf2 (∆PbPuf2) promotes the differentiation of
gametocytes [41,42]. Transmission from mosquitoes to humans is also affected by Puf2 [11]. These results
show that Puf is involved in the repression of differentiation. However, we found that NcPuf1 did not
affect the differentiation from tachyzoites to bradyzoites in vitro and tissue cysts formation in vivo.
FBF-1 and FBF-2 have opposite functions in the differentiation of C. elegans germline stem cells [43].
NcPuf2 may play an important role in differentiation. So the function of NcPuf2 needs to be further
studied. In summary, we found that NcPuf1 plays a key role in tachyzoite proliferation in vitro and
virulence in vivo, suggesting the potential of NcPuf1 as a vaccine/drug candidate against N. caninum.



Pathogens 2020, 9, 1019 12 of 14

5. Conclusions

In summary, we show that N. caninum encodes a Puf protein (NcPuf1). NcPuf1 is detected in the
cytoplasm in intracellular parasites and in P-bodies, which are reported for the first time in N. caninum
in extracellular parasites. NcPuf1 is not required for the formation of P-bodies in N. caninum. We find
that ∆NcPuf1 does not affect the differentiation in vitro and tissue cysts formation in the mouse brain.
However, ∆NcPuf1 significantly impairs tachyzoite replication in vitro and virulence in mice.
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Figure S1: NcPuf1 was not co-localized with Poly-A(+) mRNA binding protein(PABP), Table S1: The primer
sequences used in this study.

Author Contributions: Conceptualization, Q.L. and C.W.; methodology, Q.L., J.L., C.Y. and C.W.; software, C.W.
and C.Y.; validation, C.W. and C.Y.; formal analysis, C.W. and C.Y.; investigation, C.W.; resources, C.W.; data
curation, C.W.; writing—original draft preparation, C.W.; writing—review and editing, Q.L., J.L., C.Y. and C.W.;
visualization, Q.L. and J.L.; supervision, Q.L. and J.L.; project administration, Q.L. and J.L.; funding acquisition,
Q.L. and J.L. All authors have read and agree to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of China (Grant no.
2017YFD0501200) and the National Natural Science Foundation of China (Grant no. 31772730 and 31972700).

Acknowledgments: We are grateful to David S Lindsay for kindly providing the Nc-Liv strain.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Dubey, J.P.; Schares, G.; Ortega-Mora, L.M. Epidemiology and control of neosporosis and Neospora caninum.
Clin. Microbiol. Rev. 2007, 20, 323. [CrossRef]

2. Reichel, M.P.; Ellis, J.T. Neospora caninum–how close are we to development of an efficacious vaccine that
prevents abortion in cattle? Int. J. Parasitol. 2009, 39, 1173–1187. [CrossRef]

3. Dubey, J.P.; Buxton, D.; Wouda, W. Pathogenesis of bovine neosporosis. J. Comp. Pathol. 2006, 134, 267–289.
[CrossRef]

4. Reichel, M.P.; Alejandra Ayanegui-Alcérreca, M.; Gondim, L.F.; Ellis, J.T. What is the global economic impact
of Neospora caninum in cattle—The billion dollar question. Int. J. Parasitol. 2013, 43, 133–142. [CrossRef]

5. Goodswen, S.J.; Kennedy, P.J.; Ellis, J.T. A review of the infection, genetics, and evolution of Neospora caninum:
From the past to the present. Infect. Genet. Evol. 2013, 13, 133–150. [CrossRef]

6. Kang, S.W.; Kweon, C.H.; Lee, E.H.; Choe, S.E.; Jung, S.C.; Dong, V.Q. The differentiation of transcription
between tachyzoites and bradyzoites of in vitro cultured Neospora caninum. Parasitol. Res. 2008, 103, 1011–1018.
[CrossRef]

7. Kang, S.W.; Lee, E.H.; Jean, Y.H.; Choe, S.E.; Dong, V.Q.; Lee, M.S. The differential protein expression profiles
and immunogenicity of tachyzoites and bradyzoites of in vitro cultured Neospora caninum. Parasitol. Res.
2008, 103, 905–913. [CrossRef]

8. Glisovic, T.; Bachorik, J.L.; Yong, J.; Dreyfuss, G. RNA-binding proteins and post-transcriptional gene
regulation. FEBS Lett. 2008, 582, 1977–1986. [CrossRef]

9. Wickens, M.; Bernstein, D.S.; Kimble, J.; Parker, R. A PUF family portrait: 3′UTR regulation as a way of life.
Trends Genet. 2002, 18, 150–157. [CrossRef]

10. Qiu, C.; Mccann, K.L.; Wine, R.N.; Baserga, S.J.; Hall, T.M.T. A divergent pumilio repeat protein family for
pre-rRNA processing and mRNA localization. Proc. Natl. Acad. Sci. USA 2014, 111, 18554–18559. [CrossRef]

11. Müller, K.; Matuschewski, K.; Silvie, O. The puf-Family RNA-Binding protein puf2 controls sporozoite
conversion to liver stages in the malaria parasite. PLoS ONE 2011, 6, e19860. [CrossRef] [PubMed]

12. Liu, M.; Miao, J.; Liu, T.; Sullivan, W.J.; Cui, L.; Chen, X. Characterization of TgPuf1, a member of the Puf
family RNA-binding proteins from Toxoplasma gondii. Parasit. Vectors 2014, 7, 1–10. [CrossRef] [PubMed]

13. Gomessantos, C.S.S.; Braks, J.A.M.; Prudencio, M.; Carret, C.; Gomes, A.R.; Pain, A.; Feltwell, T.; Khan, S.M.;
Waters, A.P.; Janse, C.J. Transition of Plasmodium sporozoites into liver stage-like forms is regulated by the
RNA binding protein pumilio. PLoS Pathog. 2011, 7, e1002046. [CrossRef]

http://www.mdpi.com/2076-0817/9/12/1019/s1
http://dx.doi.org/10.1128/CMR.00031-06
http://dx.doi.org/10.1016/j.ijpara.2009.05.007
http://dx.doi.org/10.1016/j.jcpa.2005.11.004
http://dx.doi.org/10.1016/j.ijpara.2012.10.022
http://dx.doi.org/10.1016/j.meegid.2012.08.012
http://dx.doi.org/10.1007/s00436-008-1082-5
http://dx.doi.org/10.1007/s00436-008-1075-4
http://dx.doi.org/10.1016/j.febslet.2008.03.004
http://dx.doi.org/10.1016/S0168-9525(01)02616-6
http://dx.doi.org/10.1073/pnas.1407634112
http://dx.doi.org/10.1371/journal.pone.0019860
http://www.ncbi.nlm.nih.gov/pubmed/21673790
http://dx.doi.org/10.1186/1756-3305-7-141
http://www.ncbi.nlm.nih.gov/pubmed/24685055
http://dx.doi.org/10.1371/journal.ppat.1002046


Pathogens 2020, 9, 1019 13 of 14

14. Yang, C.; Liu, J.; Ma, L.; Zhang, X.; Zhang, X.; Zhou, B.; Zhu, X.; Liu, Q. NcGRA17 is an important regulator of
parasitophorous vacuole morphology and pathogenicity of Neospora caninum. Vet. Parasitol. 2018, 264, 26–34.
[CrossRef] [PubMed]

15. Shen, B.; Brown, K.M.; Lee, T.D.; Sibley, L.D. Efficient gene disruption in diverse strains of Toxoplasma gondii
using CRISPR/CAS9. mBio 2014, 5, e01114. [CrossRef]

16. Ma, L.; Liu, G.; Liu, J.; Li, M.; Zhang, H.; Tang, D.; Liu, Q. Neospora caninum ROP16 play an important role in
the pathogenicity by phosphorylating host cell STAT3. Vet. Parasitol. 2017, 243, 135–147. [CrossRef]

17. Song, X.; Lin, M.; Li, M.; Yang, X.; Liu, J.; Liu, Q. Toxoplasma gondii metacaspase 2 is an important factor that
influences bradyzoite formation in the Pru strain. Parasitol. Res. 2020, 119, 2287–2298. [CrossRef]

18. Weiss, L.M.; Ma, Y.F.; Halonen, S.K.; Mcallister, M.M.; Zhang, Y.W. The in vitro development of Neospora
caninum bradyzoites. Int. J. Parasitol. 1999, 29, 1713–1723. [CrossRef]

19. Lirussi, D.; Matrajt, M. RNA granules present only in extracellular Toxoplasma Gondii increase parasite
viability. Int. J. Biol. Sci. 2011, 7, 960–967. [CrossRef]

20. Lall, S.; Piano, F.; Davis, R.E. Caenorhabditis elegans decapping proteins: Localization and functional analysis
of Dcp1, Dcp2, and DcpS during embryogenesis. Mol. Biol. Cell 2005, 16, 5880–5890. [CrossRef]

21. Sheth, U.; Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science
2003, 300, 805–808. [CrossRef] [PubMed]

22. Wang, H.; Lei, T.; Liu, J.; Li, M.; Nan, H.; Liu, Q. A nuclear factor of high mobility group box protein in
Toxoplasma gondii. PLoS ONE 2014, 9, e111993. [CrossRef] [PubMed]

23. Schorer, M.; Debache, K.; Barna, F.; Monney, T.; Müller, J.; Boykin, D.W.; Stephens, C.E.; Hemphill, A.
Di-cationic arylimidamides act against Neospora caninum tachyzoites by interference in membrane structure
and nucleolar integrity and are active against challenge infection in mice. Int. J. Parasitol. Drugs Drug Resist.
2012, 2, 109–120. [CrossRef] [PubMed]

24. Liang, X.; Hart, K.J.; Dong, G.; Siddiqui, F.A.; Sebastian, A.; Li, X.; Albert, I.; Miao, J.; Lindner, S.E.; Cui, L.
Puf3 participates in ribosomal biogenesis in malaria parasites. J. Cell Sci. 2018, 131, jcs212597. [CrossRef]
[PubMed]

25. Droll, D.; Archer, S.; Fenn, K.; Delhi, P.; Matthews, K.; Clayton, C. The trypanosome pumilio-domain protein
PUF7 associates with a nuclear cyclophilin and is involved in ribosomal RNA maturation. FEBS Lett. 2010,
584, 1156–1162. [CrossRef] [PubMed]

26. Cassola, A.; De Gaudenzi, J.G.; Frasch, A.C. Recruitment of mRNAs to cytoplasmic ribonucleoprotein
granules in trypanosomes. Mol. Microbiol. 2007, 65, 655–670. [CrossRef]

27. Cassola, A. RNA granules living a post-transcriptional life: The trypanosome’s case. Curr. Chem. Biol. 2011, 5.
[CrossRef]

28. Voronina, E.; Paix, A.; Seydoux, G. The P granule component PGL-1 promotes the localization and silencing
activity of the PUF protein FBF-2 in germline stem cells. Development 2012, 139, 3732–3740. [CrossRef]

29. Hubstenberger, A.; Courel, M.; Bénard, M.; Souquere, S.; Ernoult-Lange, M.; Chouaib, R.; Yi, Z.; Morlot, J.-B.;
Munier, A.; Fradet, M.; et al. P-Body purification reveals the condensation of repressed mRNA regulons.
Mol. Cell. 2017, 68, 144–157. [CrossRef]

30. Hsiao, W.-Y.; Wang, Y.-T.; Wang, S.-W. Fission yeast Puf2, a Pumilio and FBF family of RNA-binding protein,
links stress granules to processing bodies. Mol. Cell Biol. 2020, 40, e00589-19. [CrossRef]

31. Vessey, J.P.; Vaccani, A.; Xie, Y.; Dahm, R.; Karra, D.; Kiebler, M.A.; Macchi, P. Dendritic localization of the
translational repressor pumilio 2 and its contribution to dendritic stress granules. J. Neurosci. 2006, 26,
6496–6508. [CrossRef] [PubMed]

32. Cassola, A.; Romaniuk, M.A.; Primrose, D.; Cervini, G.; D’Orso, I.; Frasch, A.C. Association of UBP1 to
ribonucleoprotein complexes is regulated by interaction with the trypanosome ortholog of the human
multifunctional P32 protein. Mol. Microbiol. 2015, 97, 1079–1096. [CrossRef] [PubMed]

33. Olivas, W.; Parker, R. The Puf3 protein is a transcript-specific regulator of mRNA degradation in yeast.
EMBO J. 2000, 19, 6602–6611. [CrossRef] [PubMed]

34. Webster, M.W.; Stowell, J.A.; Passmore, L.A. RNA-binding proteins distinguish between similar sequence
motifs to promote targeted deadenylation by Ccr4-Not. eLife 2019, 8, e40670. [CrossRef] [PubMed]

35. Goldstrohm, A.C.; Hook, B.A.; Seay, D.J.; Wickens, M. PUF proteins bind Pop2p to regulate messenger RNAs.
Nat. Struct. Mol. Biol. 2006, 13, 533–539. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.vetpar.2018.03.018
http://www.ncbi.nlm.nih.gov/pubmed/30503087
http://dx.doi.org/10.1128/mBio.01114-14
http://dx.doi.org/10.1016/j.vetpar.2017.04.020
http://dx.doi.org/10.1007/s00436-020-06722-3
http://dx.doi.org/10.1016/S0020-7519(99)00130-7
http://dx.doi.org/10.7150/ijbs.7.960
http://dx.doi.org/10.1091/mbc.e05-07-0622
http://dx.doi.org/10.1126/science.1082320
http://www.ncbi.nlm.nih.gov/pubmed/12730603
http://dx.doi.org/10.1371/journal.pone.0111993
http://www.ncbi.nlm.nih.gov/pubmed/25369210
http://dx.doi.org/10.1016/j.ijpddr.2012.03.001
http://www.ncbi.nlm.nih.gov/pubmed/24533272
http://dx.doi.org/10.1242/jcs.212597
http://www.ncbi.nlm.nih.gov/pubmed/29487181
http://dx.doi.org/10.1016/j.febslet.2010.02.018
http://www.ncbi.nlm.nih.gov/pubmed/20153321
http://dx.doi.org/10.1111/j.1365-2958.2007.05833.x
http://dx.doi.org/10.2174/2212796811105020108
http://dx.doi.org/10.1242/dev.083980
http://dx.doi.org/10.1016/j.molcel.2017.09.003
http://dx.doi.org/10.1128/MCB.00589-19
http://dx.doi.org/10.1523/JNEUROSCI.0649-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16775137
http://dx.doi.org/10.1111/mmi.13090
http://www.ncbi.nlm.nih.gov/pubmed/26096620
http://dx.doi.org/10.1093/emboj/19.23.6602
http://www.ncbi.nlm.nih.gov/pubmed/11101532
http://dx.doi.org/10.7554/eLife.40670
http://www.ncbi.nlm.nih.gov/pubmed/30601114
http://dx.doi.org/10.1038/nsmb1100
http://www.ncbi.nlm.nih.gov/pubmed/16715093


Pathogens 2020, 9, 1019 14 of 14

36. Lin, K.; Qiang, W.; Zhu, M.; Ding, Y.; Shi, Q.; Chen, X.; Zsiros, E.; Wang, K.; Yang, X.; Kurita, T. Mammalian
Pum1 and Pum2 control body size via translational regulation of the cell cycle inhibitor Cdkn1b. Cell Rep.
2019, 26, 2434. [CrossRef]

37. Ariz, M.; Mainpal, R.; Subramaniam, K. C. elegans RNA-binding proteins PUF-8 and MEX-3 function
redundantly to promote germline stem cell mitosis. Dev. Biol. 2009, 326, 295–304. [CrossRef]

38. Shigunov, P.; Sotelosilveira, J.R.; Kuligovski, C.; De Aguiar, A.M.; Rebelatto, C.L.K.; Moutinho, J.A.;
Brofman, P.R.S.; Krieger, M.A.; Goldenberg, S.; Munroe, D.J. PUMILIO-2 is involved in the positive regulation
of cellular proliferation in human adipose-derived Stem Cells. Stem Cells Dev. 2012, 21, 217–227. [CrossRef]

39. Guan, X.; Chen, S.; Liu, Y.; Wang, L.L.; Zhao, Y.; Zong, Z.H. PUM1 promotes ovarian cancer proliferation,
migration and invasion. Biochem. Biophys. Res. Commun. 2018, 497, 313–318. [CrossRef]

40. Dai, H.; Shen, K.; Yang, Y.; Shuai, L.; Zheng, P.; Chen, Z.; Bie, P. PUM1 knockdown prevents tumor progression
by activating the PERK/eIF2/ATF4 signaling pathway in pancreatic adenocarcinoma cells. Cell Death Dis.
2019, 10, 595. [CrossRef]

41. Lindner, S.E.; Mikolajczak, S.A.; Vaughan, A.M.; Moon, W.; Joyce, B.R.; Sullivan, W.J., Jr.; Kappe, S.H.
Perturbations of plasmodium Puf2 expression and RNA-seq of Puf2-deficient sporozoites reveal a critical
role in maintaining RNA homeostasis and parasite transmissibility. Cell Microbiol. 2013, 15, 1266–1283.
[CrossRef] [PubMed]

42. Miao, J.; Li, J.; Fan, Q.; Li, X.; Li, X.; Cui, L. The Puf-family RNA-binding protein PfPuf2 regulates sexual
development and sex differentiation in the malaria parasite Plasmodium falciparum. J. Cell Sci. 2010, 123,
1039–1049. [CrossRef] [PubMed]

43. Wang, X.; Ellenbecker, M.; Hickey, B.; Day, N.J.; Osterli, E.; Terzo, M.; Voronina, E. Antagonistic control of
Caenorhabditis elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2.
eLife 2020, 9, e52788. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.celrep.2019.01.111
http://dx.doi.org/10.1016/j.ydbio.2008.11.024
http://dx.doi.org/10.1089/scd.2011.0143
http://dx.doi.org/10.1016/j.bbrc.2018.02.078
http://dx.doi.org/10.1038/s41419-019-1839-z
http://dx.doi.org/10.1111/cmi.12116
http://www.ncbi.nlm.nih.gov/pubmed/23356439
http://dx.doi.org/10.1242/jcs.059824
http://www.ncbi.nlm.nih.gov/pubmed/20197405
http://dx.doi.org/10.7554/eLife.52788
http://www.ncbi.nlm.nih.gov/pubmed/32804074
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Cell and Parasite Culture 
	Construction of Transgenic Parasite Strains 
	Western Blotting Assay and Immunofluorescence Assays 
	Quantitative Real-Time PCR 
	Plaque Assay and Parasite Intracellular Replication Assay 
	Bradyzoite Differentiation Assay In Vitro 
	Animal Infection Experiments 
	Statistical Analysis 

	Results 
	NcPuf1 Protein Is Expressed in N. caninum 
	NcPuf1 Is Recruited into Processing Bodies in Extracellular Parasites 
	NcPuf1 Knockout and Complementary Strains 
	NcPuf1 Is Vital for Parasite Growth In Vitro and Virulence in Mice 
	NcPuf1 Is Not Required for the Formation of P-Bodies in N. caninum 
	NcPuf1 does Not Affect the Differentiation from Tachyzoites to Bradyzoites In Vitro and Tissue Cysts Formation In Vivo 

	Discussion 
	Conclusions 
	References

