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Abstract: Using a metagenomic sequencing approach on stool samples from children with Acute
Flaccid Paralysis (AFP), we describe the genetic diversity of Sapoviruses (SaVs) in children in
Nigeria. We identified six complete genome sequences and two partial genome sequences. Several
SaV genogroups and genotypes were detected, including GII (GII.4 and GII.8), GIV (GIV.1), and
GI (GI.2 and GI.7). To our knowledge, this is the first description of SaV infections and complete
genomes from Nigeria. Pairwise identity and phylogenetic analysis showed that the Nigerian SaVs
were related to previously documented gastroenteritis outbreaks with associated strains from China
and Japan. Minor variations in the functional motifs of the nonstructural proteins NS3 and NS5
were seen in the Nigerian strains. To adequately understand the effect of such amino acid changes, a
better understanding of the biological function of these proteins is vital. The identification of distinct
SaVs reinforces the need for robust surveillance in acute gastroenteritis (AGE) and non-AGE cohorts
to better understand SaVs genotype diversity, evolution, and its role in disease burden in Nigeria.
Future studies in different populations are, therefore, recommended.
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1. Introduction

Sapovirus (SaV) infections are a significant public health problem with the virus
implicated in acute gastroenteritis (AGE) in humans and animals [1]. The virus has been
associated with both outbreaks and isolated cases of AGE among children and adults
[2–10]. Sapovirus infections frequently cause diarrhea and vomiting, which usually last
for about a week [11]. However, people exhibiting symptoms for longer than usual and
with greater severity have also been documented, particularly in immune-compromised
individuals [12,13]. The asymptomatic circulation of SaVs has also been reported in children
without symptoms of AGE [14,15].

The species Sapporo virus belongs to the genus Sapovirus, family Caliciviridae. Sapoviruses
of human origin were first discovered in the stools of children with gastroenteritis in
1976 and in fecal samples collected from babies during a stool survey of Glasgow chil-
dren using electron microscopy (EM). However, the strain Hu/SaV/Sapporo/1982/JPN
(thought to have originated from an outbreak in Sapporo, Japan, in 1982) is widely re-
garded as the Sapovirus genus prototype strain due to its extensive genetic and virologic
characterization [1,16]. The virus is non-enveloped, with a positive-sense, single-stranded
RNA genome, which is approximately 7.1 to 7.7 kb in length, containing two open reading
frames (ORFs). The large ORF1 encodes a polyprotein which is cleaved by a virus-encoded
protease into nonstructural proteins (NS1 [p11], NS2 [p28], NS3 [NTpase], NS4 [p32], NS5
[viral genome-linked protein-VPg], and NS6-NS7 [protease–polymerase, which is further
cleaved to form an RNA-dependent RNA-polymerase-RdRp]) and VP1 (the major struc-
tural protein). The ORF 2 encodes VP2 (the minor structural protein) [17–20]. A third ORF
has been reported, although its function is currently unknown [1,18].

The most variable (both genetically and antigenically) region of SaVs is the VP1
domain, which is important for eliciting immune responses. The classification of SaV is
based on complete VP1 amino acid (aa) sequences, with strains exhibiting ≥57% pairwise
VP1 aa identity placed in the same genogroup [21]. Currently, SaVs have been classified
into 19 genogroups (GI to GXIX), with four genogroups (GI, GII, GIV, and GV) known to
infect humans [22–24]. SaVs in other genogroups have been identified in minks (GXII),
bats (GXIV, GXVI-GXIX), dogs (GXIII), rodents (GXV), swine (GIII and GV-GXI), and sea
lions (GV) [25–27]. Human SaVs are further classified into 17 different genotypes [1], and a
recently detected genotype in Peru has been proposed as GII.8 [11,28].

Metagenomics, an alternate culture- and sequence-independent method, does not
require the presence of a specific gene in all subject entities. The original goal for developing
this methodology was to enable the sequence-based and functional analysis of collective
microbial genomes in environmental samples [29,30]. Viral metagenomics has proven to be
an effective technique for discovering new viruses and expanding our understanding of
the diversity of viruses found in clinical samples, including the identification of new SaV
strains [29,31]. Metagenomic analyses using whole genome sequencing are becoming more
common in clinical settings, and they have been used for the in-depth genomic analysis
of SaVs in four different countries in the Americas [32] and China [33,34]. The use of
whole genome rather than short genome sequences has improved the in-depth analysis
of viral genomes, including members in the Caliciviridae family that have the capability to
rapidly evolve, recombine, and acquire mutations [32,35]. Moreover, metagenomic shotgun
sequencing has enabled researchers to track viral infection transmission and conduct
effective epidemiological studies. These advancements have contributed to reducing the
burden of treatment for patients by preventing and controlling infections [34].

Different genomic regions, particularly those encoding RdRp and VP1, can cause
discrepancies in phylogenetic clustering, resulting in the discovery of intra- and inter-
genogroup recombinant strains [36]. Similar to noroviruses, several recombinant SaV
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strains have been reported [36–38]. These strains may have changed virulence as a result of
recombination, which, in turn, may enhance and increase disease burden [12]. Recombinant
SaV strains have been classified as those with a discordant clustering of the VP1 encoding
region and the RNA-dependent RNA-polymerase (RdRp) [37], with the RdRp-VP1 junction
and the NS3-NS4 junction found to be the two main recombination hotspots [35,36,38].

In Africa, the landscape of circulating human SaV genogroups in recent years has
been dominated by GI and GII SaVs [39,40]. Genogroup V (GV) viruses have been rarely
reported in Africa. In contrast, GIV has been reported in Burkina Faso [41] and South
Africa [42], where they were identified in up to one-third of infections in patients with
gastroenteritis [42,43]. There are currently no published data on SaV infections in Nigeria.
In this study, we describe the molecular characterization and genetic diversity of SaV
genomes identified in the stool samples of children 15 years and below diagnosed with
Acute Flaccid Paralysis (AFP) in Nigeria.

2. Methodology
2.1. Faecal Specimen Collection and Processing

The fecal samples analyzed in this study were collected as part of the National AFP
surveillance program in Nigeria. Samples were collected from children aged 15 years and
below diagnosed with AFP in Nigeria in 2020 [44]. These stool samples were collected
between January and December 2020 following national ethical guidelines and sent to the
WHO National Polio Laboratory in Ibadan, Nigeria.

In this study, 254 archived (−20 ◦C freezers stored) poliovirus culture-negative samples
from five states in Nigeria (Supplementary Figure S1) were combined into 55 pools by
the state of collection and the month of sample collection and subsequently analyzed.
Briefly, about 0.5 g of stool was dissolved in 4.5 mL of phosphate-buffered saline (PBS) and
0.5 g of glass beads. After 20 min of vortexing, the mixture was subjected to 20 min of
centrifugation at 3000 rpm. Subsequently, 2 mL of the supernatant was aliquoted into 1 mL
cryovials and stored at −20 ◦C. Thereafter, the stool suspensions were pooled. To make a
pool, 200 uL of fecal suspensions were mixed, with each sample pool containing between
1 and 7 fecal suspensions (Supplementary Table S1). Sample pools were subsequently
shipped on ice packs to the University of Leuven, Rega Institute, Laboratory of Clinical
and Epidemiological Virology in Belgium. The samples were stored at −80 ◦C until further
processing.

2.2. Sequencing and Read Processing

The NetoVIR protocol was used to purify virus-like particles (VLPs) from the samples,
as previously described [45]. Briefly, using a MINILYS homogenizer, fecal suspensions were
homogenized for 1 min at 3000 rpm and filtered through a 0.8 µm PES filter. Free-floating
nucleic acids were digested via treatment with a mixture of Benzonase (Millipore, Billerica,
MA, USA), (Novagen, Madison, WI, USA), and Micrococcal Nuclease (New England Bio-
labs, Ipswich, MA, USA). Subsequently, nucleic acid was extracted using the QIAamp Viral
RNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions,
but without the addition of carrier RNA. A slightly modified Whole Transcriptome Ampli-
fication (WTA2) Kit procedure (Sigma-Aldrich, St Louis, MO, USA) was used for the first-
and second-strand synthesis, as well as a random PCR amplification over 17 cycles. The
WTA2 products were purified using MSB Spin PCRapace spin columns (Stratec Biomedical,
Birkenfeld, Germany). The libraries for Illumina sequencing were prepared using the
Nextera XT Library Preparation Kit (Illumina, San Diego, CA, USA). After that, samples
were paired-end-sequenced (2 × 150 bp) on an Illumina Novaseq 6000 platform.

Raw reads were processed with the Virome Paired-End Reads (ViPER) pipeline (https:
//github.com/Matthijnssenslab/ViPER, accessed on 14 March 2024). Using Trimmomatic,
the reads were trimmed for quality and adapters [46], and reads mapping to the human
genome were removed using Bowtie 2 [47]. Subsequently, the trimmed and filtered reads
were de novo assembled into contigs using metaSPAdes [48]. The sensitive option in
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DIAMOND was then used to annotate the contigs [49]. Kronatool files were manually
inspected to identify all SaV genomes. To determine the depth of coverage, trimmed reads
were mapped against the SaV contigs using Bowtie2 [40].

2.3. Sapovirus Genotyping and Phylogenetic Analyses

A BLASTn search was performed against the GenBank database using the SaV contigs
identified in this study as queries. The top five hits (sequences with the highest percentage
of identity and query coverage) were downloaded and added to the alignment, along with
reference human SaV sequences. The SaV sequences generated in this study were aligned
with reference human SaV sequences downloaded from GenBank using the MAFFT online
tool [50]. The human calicivirus genotyping tool [51] was used to determine the genogroups
and genotypes of each SaV sequence generated in this study. To construct the corresponding
maximum-likelihood phylogenetic trees, various genomic regions of interest, including
individual genes encoding structural (VP1 and VP2) and nonstructural (NS1-7) proteins,
were selected from the alignment. Phylogenetic trees were constructed using MEGA
version 11 [52] and the maximum-likelihood method with 1000 bootstrap replications.
Subsequently, we aligned each distinct pair of sequences to determine the pairwise identity
of the sequences from this study and published reference sequences using the Sequence
Demarcation Tool [53]. The conserved amino acid motifs for SaV were identified and
analyzed using NCBI’s conserved domain database (CDD) [54]. Sequences from this study
were also analyzed for recombination events using the Recombination Detection Program
(RDP) 4 [55]. To detect recombination, nine different detection techniques—including RDP,
GENECONV, BootScan, MaxChi, Chimaera, 3Seq, PhylPro, LARD, and SiScan—were used
with the default parameters. Recombination events were considered reliable if they were
predicted by at least six different detection methods in the RDP4 program.

2.4. GenBank Submission

The Sapovirus nucleotide sequences and mapped reads described in this study were
submitted to GenBank and the SRA and assigned accession numbers OR837774-OR837781 and
PRJNA1043841, respectively.

3. Results

Eight (14.5%) of the fifty-five non-polio AFP sample pools tested using deep sequenc-
ing contained SaV reads, corresponding to 0.1% to 2.41% of the generated reads (Table 1).
Of the eight samples with SaV reads, two sample pools each from Edo, Abuja, Kaduna,
and Lagos states had SaV reads (Supplementary Table S1 and Figure S1). No SaV reads
were detected in sample pools from the Anambra state. We obtained six complete genome
sequences (SaV-A14-AFP1-NGR-2020, SaV-A16-AFP15-NGR-2020, SaV-A18-AFP18-NGR-
2020, SaV-A36-AFP33-NGR-2020, SaV-A143-AFP39-NGR-2020, SaV-A143-AFP46-NGR-
2020) having complete coding regions, and two partial genome sequences (SaV-A23-AFP20-
NGR-2020 and SaV-A25-AFP10-NGR-2020) having VP1 and VP2 capsid gene but only
partial nonstructural genes. Complete VP1-based sequence genotyping using the cali-
civirus typing tool and Sequence Demarcation Tool showed that the eight contigs belonged
to three of the four recognized human SaV genogroups (GI, GII, and GIV). Furthermore,
they belonged to genotypes GI.2 [n = 1], GI.7 [n = 1], and GII.4 [n = 3], and the newly
discovered genotypes GII.8 [n = 1] and GIV.1 [n = 2] (Table 1, Figure 1).
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Table 1. Summary of SaV reads detected in the pooled AFP samples.

Sample ID

Deep Sequencing-Derived Reads and Sequences
Calicivirus

Genotyping
Tool Results

BLASTn Results

Total Reads SaV Reads SaV Reads % Nucleotide
Length VP1 Length Type

Accession
number of the

Closest Hit

Pairwise
Identity (%)

AFP1-NGR 16,751,880 51,665 0.31% 7483 1677 GII.4 MN794218.1 91.29

AFP10-NGR 4,179,088 882 0.02% 4554 1677 GII.4 MN794218.1 91.17

AFP15-NGR 23,759,398 24,255 0.1% 7502 1667 GII.8 MT561022.1 95.36

AFP18-NGR 7,378,192 1777 0.02% 7456 1656 GIV.1 DQ125333.1 94.27

AFP20-NGR 10,079,418 53 0% 1819 1439 GI.2 MN486489.1 97.08

AFP33-NGR 11,500,814 83,736 0.73% 7494 1656 GIV.1 DQ104357.2 94.43

AFP39-NGR 13,103,440 41,026 0.31% 7526 1676 GII.4 AB429084.2 91.06

AFP46-NGR 22,571,328 544,044 2.41% 7524 1698 GI.7 AB258428.1 90.76

Abbreviations: Nigeria, NGR; Acute Flaccid Paralysis, AFP; Sapovirus, SaV.; pairwise nucleotide identity with the
top matching reference sequences for the VP1 region using BLASTn.
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Figure 1. The Sequence Demarcation Tool [53] was used to estimate the pairwise sequence identity
between the VP1 of SaV sequences from this study and existing SaV references. The sequences
reported in this study are indicated with a red circle and astericks (***).

Several calicivirus proteins possess conserved motifs and domains responsible for their
function. Previously described conserved amino acid motifs in caliciviruses include NS3
[NTpase] (GAPGIGKT), NS5 [Viral genome-linked protein (VPg)] (KGKTK and DDEYDE),
protease (GDCG), RNA-dependent RNA-polymerase (WKGL, KDEL, DYSKWDST, GLPSG,
and YGDD) and VP1(PPG and GWS have been suggested to be vital in stabilizing P-domain
formation in the SaV capsid) [1,18,56]. An analysis of the conserved amino acid motifs of SaV
sequences in this study showed minor variations in NS3 and NS5 motifs. In the NS3, all the
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sequences, irrespective of the genogroup, had a GPPGIGKT motif (the A replaced with P), while
in the NS5, the KGKTK motif was present in all the sequences except two (SaV-A14-AFP1-NGR-
2020 and SaV-A143-AFP46-NGR-2020) that had the KGKNK motif (Table 2).

Table 2. Typical motifs of functional proteins of SaV detected in the pooled AFP samples.

Strain NTpase
GAPGIGKT

VPg (KGKTK
And DDEYDE

Protease
(GDCG)

RdRp (WKGL, KDEL, DYSKWDST,
GLPSG and YGDD) VP1 (PPG and GWS)

SaV-A14-AFP1-NGR-2020 481 G PPGIGKT
936KGK N K

And 953DDEYDE
1169GDCG

1213WKGL, 1374KDEL,
1449DYSKWDST, 1504GLPSG and

1552YGDD

1856PPG and 2000GWS

SaV-A16-AFP15-NGR-2020 465 G PPGIGKT
927KGKTK

And 948DDEYDE
1154GDCG

1198WKGL, 1359KDEL,
1434DYSKWDST, 1489GLPSG and

1537YGDD

1841PPG and 1987GWS

SaV-A18-AFP18-NGR-2020 481 G PPGIGKT
942KGKTK

And 963DDEYDE
1169GDCG

1213WKGL, 1374KDEL,
1449DYSKWDST, 1504GLPSG and

1552YGDD

1851PPG and 1996GWS

SaV-A36-AFP33-NGR-2020 481 G PPGIGKT
942KGKTK

And 963DDEYDE
1169GDCG

1213WKGL, 1374KDEL,
1449DYSKWDST, 1504GLPSG and

1552YGDD

1851PPG and 1996GWS

SaV-A143-AFP39-NGR-2020 481 G PPGIGKT
942KGKTK

And 963DDEYDE
1169GDCG

1213WKGL, 1374KDEL,
1449DYSKWDST, 1504GLPSG and

1552YGDD

1856PPG and 2001GWS

SaV-A143-AFP46-NGR-2020 479 G PPGIGKT
940KGK N K

And 961DDEYDE
1167GDCG

1211WKGL, 1373KDEL,
1448DYSKWDST, 1503GLPSG and

1552YGDD

1855PPG and 2000GWS

The substitution observed in NS3 and NS5 motifs are highlighted in red box.

Phylogenetic analysis using the individual genes encoding both the structural (VP1
and VP2) and nonstructural proteins (NS1-7) and reference human SaVs showed topological
incongruence. Specifically, all the nonstructural genes (Figures 2 and 3) of genomes reported
in this study and previously reported reference sequences, including the RdRp gene, were
clustered into three main genogroups (GI, GII, and GV) (Figure 2A–D and Figure 3A–D). In
contrast, the structural genes (VP1 and VP2) were grouped into four clusters (GI, GII, GIV,
and GV) (Figure 4B,C). All GIV nonstructural genes were consistently found among the
GII clusters, while their structural genes were in a group independent of GII. Interestingly,
the GIV sequences in this study clustered independently from previously documented
strains from Asia and North America. The GII.8 detected in this study clustered with a
novel variant of the GII.8 genotype, which was associated with an outbreak of SaV among
primary school students in Shenzhen city, China, in 2019 [57].
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The human SaV sequences detected in this study did not contain any significant
recombination breakpoints according to RDP4 sequence analysis.

4. Discussion

Without a doubt, the global health community has made significant investments
and taken targeted actions to address the primary causes of child death through high-
impact interventions, such as access to nutrition, safe water, sanitation, and vaccination.
Malnutrition and diarrheal diseases, on the other hand, continue to be among the top
causes of death among children [58,59]. In Nigeria, there is a dearth of information on
SaV’s genetic diversity, epidemiology, and evolution [60]. In the present study, we describe
six complete genome sequences (all with complete coding regions) and two partial genome
sequences from children with AFP. This is the first detection of human SaVs in Nigeria.
Interestingly, multiple genotypes were detected, indicating the circulation of various strains
in Nigeria. Specifically, we documented the presence of genogroups GII (GII.4 and GII.8),
GIV (GIV.1), and GI (GI.2 and GI.7) in Nigeria.

All the identified human SaVs, irrespective of genotype, had amino acid substitution
A482P in the NS3 motifs (Table 2). A similar motif was reported in SaVs from pigs [25].
Since many caliciviruses, including SaVs, are difficult to grow in cell cultures, studying
the biological function of their nonstructural proteins remains challenging. However, few
studies have elucidated the role and activities of the polymerase and protease (3C-like
protease (NS6) and the 3CD-like protease–polymerase (NS6-7) [18,61–63]. Interestingly,
the mutational analysis of the RdRp-conserved GDD amino acid motif from a calicivirus
rabbit hemorrhagic disease virus (RHDV) showed that the substitution of the RHDV 3Dpol

1605 aspartate residue by asparagine, glycine or glutamate residues resulted in a complete
loss of enzymatic activity [64]. Understanding the biological functions of various SaV
proteins and the role of various amino acid substitutions in the evolution of viruses is
needed to understand the potential implications of newly observed mutations.
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Regarding seasonality, Nigeria has two seasons in a year as follows: the wet (April to
October) and dry (November to March) seasons. In this study, SaVs were detected in sample
pools collected in both the wet and dry seasons, with 62.5% (5/8) of the SaVs detected
in samples collected during the wet season. Our findings support the widely accepted
hypothesis that SaV is primarily found in the winter and during the rainy season [8,36].
Since no other work on SaV’s prevalence on a monthly basis has been reported in Nigeria,
it is difficult to determine the true prevalence of SaV in Nigeria using this approach. We
are aware that the SaV’s diversity described in this study might not completely capture
variants present in this sample, considering the study design. Therefore, future studies
aimed at identifying the seasonal nature of SaV transmission patterns could help with
infection prevention, control, and diagnosis strategies.

The genetic analysis of currently circulating SaV strains is critical for understanding
the cryptic geographic distribution of SaVs in the population, both regionally and globally.
Previous studies have revealed that GI is the most common SaV genogroup around the
globe and has been increasingly detected in many African countries [8,39,65,66]. In this
study, we observed the circulation of a variety of SaV strains throughout the year. Sapovirus
GII.4 was the predominant genotype detected and was closely followed by GIV.1. It is
important to note that the presence of GII.4 sequences in this study, which have been
classified among the rare SaV genotypes [32], may indicate that the SaV landscape in
Africa might be changing. Furthermore, the preponderance of GII.4 sequences from this
research is contrary to previous SaV studies in Africa, where GI was the most abundant
SaV genotype [39,40,65]. In Thailand, a significant proportion of genotype GII.4 SaV was
identified [67]. GIV, on the other hand, is a genotype that was frequently detected in
developed countries around 2007 [1], as well as in Africa between 2009 and 2013 [41,42].

Phylogenetically, the Nigerian SaVs were related to previously reported SaV reference
strains. While GIV sequences in this study formed small sub-clusters independent from
previously documented strains from Asia and North America, the GII.8 in this study
was 95.4% similar and clustered with a novel variant of the GII.8 genotype, which was
associated with an outbreak of SaV among primary school students in Shenzhen city, China,
in 2019 [57]. The position and length of the ORFs, VP1, and VP2, of the Nigerian GII.8 strains
were identical to those of the Shenzhen strain. Remarkably, the GI.7 strain from this
study was more than 90% similar to the GI.7 strains from Japan that were associated with
gastroenteritis outbreaks linked to the consumption of contaminated shellfish [68]. Notably,
GII.4 strains were found in samples collected in Lagos (January), Kaduna (February), and
Abuja (September), whereas GIV strains were found in samples collected in the Edo state
(May and August 2020). These results imply that these strains may be locally circulating in
Nigeria and/or that an outbreak that was not discovered may have occurred there. The
robust surveillance of SaV among AGE and non-AGE cohorts in Nigeria is needed to better
understand the genotype diversity, evolution, and probable disease association of this virus
in the country.

Of note, the RDP4 findings and the phylogenetic tree structure did not provide ad-
equate support to classify any of the Nigerian SaVs as recombinant strains. However,
sequences from this study and other reference sequences (including the four genogroups
known to infect humans) included in the alignment all showed a phylogenetic pattern in
which all nonstructural genes clustered into three major genogroups (GI, GII, and GIV).
The structural genes (VP1 and VP2) were divided into the following four clusters: GI, GII,
GIV, and GV. A similar topology incongruence has been reported [32], which may indicate
an ancient recombination event.

Some of the limitations of our study include the fact that samples suffered more than
one round of freezing and thawing, which might have affected the quantity and quality of
the genomes recovered in this study. We were also unable to determine the true prevalence
of SaV due to our purposive sampling strategy, which included only children with AFP.

In conclusion, we describe six complete and two partial SaV genome sequences. This
is the first report on human SaVs in Nigeria. Hence, the data described here can serve as
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references to help develop tools to enhance the surveillance of and improve epidemiological
information on SaVs in Nigeria and Africa at large, where only short-genome regions have
been reported. Further, understanding the evolutionary dynamics of SaV, especially the
nonstructural proteins, is vital to fully delineate the role of amino acid substitutions in SaV’s
evolution and genetic diversity. This would make their nonstructural proteins desirable
targets for developing therapeutics to treat human calicivirus infections.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens13030264/s1, Table S1: Summary of samples analysed
in this study including the number of samples per pool, location where samples were collected and
month of sample collection; Figure S1: Map of Nigeria indicating the states (highlighted in light blue)
spread across five geopolitical zones from where samples analyzed in this study were collected and
the number of samples with SaV reads detected (highlighted in red diamond) from each state.
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