Supplementary Table I: ZIKV-positive tissues by ddPCR and RNAScope

(ZIKV positive tissues were confirmed by detecting viral RNA with ddPCR and RNAscope ZIKV-specific chromogenic probes).

	Intravaginal (IVAG) infection				Sı	ubcutaneous	s (sub (ם) infectio	n		
Sample	1	RFc15R		R1811R		A12T006		RZi15R		R21612R	
(Necropsy date)) (*	(110 dpi)		(60 dpi)		(8 dpi)		(21 dpi)		(21 dpi)	
	PCR	RNAScope	PCR	RNAScope	PCR	RNAScope	PCR	RNAScope	PCR	RNAScop	
Lung	-	ND	-	-	-	-	-	ND	-	ND	
Spleen	-	ND	-	-	-	-	+	ND	+	ND	
Liver	-	ND	-	-	-	-	-	ND	-	ND	
Kidney	-	ND	+	+	-	-	+	ND	-	ND	
Intestine	-	ND	-	-	-	-	+	ND	-	ND	
Stomach	-	ND	-	-	-	-	-	ND	-	ND	
Heart	-	ND	+	+	+	+	-	ND	-	ND	
Vagina	ND	ND	ND	ND	+	+	-	ND	-	ND	
Uterus	-	ND	-	-	+	+	-	ND	-	ND	
Inguinal LN	-	ND	+	+	-	-	+	ND	+	ND	
Axillary LN	-	ND	-	-	-	-	+	ND	+	ND	
Colonic LN	-	ND	+	+	-	-	+	+	+	ND	
Mesenteric LN	-	ND	-	-	-	-	+	ND	-	ND	
Cervical LN	-	ND	+	+	-	-	-	ND	-	ND	
Thoracic SC	-	ND	-	-	-	-	-	ND	-	ND	
Cervical SC	-	ND	-	-	-	-	-	ND	-	ND	
Lumbar SC	ND	ND	ND	ND	+	+	-	ND	-	ND	
Peripheral SC	-	ND	-	-	-	-	+	ND	-	ND	
Retina	-	ND	-	-	-	-	-	ND	-	ND	
Subventricular zone	-	ND	-	-	-	-	-	ND	-	ND	
Hippocampus	_	ND	+	+	-	-	-	ND	_	ND	
Frontal lobe											
cortex	-	ND	-	-	-	-	-	ND	+	ND	
Parietal lobe	-	ND	-	-	+	+	-	ND	-	ND	
Temporal lobe	-	ND	-	-	-	-	-	ND	-	ND	
	-	ND	-	-	-	-	-	ND	-	ND	
Hypothalamus	_		_	_	+	+	_	ND	_	ND	
Caraballum	_		_	_	-	-	- +	+	-		
	_		_	_	-	-	-		-		
Caudata nucleus	-		+	-	+	-+	-		-+		
	, –			-		•	-				

PCR: ddPCR, -: PCR amplification or RNAScope negative, +: PCR amplification or RNAScope positive

Fig S1. Monocyte and dendritic cell gating strategy: This involved the exclusion of B cells and NK (CD3-CD8 α +) cells from the CD3- population (CD8-CD20-). From the CD8-CD20- population, we gated out CD14+ cells, which were further discriminated into CD14+++CD16- (classical), CD14++CD16+ (intermediate) and CD14+CD16++ (non-classical) monocyte phenotypes. These diverse monocyte phenotypes were further evaluated for their expression of Ki67+ and CD80+ based on the placement of FMO gates. On the other hand, dendritic cells (DCs) were obtained from the Lin- (CD3-, CD8-, CD14- and CD20-) population. From the Lin-population, HLA DR+ cells were excluded and further divided into CD11C hi MDCs.

Fig S2. B cell and CD8+ gating strategy. Briefly, B cells were classified as CD3-CD20+ cells. Changes that occurred in these cell frequencies were studied across all experimental animals at diverse time points. From the CD3+ population, we delineated CD8+ T cells and categorized them into respective naive, central memory and effector memory phenotypes. We then focused on Ki67 expression on central memory CD8+ T cells following the placement of an appropriate Fluorescent Minus One (FMO) gate.

Fig S3. Describing the NK cell gating strategy. From the CD3- population, we obtained NK cells by CD8 α and NKG2A co-expression. Following the placement of a PD-1 FMO gate, we were able to study changed that occur in PD-1+ NK cells during the course of the study.