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Abstract: We characterized a number of clinical strains of Staphylococcus spp. and investigated their
sensitivity against polyphenols-rich extracts from natural raw and roasted pistachios (NPRE and
RPRE, respectively). Out of 31 clinical isolates of Staphylococcus spp., 23 were coagulase-positive and
identified as S. aureus, of which 21 were MRSA. Polyphenols-rich extracts from natural pistachios
and roasted pistachios were prepared: the total phenols content, expressed as gallic acid equivalent
(GAE)/100 g fresh weight (FW), was higher in natural pistachios (359.04 ± 8.124 mg) than roasted
pistachios (225.18 ± 5.055 mg). The higher total phenols content in natural pistachios also correlated to
the higher free-radical scavenging activity found by DPPH assay: NPRE and RPRE showed IC50

values of 0.85 (C.L. 0.725–0.976 mg mL−1) and 1.15 (C.L. 0.920–1.275 mg mL−1), respectively.
Both NPRE and RPRE were active against S. aureus 6538P and Staph. spp. clinical isolates, with RPRE
being the most active (MIC values ranging between 31.25 and 2000 µg mL−1). The antimicrobial
potential of pistachios could be used to identify novel treatments for S. aureus skin infections.
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1. Introduction

Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are Gram-positive human
pathogens responsible for a range of infections (skin, respiratory, and bone joint), endocarditis,
bacteremia, and toxic shock syndrome [1]. S. aureus is implicated in a variety of
biofilm-related infections, including implanted medical devices and wound-associated infections [2–4].
Biofilm formation has been reported in several human infections involving the oral cavity and
the skin [5,6]. Biofilms are known to be resistant to conventional antibiotics and are therefore
demanding for novel antibacterial compounds that can treat this community. Since several MRSA
strains have become multi-drug resistant, novel treatments are needed to treat these widespread
infections. We have reported the antibacterial activity of polyphenols-rich natural extracts, including
almonds [7,8], Citrus plants [9], Vitis vinifera [10], Olea europaea L. [11], Citrus bergamia essential oil [12],
and juice [13]. Phytochemicals previously identified from pistachios (Pistacia vera L.), including
phytosterols, fatty acids, lutein, and tocopherols [14] have been involved with the health benefits
associated with pistachio consumption. We have previously demonstrated that polyphenols from
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pistachios were bioaccessible in the upper gastrointestinal tract [15] and active against a range of
Gram-positive bacteria [16]. Based on previous results, here we have characterized clinical isolates of
Staphylococcus spp. in terms of presence of coagulase and lipase as well as biochemical API analysis
and tested their sensitivity against polyphenol-rich extracts from pistachios. Furthermore, the extracts
were tested on the production of bacterial biofilms in vitro.

2. Results

2.1. Polyphenols and Radical Scavenging Activity

A preventive phytochemical screening revealed a total phenols content (359.04 ± 8.124 and
225.18 mg ± 5.055 mg GAE/100 g FW for NP and RP, respectively). The higher total phenols content in
NP was also correlated to the higher free-radical scavenging activity found by DPPH assay: NPRE and
RPRE showed IC50 values of 0.85 (C.L. 0.725–0.976 mg mL−1) and 1.15 (C.L. 0.920–1.275 mg mL−1),
respectively, which are well below those previously reported (1.30 to 2.39 mg mL−1) [17,18].

These results were confirmed by RP-LC-DAD-FLU analysis, which highlighted a higher
polyphenolic content of NP compared with RP (Table 1). Twenty-two polyphenols were identified and
quantified, some for the first time, with respect to data previously reported [18]. Although the two
extracts appeared similar in the phenolic acids and flavonoids content (39.02% and 60.98% in NPRE
and 46.90 and 56.10% RPRE), a more in-depth analysis of the polyphenolic profile revealed substantial
differences in the polyphenol classes contained (Figure 1). Despite the fact that hydroxybenzoic
acids represent, among the phenolic acids, the most abundant class in both the extracts under
study (26.95% and 43.75% in NPRE and RPRE, respectively), RPRE showed almost exclusively
hydroxybenzoic acids (93.27% vs. 6.73% of hydroxycinnamic acids). Regarding flavonoids, NPRE
was mainly composed of flavan-3-ols (42.66%), followed by flavanones (34.89%), flavonols (15.61%),
flavones (5.40%), and isoflavones (1.45%). In contrast, RPRE mostly contained flavanones (66.96%),
followed by flavan-3-ols (19.61%), flavonols (7.63%), isoflavones (2.94%), and flavones (2.87%).
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Figure 1. Polyphenol classes distribution within NPRE and RPRE. * p < 0.001; § p < 0.005.

Table 1. Polyphenolic profile of natural and roasted pistachios. Value are expressed as mg/100 g FW
and represent average (± SD) of three independent experiments (n = 3).

Compound NPRE RPRE

Hydroxybenzoic acids
Gallic acid 0.99 ± 0.035 1.77 ± 0.055

Protocathecuic acid 1.01 ± 0.042 1.08 ± 0.047
Hydroxybenzoic acid 0.17 ±0.011 0.19 ± 0.008

Vanillic acid 0.02 ± 0.001 -



Pathogens 2018, 7, 82 3 of 10

Table 1. Cont.

Compound NPRE RPRE

Hydroxycinnamic acids
Chlorogenic acid 0.15 ± 0.011 0.19 ± 0.010

Caffeic acid 0.71 ± 0.032 0.01 ± 0.001
Cumaric acid 0.12 ± 0.010 0.02 ± 0.001

Flavanones
Eryodictiol 0.23 ± 0.012 0.21 ± 0.013

Eryodictiol-7-O-glucoside 1.34 ± 0.088 2.19 ± 0.074
Naringenin 0.05 ± 0.002 0.03 ± 0.002

Naringin 0.10 ± 0.004 0.04 ± 0.001

Flavonols
Kaempferol-3-O-rutinoside 0.05 ± 0.002 0.04 ± 0.002

Quercetin 0.18 ± 0.010 0.07 ± 0.003
Quercetin-3-O-rutinoside 0.30 ± 0.016 0.13 ± 0.008
Quercetin-3-O-glucoside 0.24 ± 0.012 0.04 ± 0.002

Flavones
Amentoflavone 0.17 ± 0.007 0.05 ± 0.003

Luteolin 0.04 ± 0.002 0.04 ± 0.002
Apigenin 0.06 ± 0.001 0.01 ± 0.001

Isoflavones
Daidzein 0.06 ± 0.002 0.10 ± 0.005
Genistein 0.01 ± 0.001 0.01 ± 0.004

Flavanols
Epicatechin 0.07 ± 0.002 0.04 ± 0.002

Catechin 2.04 ± 0.080 0.69 ± 0.035
Total amount 8.11 6.95

2.2. Phenotypic Identification of Staphylococcus Strains

The phenotypic characterization of the clinical Staphylococcus strains is reported in Table 2. Out
of the 31 clinical isolates, 23 were coagulase-positive and identified as S. aureus, two strains were
coagulase and lipase negative and identified as S. epidermidis, two strains were coagulase and lipase
negative and identified as S. lugdunensis, two strains were coagulase and lipase negative and identified
as S. hominis, one strain was coagulase and lipase negative and identified as S. xylosus, and one
unidentified strain of Staphylococcus was coagulase and lipase negative. Interestingly, 21 out 23 S.
aureus strains were MRSA. Ten (10) out of 23 S. aureus strains did not produce lipase: 6 out of 16 strains
isolated from knee prosthesis produced lipase and 4 out of 7 from hip prosthesis produced lipase.

Table 2. Phenotypic characterization of Staphylococcus strains. Numbers from 1 to 31 indicate clinical
strains. + = positive; − = negative. OOS = other orthopedic site.

Strain Origin Coagulase Lipase API System

1 knee + − S. aureus
2 hip + + S. aureus
3 knee + + S. aureus
4 OOS + + S. aureus
5 knee − − S. sp.
6 OOS − − S. xylosus
7 hip + − S. aureus
8 OOS + + S. aureus
9 knee + + S. aureus

10 knee + − S. aureus
11 hip + + S. aureus
12 knee − − S. epidermidis
13 OOS − − S. lugdunensis
14 knee − − S. epidermidis
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Table 2. Cont.

Strain Origin Coagulase Lipase API System

15 hip + − S. aureus
16 OOS + + S. aureus
17 OOS + + S. aureus
18 knee + + S. aureus
19 knee + − S. aureus
20 knee + − S. aureus
21 knee + − S. aureus
22 knee − + S. hominis
23 hip + − S. aureus
24 knee − + S. hominis
25 knee + + S. aureus
26 OOS + + S. aureus
27 hip + + S. aureus
28 OOS + + S. aureus
29 hip − − S. lugdunensis
30 knee + − S. aureus
31 knee + − S. aureus

ATCC 6538P + + S. aureus

2.3. Antimicrobial Activity of Pistachio Extracts

The MIC and MBC values of NPRE and RPRE are shown in Table 3. Negative controls indicated
absence of inhibition (data not shown).

Table 3. MICs (µg mL−1) of pistachios against Staphylococcus strains.

Strain NPRE RPRE

1 2000 2000
2 >2000 2000
3 >2000 2000
4 250 500
5 >2000 >2000
6 2000 2000
7 >2000 1000
8 >2000 2000
9 2000 2000
10 2000 2000
11 >2000 1000
12 2000 2000
13 2000 2000
14 62.5 500
15 1000 1000
16 >2000 >2000
17 >2000 1000
18 2000 2000
19 2000 2000
20 2000 2000
21 >2000 2000
22 >2000 >2000
23 2000 2000
24 2000 2000
25 >2000 2000
26 >2000 2000
27 >2000 >2000
28 >2000 >2000
29 >2000 >2000
30 1000 1000
31 2000 2000

ATCC 6538P 125 31.25
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Both NP and RP polyphenolic extracts were active against the Gram-positive bacteria, with RPRE
(activity against ATCC strain and 17 out of 31 clinical isolates) overall being more effective than
NPRE (activity against ATCC strain and 25 out of 31 clinical isolates). The activity was bacteriostatic
rather than bactericidal. No effect on biofilm production was detected using the pistachio extracts.

3. Discussion

The present work further validates the findings of antimicrobial potential of polyphenols-rich
extracts against Gram-positive bacteria, both standard and clinical isolates. We have demonstrated
that extracts from pistachios were partially active against clinical strains of Staphylococcus spp., some of
which were multi-drug resistant. Pathogenicity of S. aureus is attributed to a wide range of virulence
factors, including extracellular protease, lipase, and superoxide dismutase. The increased prevalence of
multidrug resistance S. aureus poses a serious risk to worldwide public health, and novel treatment
strategies are needed to address this concern. Over the last decade, MRSA strains have become one of
the main causes of mortality amongst hospital-acquired infectious diseases [19,20]. S. aureus 6538P
was the most sensitive strain, with complete inhibition achieved with a concentration of 125 and
31.25 µg mL−1 of NPRE and RPRE, respectively. Overall, we have found RPRE was more effective
than NPRE. This trend, which cannot be explained by the total amount of polyphenols present in the
two extracts, or by their antioxidant potential, could be attributed to the qualitative composition of the
two extracts (Figure 1). In agreement with our previous investigation [15], the concentration of gallic
acid and eryodictiol-7-O-glucoside was higher in RP than NP. Lee et al. [21] have recently reported on
the antibacterial activity of a multifunctional nanoparticle containing gallic acid against methicillin
resistant S. aureus strains: the bactericidal activity of functionalized nanoparticles containing gallic
acid was increased compared to the non-functionalized nanoparticles, with high selectivity for MRSA
strains. Extracts from phenolic blueberry and blackberry pomace rich in phenolic acids, mainly
protocathecuic, cumaric, vanillic, caffeic, and gallic acids, were able to inhibit the growth of vegetative
MRSA in vitro and MRSA biofilm formation on plastic surface [22]. A recent investigation [23]
reported on the protective role played by eriodyctiol against S. aureus induced lung cell injury by
inhibiting alpha-hemolysin expression.

The differences between the two extracts, possibly due to the roasting procedure, may affect their
biological activity. It is known that each class of polyphenols is characterized by an activity closely
related to its chemical structure, due mainly to hydroxyl groups linked to phenolic structures and
their degree of glycosylation [24,25]. Amongst flavanols, catechin was nearly 3 times higher in RPRE
compared with NPRE, whereas hydroxybenzoic acids and flavanones were significantly higher in
roasted pistachios (Figure 1). From our preliminary investigations, it was observed that NPRE was
richer in polyphenols and consequently had greater antioxidant activity compared to RPRE. The total
phenols values were higher than those previously observed, which substantially vary with regard to
the pistachio kernels, ranging from 165 ± 8.00 to 347 ± 34.00 mg GAE/100 g [17,18]. Natural raw
pistachios were found more active than roasted salted pistachios in our recent in vitro and in vivo
studies [26,27].

Galloyl flavan-3-ols such as (-)-epicatechin gallate and catechins are effective against MRSA
strains [28], whereas (-)-epicatechin gallate sensitises MRSA strains to β-lactam antibiotics [29,30].
The use of pistachio polyphenols in combination with traditional or antibiotics could identify new
mechanisms of synergism and modulate properties of antibiotic resistance. This could aim to the
development of novel topical agents for the treatment of S. aureus skin infections as well as for
topical formulations.

In conclusion, the results of the present study demonstrated that polyphenols from pistachios
are effective against ATCC strains of S. aureus and clinical strains of Staph. spp. Further studies are
needed to establish possible synergistic effect with antibiotics in order to develop novel chemotherapic
agents for the treatment of S. aureus infections.
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4. Materials and Methods

4.1. Pistachio Extracts

Californian natural shelled (NP) and roasted (RP) pistachio kernels were kindly provided by
Di Bartolo S.r.l., Calatabiano (Italy).

NPs and RPs were ground to fine powder by an analytical blade mill (IKA®A11), under liquid
nitrogen, in order to block enzymatic activities and preserve organoleptic and nutritional properties.
Polyphenols-rich extracts of NP (NPRE) and RP (RPRE) were obtained following the method reported
by Mandalari et al. [15].

4.2. Total Phenols

The total phenol content of NPRE and RPRE was determined colorimetrically using the
Folin-Ciocalteu assay as previously described by Smeriglio et al. [31] and expressed as mg of gallic
acid equivalents (GAE)/100 g of NP and RP FW. Results represent the average ± standard deviation
(SD) of three independent experiments (n = 3).

4.3. Radical Scavenging Activity

The anti-radical activity of NPRE and RPRE was determined using the stable
2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) according to Smeriglio et al. [32]. The inhibition (%) of
radical activity was calculated using the following equation (Equation (1)):

Inhibition (%) =
A0 − As

A0
× 100 (1)

in which A0 is the absorbance of the control and As is the absorbance of the sample after 20 min
incubation. Results were expressed as half-inhibitory concentration (IC50) calculating the confidence
limit (C.L.) at 95%.

4.4. Polyphenolic Profile

Determination of polyphenol profile was carried out by LC-DAD-FLU analysis according to
Bisignano et al. [33]. Polyphenols were allowed by comparing peak’s UV-Vis spectra and retention
times with those of commercially available reference compounds (purity ≥ 99%. Extrasynthese, Genay,
France) and using, for quantitative analysis, external standard calibration curves (concentration range
1–50 µg/mL).

The results were expressed as milligrams of each compound/100 g of NP and RP FW and represent
the average ± standard deviation (SD) of three independent experiments (n = 3).

4.5. Microbial Strains, Culture Conditions, and Phenotypic Characterization

The following strains, obtained from the University of Messina’s in-house culture collection
(Messina, Italy), were used: Staphylococcus aureus ATCC 6538P, and 31 clinical isolates of S. spp.
obtained from swabs of patients with an orthopedic infection. Out of the 31 clinical isolates, 16 were
obtained from a knee prosthesis or surgical wound, 7 from hip prosthesis, and 8 from other orthopedic
sites. All the swabs were cultivated on 5% sheep blood agar plates (Oxoid, Basingstoke, UK) and
incubated for 24–48 h at 37 ◦C under aerophilic condition. Strains were identified by conventional
methods, presumptively by colony morphology, Gram staining, selective isolation on Baird Parker agar
base with egg yolk tellurite emulsion (Oxoid), catalase, and coagulase test (Staphylase Test, Oxoid),
and stored in BHI containing 10% glycerol (vol/vol) at −70 ◦C. All isolates were revitalized on 5%
sheep blood agar and tested for species identification phenotypically by the analytical profiling index
using an API identification system (Api Staph, BioMerieux, Marcy-l’Étoile, France).
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The principle of the API system is to generate an identification code from individual miniaturized
biochemical reactions, each producing either a positive or negative result. The composite of the binary
results is converted into a numerical profile, which is then entered into a database for the generation of
the identification of the microorganism.

4.6. Lipase Activity

Lipase activity was monitored on MHT plates containing Muller-Hinton agar medium,
1% Tween 60, and 0.01% CaCl2. Ten (10) µL of overnight TSB cultures diluted to 105 cells were
inoculated by spotting on the plate surfaces and incubated at 37 ◦C for 72 h. The colonies were observed
daily under a stereo microscope (Stereo eighty, Swift Instr. International S.A., Boulder, CO, USA).
All determinations were performed in duplicate.

4.7. Susceptibility Studies

The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration
(MBC) of NPRE and RPRE were determined using a broth microdilution method in 96-well
round- bottomed polystyrene microtiter plates according to Clinical and Laboratory standards
Institute [34]. Briefly, the assay was executed in Mueller–Hinton broth (MHB) using overnight
cultures. The employed strain inoculum was 1–5 × 105 CFU mL−1. Stock solutions of each extract in
DMSO (100 mg mL−1) were diluted in MHB to give serial 2-fold dilutions, which were added to
each well in order to obtain final concentrations ranging from 2000 to 3.9 µg mL−1. The final
concentration of DMSO in the assay did not exceed 1%. MHB and DMSO (1%) were used as negative
controls. Plates were incubated at 37 ◦C for 24 h. The MIC values were defined as the lowest extract
concentrations showing no bacterial growth after the incubation time. MBCs were determined by
seeding 20 µL from all clear MIC wells onto Mueller-Hinton agar (MHA, Oxoid) plates. The MBC was
defined as the lowest extract concentration, which killed 99.9% of the final inocula after 24 h incubation
at 37 ◦C. All assays were done in triplicate. Positive and negative controls with antibiotics and solvent
(DMSO) were included in each assay.

4.8. Effect on Biofilm Formation

The effect of different concentrations of NPRE and RPRE (ranging from 1/2 MIC to 1/16 × MIC)
on biofilm forming ability was tested using polystyrene flat-bottomed microtiter plates (Costar) [35,36].
Briefly, bacterial cultures were grown overnight in Tryptic Soy Broth (TSB) + 1% glucose, diluted in
the same medium to 1–5 × 106 CFU mL−1, and dispensed into each well of microtiter plate (100 µL)
in presence of 100 µL twofold serial dilution of each extract. The bacterial strains in the absence of
antibacterial agents and TSB with DMSO were included as controls. After 24 h of incubation a
37 ◦C, biofilm inhibition was quantified. The supernatants were decanted, and cells removed by PBS
washing (pH 7.2). The biofilm was fixed with methanol for 15 min and air dried at temperature, then
stained with 0.1% (w/v) safranin (Sigma) for 5 min and rinsed thoroughly with water. To quantify
biofilm formation, 200 µL of 30% acetic acid were added to each well for 30 min. The absorbance
was determined by using the spectrophotometer EIA reader at 492 nm. The biofilm reduction was
calculated as follows:

100 − (mean OD492 of treated well/mean OD492 of control well) × 100

Each assay was performed in duplicate and repeated at least three times.

4.9. Statistical Analysis

Results were expressed as mean ± standard deviation (S.D.) of three independent experiments
in triplicate (n = 3) and analyzed by one-way analysis of variance (ANOVA). The significance of
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the difference was assayed by using Tukey’s test for each paired experiment using a SigmaPlot 12.0
software. Statistical significance was considered at p < 0.05.
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