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Abstract: Strongyloidiasis is an underestimated disease caused by the soil-transmitted parasite
of the genus Strongyloides. It is prevalent in socioeconomically disadvantaged communities and
it is estimated that global infection could be as high as 370 million people. This paper explores
current methods of strongyloidiasis treatment, which rely on administration of anthelminthic drugs.
However these drugs cannot prevent reinfection and drug resistance has already been observed in
veterinary models. This highlights the need for a combined approach for controlling Strongyloides
that includes both clinical treatment and environmental control methods. Currently, nematicides are
widely used to control plant parasites. The review suggests that due to the species’ similarity and
similar modes of action, these nematicides could also be used to control animal and human parasitic
nematodes in the environment.
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1. Introduction

Strongyloidiasis is a disease caused by two soil-transmitted helminths of the genus Strongyloides,
Strongyloides stercoralis and to a lesser extent Strongyloides fuelleborni. S. fuelleborni is only found
in Africa and the Southeast Asian countries of Papua New Guinea, while S. stercoralis is globally
distributed and is clinically more important [1,2]. Strongyloidiasis is an underestimated disease highly
prevalent in socioeconomic disadvantage communities [3,4]. Although it is currently estimated that
about 30–100 million people are infected globally, a more accurate estimate is thought to be around
300 million [2,5] or up to 370 million people [6]. Due to the ability of S. stercoralis to remain in a
host organism as autoinfective filariform larvae (L3), a person can stay asymptomatically infected
for decades [7,8]. Parthenogenesis allows a single remaining female parasite present in a host to
reproduce and cause reinfection, which has serious ramifications for effective treatment [1,9,10].
The survival of asexually produced infective larvae (L3) is estimated to be less than 14 days. However,
heterogonically developed infective larvae (L3) have been shown to survive indefinitely in the soil of
optimal environment conditions until they find a host [9,11,12]. The complicated S. stercoralis life-cycle,
insensitivity of detection methods and social factors challenge strongyloidiasis identification, diagnosis
and treatment [3,13]. If not diagnosed in time it can lead to fatal outcomes [1,14], and given that we
see high disease rates in population sub-groups, strongyloidiasis is not only a personal but a public
health issue [2,15].

Strongyloides genus species have both parasitic and free-living life cycles. The infection of a
human starts from infective larvae (filariform larvae L3), which penetrate the host and are transported
via blood to the lungs, from where the larvae migrate to the gastrointestinal tract. In the intestine,
larvae moult two times to become adult female worms, which hatch eggs through parthenogenesis and

Pathogens 2016, 5, 59; doi:10.3390/pathogens5040059 www.mdpi.com/journal/pathogens

http://www.mdpi.com/journal/pathogens
http://www.mdpi.com
http://www.mdpi.com/journal/pathogens


Pathogens 2016, 5, 59 2 of 10

produce rhabditiform larvae. The rhabditiform larvae can either be excreted in feces or become infective
filariform larvae autoinfecting a host [7]. Certain respiratory conditions; however, are believed to affect
the filariform larvae transition through the lungs and cause its development into adult egg laying
female worms in the lungs [16,17]. The repeated cycle of this leads to pulmonary strongyloidiasis [18].
There are no further studies done showing the filariform larvae maturing into adult worm in the
lungs. The pulmonary strongyloidiasis is believed to occur due to autoinfection and filariform larvae
disseminating to respiratory system [19]. Currently, the nematode’s environmental stage has not
been extensively studied or controlled. However, exploring mechanisms to control the nematode in
the environment should be made a priority. Biocontrol has been described as a promising way of
environmental control of agricultural, animal and human soil-transmitted nematodes [20], and the use
of commercially available nematicides should be considered and explored.

At the World Health Organization global parasite control meeting in 2004 it was recommended
that S. stercoralis control measures should be included in the health package for endemic areas [21].
However, to date, there has been no progress made mostly due to the gaps in knowledge regarding
S. stercoralis treatment and control [22]. Investigation into transmission hot-spots is currently being
undertaken [23]. To address the transmission, the best management approaches need to be identified
and this discussion represents a step in this process. For example, wastewater overflow in septic tanks,
solid waste including diapers or other animal feces might be areas to target.

This paper reviews currently commercially available drugs used to treat human strongyloidiasis,
and explores the main issues associated with drug application. In addition, this paper looks at
nematicides registered in Australia, their use, main constituents, mode of action and toxic effects.
To date, strongyloidiasis treatment has tended to be viewed only from a clinical perspective, which is
an inevitable part of treatment once infection has occurred. However, drug treatment cannot prevent
reinfection and there is the potential for drug resistance. Here we suggest a combined approach of
strongyloidiasis treatment; through clinical intervention with drugs once infection has occurred, but
supplemented with nematode control in the environment. The advantages and concerns with both
approaches are discussed.

2. Anthelminthic Drugs

The World Health Organization currently recommends albendazole and ivermectin as suitable
drugs against strongyloidiasis. Mebendazole is not recommended anymore, as it has been
demonstrated to have a suboptimal effect against strongyloidiasis (Table 1) [24]. Ivermectin has been
shown to be the most effective and therefore the first choice drug in strongyloidiasis treatment [25],
especially for chronic strongyloidiasis [26,27].

Table 1. WHO recommended anthelminthic drugs to treat strongyloidiasis.

# Drug Name Class (Drench Group) Mode of Action *

Resistance of
Gastrointestinal

Nematodes
(Veterinary Studies)

Resistance of
Strongyloides spp.

(Veterinary Studies)

1a Albendazole
Benzimidazole, BZ, “white”

(introduced in 1961)
Interaction with β-tubulin

impairing cytoskeleton
1. Horse (97.7%) [28]
2. Sheep (71%) [29]

1. Sheep (57%) [29],
Sheep (66.7%) [30]

2. Horse [31]1b Mebendazole

2 Ivermectin Macrocyclic lactone, ML,
“ectin” (introduced in 1980s)

Paralysis of pharyngeal and
body wall musculature 1. Sheep (29%) [29] 1. Sheep (43%) [29]

* Source: [32].

2.1. Benzimidazoles (Albendazole and Mebendazole)

Benzimidazole is a group of anthelminthic drugs, which includes albendazole and mebendazole.
They are shown to affect parasite locomotion and reproduction through action on the β-tubulin,
compromising nematode’s cytoskeleton by impairing glucose uptake [33]. Albendazole is poorly
absorbed and a single dose is shown to have an efficacy rate of 62.2% [33,34].
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2.2. Macrocyclic Lactones (Ivermectin)

Macrocyclic lactones (MLs), in which ivermectin is the only approved drug for use in humans, act
on nematodes residing in mammals’ gastrointestinal tract or lungs, inhibiting their capacity to move
and feed, which results in their death [35]. Ivermectin is a very effective drug against early and adult
stages of gastrointestinal parasites, and less effective against adult stages of filarial nematodes [35].
Macrocyclic lactones including ivermectin are known to react with a range of ligand-gated ion
channels (α7 nACh receptors, acetylcholine-gated chloride channels, GABA-gated chloride channels,
histamine-gated chloride channels, glycine receptors, and P2X4 receptors). The anthelminthic activity
is shown by ivermectin interacting with glutamate-gated chloride channels (GluCl) in nematodes,
increasing chloride permeability, which results in nematode paralysis [36,37]. Ivermectin is currently
the best treatment for onchocerciasis and administered at intervals of one year in highly prevalent
countries. While it is also effective at treating other helminth infections, it is not available in
the onchocerciasis-free areas and recommended to be substituted with diethylcarbamazine [24,38].
Due to the strong protein binding ability of ivermectin, its oral administration can be impaired in
strongyloidiasis disseminated patients. There is, however, no parenteral administration of ivermectin
licensed currently, which is essential in cases of disseminated strongyloidiasis [39,40].

2.3. Anthelminthic Drugs Associated Issues

Treatment of soil-transmitted helminthiasis is challenging due to development of resistance,
as demonstrated in veterinary practice, and reinfection occurrence [41,42]. Among soil-transmitted
helminth infections, strongyloidiasis is the most difficult to treat because of its unique ability of
autoinfection, especially in cases of hyperinfection or disseminated diseases [1,2,25,31,43]. The drug
treatment efficacy depends also on number of factors including an individual’s immune system,
co-infection with HTLV-1 and history of drug intake [44–47]. Fecal examination, traditionally used
for monitoring treatment efficacy, is associated with low sensitivity. Although less available in low
resource settings, serology tests are known for higher sensitivity and accuracy, and should be used for
not only strongyloidiasis diagnosis but also follow-up tests [48,49].

The drugs, while reasonably well tolerated, can cause adverse effects including liver disfunction,
gastrointestinal symptoms (nausea, vomiting, loose stool, abdominal distension or pain), chest
tightness or pain, itching, fever, cough and wheezing, dizziness, and neurological effects [50–53].
Another issue with anthelminthic drugs is their teratogenicity potential in pregnant women who have
a high risk of developing iron-deficiency anemia [54].

Animal-infecting nematode resistance development results in need for new anthelminthic drugs
to be introduced to the market. Nematode resistance to different drugs has been widely studied and
demonstrated frequently in animal studies [31,41,42,55–58]. Resistance to the benzimidazole class of
drugs has been shown to be up to 97.7% and 71% in gastrointestinal nematodes parasitizing horse and
sheep respectively [28,29]. Resistance (66.7%) to benzimidazoles has been also determined in sheep
Strongyloides spp. [30]. The most recently introduced anthelminthic drug, ivermectin, has been shown
to be the most successful in helminth infection treatment with less resistance development compared
with the benzimidazole drugs. Nevertheless, resistance has been demonstrated in the last few years in
gastrointestinal nematodes (29%), and sheep Strongyloides spp. (40%) [29]. Treatment of sheep parasites
two times per year caused a rapid drug resistance development demonstrating that resistance can occur
even in low frequency drug application [59]. This suggests that human-infecting nematodes are also
likely, at some stage in the future, to become resistant to the available drugs. This is also induced by
continuous use of a one drug family over the years, as in case of ivermectin against strongyloidiasis [60].
Studies on benzimidazole drugs against human nematodes have reported low efficacy of drug
treatment, calling for great attention and warning for possible resistance development [61,62]. To date,
human nematode studies with ivermectin have shown no resistance to the drug [50].

A little is understood in the mechanism of resistance development in S. stercoralis or other human
parasites to anthelminthic drugs. Satoh et al. (1999) have found that S. stercoralis specific antibody, IgG4,
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is associated with both resistance to albendazole and elevated level of HLA-DRBI*0901, suggesting
that patients should be tested for this antibody prior to drug treatment to check for their therapeutic
effect on them. However, no other reports are available showing the association between increased
level of IgG4 and resistance in a parasite [60]. A human immune system changes in response to
strongyloidiasis infection, in particular T and B cells. The immune system has two responses to
infective filariform larvae and host adapted larvae, which start autoinfection [44]. There are two
mechanisms of ivermectin resistance identified so far: alteration of the membrane transport protein
called P-glycoprotein, which is responsible for the drug delivery to the cell membrane, and alteration
of the Cl channel receptor [58,63–65].

It is a risk for resistance development in response to large scale drug administration programs
within the parasite control programs. The presence of a free-living stage of S. stercoralis, sexual
reproduction, and relatively short lifespan and generation time could contribute to quicker drug
resistance development in nematodes. Generally it is thought that if different drugs target and involve
different receptors, their combined use will delay resistance development [66]. However, if resistance in
two drugs involves same mechanism, combined drug treatment may be overlooked. ABC transporters
have been shown to be involved in both ivermectin and albendazole resistance, which can potentially
enhance the resistance development if both drugs are used for treatment [64]. It has been shown in
some nematodes that ivermectin selects on β-tubulin, which is a primarily receptor for albendazole [66].

Although it is more difficult to study and confirm anthelminthic resistance in human parasites
due to number of factors, the potential for resistance is mostly overlooked and should be more
carefully examined in drug treatment application [67]. Notably, there are many gaps identified in our
understanding of the pharmacology of anthelminthic drugs despite the fact that that millions of people
around the world are treated by these drugs [35].

Mass drug administration (MDA) is the main clinical approach to controlling highly prevalent
neglected tropical diseases. Ivermectin, along with benzimidazole drugs, have been shown to
be effective against intestinal helminth and schistosome infections. Coadministration of different
anthelminthic drugs allows integrating control programs for intestinal helminth infections, lymphatic
filariasis and onchocerciasis with schistosomiasis and food-borne trematode infections. However,
MDA could be associated with a higher risk for resistance development, as more people are given the
drug more often, including those that are no carrying disease. More research is required to study the
long-term effects of repeated drug doses [38,68].

3. Nematicides

Nematicides are used to control plant parasite nematodes, which are ubiquitous and globally
cause costly yield loses in agriculture [32,69]. To date, there have been limited studies demonstrating
nematicides use on non-plant nematodes, as they are mostly treated by anthelminthic drugs. However,
the mode of their action and species’ similarity might allow using them on animal and human parasites.

According to the Australian Pesticides and Veterinary Medicines Authority there are currently
around 20 registered nematicides to use in Australia with the four active compounds fenamiphos,
fluensulfone, oxamyl and carbofuran (Table 2) [70]. The active constituents of used nematicides are of
organophosphorus, carbamate and thiazole chemical groups.

Table 2. Registered in Australia nematicides and their active constituents.

# Active Constituent Chemical Group No. of Registered Nematicides Mode of Action

1 Fenamiphos Organophosphorus 14
Inhibition of

cholinesterase
2 Oxamyl Carbamate-

methylcarbamate
1

3 Carbofuran 2

4 Fluensulfone Thiazole 1
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3.1. Organophosphorus and Carbamate Nematicides (Fenamiphos, Oxamyl and Carbofuran) Mode of Action

Organophosphates and carbamates are non-fumigant nematicides. Organophosphorus and
carbamate nematicides (fenamiphos, oxamyl and carbofuran) cause the paralysis of nematodes
through inhibition of cholinesterase enzymes, which are responsible for acetylcholine neurotransmitter
breakdown. Organophosphates and carbamates cause either irreversible or reversible inhibition of a
cholinesterase enzyme blocking its function [71].

Not much research has been done on human parasitic nematodes including S. stercoralis; however,
in C. elegans, acetylcholine is the neurotransmitter that controls nematode’s movement, pharyngeal
pumping, and egg laying. When acetylcholinesterase/cholinesterase suppressed, acetylcholine builds
up, transmitting nerve impulses and causing constant muscle and nerve contraction leading to
the nematode’s exhaustion and tetany [72]. Oxamyl is known as a more effective nematicide than
fenamiphos [73].

3.2. Thiazole (Fluensulfone) Mode of Action

Fluensulfone, a fluoroalkenyl thioether group drug, has different mode of action and effect on
nematodes from those of organophosphorus and carbamate nematicides and also anthelminthic drugs
such as ivermectin [74]. There have not been studies done describing its mode of action on nematodes.
However, fluensulfone has shown to be highly effective against a number of plant nematodes [18,74].
In their study, Kearn et al. (2014) have studied fluensulfone effect on C. elegans, a genetic nematode
model to study effects of different anthelminthic drugs and nematicides that are used against animal
and human parasites [32]. It has been shown that a slightly higher dose of fluensulfone is required
to have a similar effect on C. elegans as on plant parasite nematodes, inhibiting egg laying, hatching,
development, feeding and moving stages of the nematode [74].

3.3. Nematicides Associated Issues (Toxic Effects and Resistance to Nematicides)

Most cholinesterase inhibiting nematicides have been banned or restricted for use due to their
adverse toxic effects on non-target organisms including humans, and the environment, which
is associated with absence of species’ selectivity [32,71]. Another disadvantage of non-fumigant
nematicides is their mobility in soil which can potentially cause widespread non-target toxic effects.
Oxamyl and fenamiphos are known for leaching from the site of application [75,76]. Carbofuran has
been banned for use in European Union in 2009 (Regulation 1107/2009), Canada and U.S. due to its
adverse side-effects [77].

A study on fenamiphos, oxamyl and carbofuran effects on C. elegans has shown AChE recovery
ability by nematodes in response to all the three nematicides. It has been also shown that only small
recovery of the enzyme is required for nematode moving restoration and normal behaviour [78].

There are currently no studies available on the non-specific toxicity of fluensulfone. However,
the acute LD50 value for rats via for oral administration of fluensulfone is much lower compared with
organophosphate nematicides [18,79].

It is commonly thought that nematicide resistance for plant nematodes is not as great a concern as
for animal nematodes, hence there are limited studies exploring potential plant nematodes’ resistance
compared to the numerous studies on animal nematodes’ resistance. It is thought that there is a lesser
potential for the development of plant nematicide resistance due to number of factors. These include:
nematicides altering the selection pressure on plant parasitic nematodes, mitotic parthenogenesis
in plant nematodes leading to less genetic diversity, and biodegradation of nematicides by soil
bacteria [80]. However, these factors can probably delay but not prevent resistance development. It is
known that resistance is more likely to develop with persistent compounds such as organophosphorus
and carbamate substances rather than short-lived molecules [81]. Plant nematodes have been shown
to be quite adaptive to chemical treatment. Rhabditis oxycerca, Criconemella xenoplax, Xiphinema index,
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Meloidogyne incognita and Pratylenchus vulnus have developed high resistance to organophosphates and
carbomates after long-term exposure [82,83].

4. Conclusions

While nematicides are extensively used against plant nematodes, their use is limited or
non-existent in human parasite control. An overlooked environmental approach in strongyloidiasis
control is to kill free-living parasites in environment before they get into a human host.

Above we have assessed commercially available drugs used to treat strongyloidiasis and explored
the main issues associated with these drug treatments. This includes the emergence of drug resistance
in numerous animal nematodes when applied in veterinary practice. This highlights the potential for
resistance in human helminths, which is a particular problem for S. stercoralis as currently there is only
two drugs approved for human treatment. Other issues with treatment include drugs’ inability to
prevent reinfection, and potential for problems associated with drug administration during pregnancy.
Nematicides have potential to be used on free-living Strongyloides nematodes. A combined approach to
fight strongyloidiasis should consider environmental control as well as drug treatment. Future studies
could consider focusing initial efforts on the nematicide fluensulfone, which has been shown to have
the least toxic effect on the environment and non-target species, and desirable effects on all the stages
of a nematode, as demonstrated by a model parasite, C. elegans.
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