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Alejandra Wu-Chuang 2, Rita Žiegytė 1 , Lourdes Mateos-Hernández 2 , Dasiel Obregón 7 ,
Alejandro Cabezas-Cruz 2,*,† and Vaidas Palinauskas 1,*,†

1 Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; juste.azelyte@gmail.com (J.A.);
rita.ziegyte@gamtc.lt (R.Ž.)

2 Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale
Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France;
apolline.maitre@anses.fr (A.M.); labuind@gmail.com (L.A.-D.); elianne9409@gmail.com (E.P.-S.);
alewch29@gmail.com (A.W.-C.); lourdes.mateos@vet-alfort.fr (L.M.-H.)

3 INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET-LRDE),
F-20250 Corte, France

4 EA 7310, Laboratoire de Virologie, Université de Corse, F-20250 Corte, France
5 Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between

158 and 190, Havana CU-10600, Cuba
6 Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista

Nacional, Apartado Postal 10, San José de las Lajas CU-32700, Cuba
7 School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;

dasielogv@gmail.com
* Correspondence: alejandro.cabezas@vet-alfort.fr (A.C.-C.); palinauskas@gmail.com (V.P.)
† These authors contributed equally to this work.

Abstract: Avian malaria infection has been known to affect host microbiota, but the impact of
Plasmodium infection on the colonization resistance in bird gut microbiota remains unexplored. This
study investigated the dynamics of Plasmodium relictum infection in canaries, aiming to explore the
hypothesis that microbiota modulation by P. relictum would reduce colonization resistance. Canaries
were infected with P. relictum, while a control group was maintained. The results revealed the presence
of P. relictum in the blood of all infected canaries. Analysis of the host microbiota showed no significant
differences in alpha diversity metrics between infected and control groups. However, significant
differences in beta diversity indicated alterations in the microbial taxa composition of infected
birds. Differential abundance analysis identified specific taxa with varying prevalence between
infected and control groups at different time points. Network analysis demonstrated a decrease
in correlations and revealed that P. relictum infection compromised the bird microbiota’s ability to
resist the removal of taxa but did not affect network robustness with the addition of new nodes.
These findings suggest that P. relictum infection reduces gut microbiota stability and has an impact
on colonization resistance. Understanding these interactions is crucial for developing strategies to
enhance colonization resistance and maintain host health in the face of parasitic infections.

Keywords: microbiota; avian malaria; colonization resistance; Plasmodium relictum

1. Introduction

Avian malaria, caused by various species of the Plasmodium parasite, has been recog-
nized as a significant threat to avian populations worldwide [1]. Among these parasites,
Plasmodium relictum (genetic lineage SGS1) stands out due to its ability to infect a diverse
range of bird species, with more than 300 known hosts documented [2]. As an important
pathogen affecting avian health, studying the interactions between P. relictum and its avian
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hosts is crucial for understanding the ecological and evolutionary implications of this
parasitic infection.

Colonization resistance, a concept originating from ecological theory, refers to the
host’s ability to resist the establishment and proliferation of potential pathogens within its
microbiota [3–6]. The microbiota, consisting of a complex community of microorganisms
residing within the host, plays a critical role in maintaining host health and immune
homeostasis [7,8]. Over the last few years, research on avian microbiota has markedly
increased [8–10]. Due to birds inhabiting different environments and adapting to diverse
living conditions, their microbiota is complex [11,12]. It can vary between bird species
and individuals [11]. Perturbations to the microbiota can have profound effects on the
host, potentially influencing disease susceptibility, immune response, and overall well-
being [8,13].

While studies have investigated the impact of parasites on the host microbiota in
various systems, the specific effects of avian malaria parasites on colonization resistance in
birds remain relatively unexplored. Understanding how avian malaria parasites, such as
P. relictum, influence the colonization resistance of their avian hosts is of great interest to
comprehend the ecological dynamics of these infections and their potential implications for
avian health.

Several studies have highlighted the importance of the microbiota in mediating host-
pathogen interactions and disease outcomes [6,14]. For instance, research conducted
on mammalian models has demonstrated that perturbations to the gut microbiota can
affect the severity of parasitic infections and influence host immune responses [15–17].
Furthermore, the studies conducted by Taniguchi et al. [15] and Mooney et al. [18] revealed
a significant correlation between infections of mice with Plasmodium berghei and Plasmodium
yoelli, respectively, and alterations in the abundance of specific bacteria within the gut
microbiota. Previous research has primarily focused on analyzing the composition of
the microbiota when studying the interactions between avian malaria parasites and the
host’s microbiota [19–21]. However, it is important to note that the bacterial diversity of
the microbiota alone does not fully capture the impact of parasite infection on the host’s
microbiota. A recent study by Aželyte et al. [22] investigated the effects of Plasmodium
homocircumflexum infection on canaries’ microbiota. Interestingly, they found that although
the infection did not lead to significant changes in the overall diversity of the microbiota,
notable alterations were observed in the bacterial networks within infected canaries at
various time points during the infection. Despite advancements in avian microbiota
research, it remains unclear whether interactions of Plasmodium with resident microbiota
affect the response of the gut bacterial community to new invaders or taxa extinction events.

In this study, we aimed to examine the influence of P. relictum infection on the coloniza-
tion resistance of canaries using network analysis. By characterizing the composition and
dynamics of the canary gut microbiota in the presence and absence of P. relictum infection,
we gained insights into the potential interactions between the parasite and the host micro-
biota. Furthermore, by employing network analysis, specifically node removal and node
addition methods, we investigated the resilience and stability of the canary microbiota in
the face of P. relictum infection.

Network analysis provides a powerful framework to explore the intricate relation-
ships between individual microbial taxa within a microbiota [23,24], thereby elucidating
the mechanisms underlying colonization resistance [25]. By applying node removal and
addition methods within the microbiota network, we can assess the influence of specific
microbial taxa on network structure [26], connectivity [26–28], and resistance [29]. Sys-
tematically removing nodes allows us to evaluate the impact on network robustness and
identify key taxa that contribute to colonization resistance. Conversely, adding nodes
helps us understand how the introduction of certain taxa influences network dynamics
and colonization resistance. Through these robustness tests, we can gain insights into the
essential microbial players and interactions that drive colonization resistance, providing
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a comprehensive understanding of the interplay between the host, microbiota, and avian
malaria parasite, P. relictum.

2. Methods
2.1. Data Source

To evaluate the impact of avian malaria infection on the bird gut microbiota, we
analyzed preliminary data from a previous study on bird infection with P. relictum [30].
The study conducted by Aželytė et al. [30] investigated how anti-microbiota vaccination of
host birds against commensal bacteria disrupted P. relictum sporogonic development by
modulating mosquito microbiota. In this study, the 16S rRNA gene sequencing datasets
from birds’ fecal material of the P. relictum and PBS groups were used. Briefly, a group of
8-month-old canaries was inoculated with meront stages of P. relictum, referred to here as
the P. relictum-infected group. Another group received PBS, referred to here as the control
or the uninfected group. The blood was sampled at the indicated DPI (days post-infection)
to microscopically calculate the parasitemia (Figure 1). Fecal samples were collected at
22 DPI and 38 DPI. The genomic DNA for microbiome analysis was extracted from feces
and sent for amplicon sequencing. Aželytė et al. [30] provide a comprehensive description
of the experimental design and procedures.
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Figure 1. The dynamics of P. relictum parasitemia. Individual parasitemia values (% of infected
erythrocytes) of P. relictum based on microscopy are presented. Different colors represent individual
birds. DPI—days post-infection.

The 16S rRNA sequences were submitted to the SRA repository under Bioproject No.
PRJNA971381. To analyze the raw sequences, we employed the QIIME 2 software package
(ver. 2021.4) [31]. The paired-end reads, obtained in fastq files, were processed using
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the DADA2 pipeline [32]. Taxonomy was assigned to the resulting amplicon sequence
variants (ASVs) using a classify-sklearn naïve Bayes taxonomic classifier based on the
SILVA database (release 138; [33]). To ensure data quality, we filtered the taxonomic table
by removing taxa at the genus level that had a frequency of fewer than 10 reads and were
present in less than 3 samples. The resulting data table was then used for microbiota
assembly analysis.

2.2. Microbiota Diversity, Composition, and Abundance Analyses

To evaluate microbiota diversity and composition of P. relictum-infected and control
birds at 22 DPI and 38 DPI, alpha and beta diversity of bacterial taxa were analyzed using
rarefied ASVs with the q2-diversity plugin in Qiime2 [31]. Microbial richness between
the groups was compared with the pairwise Kruskal–Wallis test (p < 0.05) using Faith’s
phylogenetic diversity [34] and observed features metrics (a measure of taxa inventory),
while the evenness was calculated by Pielou’s index [35]. The beta diversity between the
groups was assessed using the Bray–Curtis dissimilarity index [36] with a PERMANOVA
test (p < 0.05). Beta dispersion was calculated using the betadisper function of the Vegan
package implemented in the R program (ver. 4.1.3) [37]. The dispersion was compared
between the groups using a PERMANOVA test (p < 0.05).

Differences in taxa abundance between the groups were calculated using the ANOVA-
like differential expression package ‘ALDEx2’ [38] in the R program (ver. 4.1.3) [37]. This
method utilizes a centered log ratio (clr) transformation based on the geometric mean of
read counts in the sample to measure relative abundance [39]. The comparisons were
performed with a t-test (p ≤ 0.05). The numbers of shared taxa in the microbiota of P. relictum-
infected and control groups were visualized using Venn diagrams implemented in the online
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/; accessed on 10 May 2023).

By employing these methods and tools, this study aimed to comprehensively evaluate
and compare the microbial diversity, composition, richness, evenness, beta diversity, dis-
persion, and taxa abundance between the P. relictum-infected and control groups of birds at
two time points (22 DPI and 38 DPI).

2.3. Bacterial Co-Occurrence Networks

Co-occurrence microbial networks were constructed to visually represent the assembly
of microbial communities under different conditions. These networks were based on
taxonomic profiles at the genera level. In the network, nodes represent bacterial taxa,
and the edges indicate significant positive (weight > 0.75) or negative (weight < −0.75)
co-occurrence interactions between the nodes. The Sparse Correlations for Compositional
data (SparCC) method [40] implemented in the R program (ver. 4.1.3) [37] was used
to analyze constructed networks. Gephi 0.9.5 [41] software was employed for network
visualization and measuring various topological features of each group, such as the number
of nodes and edges, network diameter, average degree, weighted degree, average path
length, modularity, and number of modules.

2.4. Comparative Network Analysis and Robustness

The microbial networks were compared between the conditions using various func-
tions of the NetCoMi package [42] in the R program (ver. 4.1.3) [37]. To assess the simi-
larities between networks based on shared nodes and edges, an association analysis was
conducted. The degree of similarity between networks increases as the number of shared
nodes and edges increases. For the comparison of the most central nodes in the networks,
two p-values, P(J ≤ j) and P(J ≥ j), were calculated for each Jaccard index. These p-values
represent the probability that the observed Jaccard index (J) value is either “less than or
equal to” or “greater than or equal to” the expected Jaccard value at random (j). Differences
were considered significant when p < 0.05.

The core association network (CAN) analysis function of the NetCoMi package [42]
was used to evaluate the common nodes and edges between two different networks. The

http://bioinformatics.psb.ugent.be/webtools/Venn/
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core of the control and P. relictum-infected groups’ networks was determined at two different
time points using the Anuran toolbox [43] with default parameters. This analysis was
conducted in the Anaconda Python environment (ver. 3.9.17) [44].

To test the robustness of the network to node removal, the Network Strengths and
Weaknesses Analysis (NetSwan) package (ver. 0.1) was employed [45]. Various node
removal attacks, including random, betweenness centrality, degree, and cascading, were
performed to assess network tolerance based on connectivity loss. The standard error for
loss of connectivity was calculated, considering variability, using a threshold of 0.975. The
igraph package was utilized for network analysis and visualization [46,47].

The robustness of microbial networks to node addition was assessed using the network
analysis and visualization package [48]. Nodes were incrementally added in sections
ranging from 100 to 1000, and network connectivity was measured based on the degree
metric of the largest connected component (LCC) and average path length. A Wilcoxon
signed-rank test was conducted to calculate p-values for LCC and average path length. The
p-values were adjusted using the Benjamini–Hochberg (BH) method to control the false
discovery rate. Additionally, bootstrapping was performed to obtain confidence intervals
for the variables. Significance was determined at a threshold of p < 0.05.

3. Results
3.1. Dynamics of Plasmodium relictum Infection

An experiment was conducted over a duration of 38 days to investigate the effects
of P. relictum infection. A group of five canaries received an inoculation of infected blood
containing P. relictum meronts, while another group of three canaries was injected with
parasite-free PBS and served as the control. Four days after the infection, P. relictum
was detected in the peripheral blood of all infected canaries (Figure 1). The highest
parasitemia, which is measured by the percentage of infected erythrocytes, was observed at
8 days post-infection (DPI) in four P. relictum-infected birds, with an average of 6.6 ± 4.3%
(mean ± SD). One bird reached the peak parasitemia of 24% at 13 DPI. Three birds showed
low parasitemia in their peripheral blood at 22 DPI and 38 DPI (22 DPI—0.2 ± 0.4%;
38 DPI—0.004 ± 0.004%) (Figure 1).

3.2. The Impact of Plasmodium relictum Infection on Host Microbiota Diversity and Composition

We conducted an analysis of bird microbiota from fecal samples using amplicon
sequence variants (ASV) to examine the impact of P. relictum infection on the host microbiota.
We compared infected and control groups at two time points: 22 DPI and 38 DPI. To
measure the diversity, we calculated three alpha diversity metrics, namely observed features
(Figure 2A), phylogenetic diversity (Faith’s phylogenetic diversity index) (Figure 2B), and
evenness (Pielou’s index) (Figure 2C). Surprisingly, there were no significant differences
in these metrics between the infected and control groups (Kruskal–Wallis test, p > 0.05).
However, we found significant differences in the observed features within the infected
group between 22 DPI and 38 DPI (Figure 2A).

To assess microbial community composition, we used the Bray–Curtis index. We
found a significant difference in the composition of the microbiota between the infected
and control groups (PERMANOVA, p = 0.007; F = 4.604; Figure 2D,E), while beta dispersion
showed no significant differences (PERMANOVA test, p > 0.05; Figure 2D,E).

Next, we conducted a differential abundance analysis to identify changes in specific
taxa between P. relictum-infected and control birds. At 22 DPI, we observed a significantly
higher abundance of three taxa in the microbiota of infected birds, while the control group
had a higher abundance of seven taxa (Table S1, Figure S1). At 38 DPI, the control group
had 23 taxa with a significantly increased abundance compared to the P. relictum-infected
group. Interestingly, the bacterial taxa with significant differences in abundance were
different at 22 DPI and 38 DPI and unique to the groups (Table S1, Figure S1).
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Figure 2. Comparison of microbial diversity to assess the impact of P. relictum infection on the
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(A) Observed features, (B) Faith’s phylogenetic diversity (PD), and (C) Pielou’s evenness index.
Comparison of beta–diversity with Bray–Curtis dissimilarity index for infected (triangle) and control
(circle) groups at 22 (D) and 38 DPI (E), represented in PCoA plot obtained by Betadisper function.
* p < 0.05.

3.3. Changes in the Microbiota Assembly Due to Plasmodium relictum Infection

We compared the microbiota structure in uninfected and P. relictum-infected birds us-
ing bacterial co-occurrence networks. In the infected group, we observed fewer correlations
between nodes compared to the control group at both 22 DPI and 38 DPI (Figure 3A). The
correlation patterns between nodes in the two groups changed differently from 22 DPI
to 38 DPI. At 22 DPI, both networks had the same number of nodes (Table 1). However,
Venn analysis revealed that out of a total of 154 nodes, 64 (41.6%) were shared between the
control and infected groups, with each group having 45 (29.2%) unique nodes (Figure 3B).
From 22 DPI to 38 DPI, the number of nodes in the infected group’s network increased,
while the number of nodes declined in the control group. The bacterial network of infected
birds comprised 84 (50.6%) unique nodes and 60 (36.1%) shared nodes with the control
group, which, in turn, had 22 (33.3%) unique genera (Figure 3C). However, the number
of correlations in the control group’s network was notably higher at both time points
compared to the infected birds (Table 1).

When comparing the modularity in the networks—referring to a degree of division
into distinct communities—we found that this parameter was higher in the control group at
22 DPI compared to the infected group, while at 38 DPI, the pattern was inverted. Notably,
the microbiota of the infected group showed greater interconnectedness with the presence
of several distinct clusters (Figure 3A). In the control group’s networks, both at 22 DPI and
38 DPI, a major cluster with nodes with the highest values of eigenvector centrality was
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observed (Figure 3A, red nodes), but this pattern was not observed in the infected group’s
networks. Notably, only positive correlations were shared between the groups, while all
negative correlations were specific to each group.
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Figure 3. Microbial community assemblies in P. relictum-infected and uninfected birds. Co-occurrence
networks (A) were extrapolated from the microbiota of P. relictum-infected and control birds at 22 DPI
and 38 DPI. Bacterial taxa with at least one connection are symbolized by nodes, whilst connected
edges represent a significant correlation between them. The width of the edges corresponds to the
level of co-occurrence correlation (SparCC, weight ≥ 0.5 or ≤−0.5). Green edges represent positive
correlations. The colors of nodes specify clusters and modules in which taxa occur. The size of nodes
is related to their eigenvector centrality. Venn diagrams displaying the number of shared and unique
taxa detected within P. relictum-infected and control birds at 22 DPI (B) and 38 DPI (C).
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Table 1. Topological parameters of co-occurrence networks.

Network Features
Uninfected P. relictum-Infected

22 DPI 38 DPI 22 DPI 38 DPI

Nodes 109 82 109 139

Edges 2943 3235 1201 904

Positive 1482 (50.36%) 1558 (48.16%) 624 (51.96%) 461 (51%)

Negative 1461 (49.64%) 1677 (51.84%) 577 (48.04%) 443 (49%)

Network diameter 3 2 4 5

Average degree 54 78.902 22.037 13.007

Weighted degree 0.638 −2.286 0.877 0.257

Average path length 1.509 1.026 2.238 2.673

Modularity 19.062 −20.16 9.353 17.473

Number of modules 3 2 3 7

Average clustering coefficient 0.759 0.978 0.667 0.539

The observed Jaccard values for comparing degree and betweenness centrality between
networks of P. relictum-infected and control birds were significantly lower than expected by
random at 22 DPI. However, there were no significant differences in hub taxa, closeness, and
eigenvector centrality (Table S2). At 38 DPI, all centrality measures showed significantly
lower observed Jaccard values between the groups compared to random expectations.
These significant values were all below 0.3, indicating a low similarity in centrality measures’
distribution in the microbiota of P. relictum-infected and control birds (Table S2).

Despite the differences in the community assembly, the analysis of the core association
network (CAN) revealed 62 core-associated nodes between the infected and control groups
at 22 DPI (Figure 4). Among these core-associated nodes, we determined 72 (59% of the
total 122) positive edges and 50 (41% of the total 122) negative edges, which were common
in both groups. At 38 DPI, the core-associated network consisted of 52 nodes, with 38 (50%
of the total 76) positive and 38 (50% of the total 76) negative edges.
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3.4. Network Robustness

To assess the robustness of the bird microbiota networks during infection and in a
healthy state at different time points, we tested the loss of connectivity due to node removal
using different attack methods: direct, cascading, degree, or random. The results showed
that the cascading method had the highest impact on network connectivity in infected
birds compared to the control group. The most notable difference in network tolerance
to perturbations between infected and control birds was observed at 80% connectivity
loss. At 22 DPI, the infected group required the removal of 0.25 fraction of nodes in the
network, while the control group required 0.42 to achieve the specified loss of connectivity
(Figure 5A). At 38 DPI, the fraction of nodes removed increased to 0.30 for infected birds
and 0.55 for the control group to achieve the same effect on the network (Figure 5B). Other
node removal methods did not show a visible difference in connectivity loss between the
groups (Figure S2).
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To compare the network stability of infected and control groups, we examined how the
addition of new nodes affected network connectivity. The results revealed that the largest
connected component (LCC) increased in both groups after adding more than 500 nodes
to the networks at 22 DPI (Figure 5C,D). At 38 DPI, the infected group initially exhibited
a high value of LCC, which did not significantly change even after adding more nodes,
indicating a high stability of the network (Figure 5C). In contrast, the LCC in the control
group remained relatively low compared to the infected group, with a minor increase when
more nodes were added, suggesting less tolerance to changes in the microbiota (Figure 5D).

A similar pattern of changes in the average path length was observed in response
to node additions in both infected and control groups (Figure 5E,F). Adding nodes to
the networks increased the average path length in both groups at 22 DPI and 38 DPI
(Figure 5E,F). However, at 38 DPI, the effects on the infected group’s network were less
pronounced compared to the control group.

4. Discussion

The influence of malaria parasites on the modulation of the microbiota has been
established in previous studies [21,22]. In this study, we put forth the hypothesis that P.
relictum plays a pivotal role in reshaping the microbial community within the host through
intricate microbe–host interactions. Consequently, this process may result in a decreased
ability of the microbiota to resist colonization. To investigate this phenomenon, we adopted
a network-based approach to evaluate the effects of P. relictum on the composition of the
microbiota in canaries.

We found no significant differences in alpha diversity metrics between the avian
malaria parasite P. relictum-infected and control groups. This discovery aligns with the
studies of Aželyte et al. [22] and Rohrer et al. [21], where an infection caused by avian
malaria parasites did not greatly affect the alpha and beta diversity of the avian host.
These results suggest that avian malaria infections have a negligible impact on the diver-
sity of the host microbiota. In contrast, it is reported that the non-human primate and
murine malaria parasites can significantly reduce alpha diversity [15,18,49]. Several studies
showed that lower diversity of microbial species within the microbiota has been linked
to reduced colonization resistance in other systems [50–52]. The current findings on the
impact of avian Plasmodium on host-microbiota variety imply that it has a minimal impact
on colonization resistance.

However, this study revealed noteworthy disparities in beta diversity between the P.
relictum-infected and control groups, suggesting alterations in the microbiota composition
of infected birds. This contrasts with the findings of Aželytė et al. [22] and Rohrer et al. [21],
who reported no divergence in beta diversity between Plasmodium-infected birds and the
control group. The observed changes in microbial composition in this study imply that
P. relictum infection disturbs the normal equilibrium of bacterial taxa within the canaries’
microbiota. Furthermore, upon analyzing differential abundance, we identified specific taxa
with higher abundance, mostly in uninfected birds. These findings align with the studies
conducted by Rohrer et al. [21], which observed fewer taxa with increased abundance in
Plasmodium-infected birds compared to the control. Importantly, our findings are similar
to the results of Aželytė et al. [22], who found no significant variations in taxa abundance
between infected and uninfected birds at different time points. It is noteworthy that our
results from the experiment conducted under controlled conditions are comparable to the
study by Rohrer et al. [21], which investigated wild birds. Although the studies showed
that microbiota composition is influenced by genetic background and other environmental
factors [13,53], the alterations caused by infection can be recognized. The lack of change in
alpha diversity suggests that overall microbial richness and evenness may remain relatively
stable despite the presence of the parasite. However, the observed shifts in composition and
abundance of commensal bacteria highlight the potential for specific taxa to be affected by
the infection, which may have important implications for colonization resistance. Spragge
et al. [52] showed that colonization resistance is not dependent on a single species but
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rather on the associations of multiple bacteria cohesively living in a community. These
findings suggest that while the overall diversity of the microbiota may not be impacted,
specific microbial communities crucial for colonization resistance could be compromised
by P. relictum infection.

In agreement with the findings of others in different parasites [14,22], this study
reveals a decrease in network correlations, indicating that infection with P. relictum is linked
to a reduction in the complexity and connectivity of the microbiota structure. As in P.
homocircumflexum [22], we observed distinct changes in the correlation patterns between
infected and control groups over time, suggesting that the infection dynamically affects the
interactions among bacterial species within the community assembly, leading to alterations
in the network structure. Furthermore, the varying proportions of unique and shared
nodes between the groups indicate that P. relictum-related changes in the composition of
the bacterial community result in changes in network membership. However, intriguingly,
our CAN results imply that certain bacterial taxa maintain consistent associations despite
the infection, while other associations may be specific to each group.

This disruption in community assembly may weaken the overall stability and re-
silience of the microbiota, potentially compromising its ability to resist colonization by
pathogens. Disruption can occur due to drug administration, such as anthelmintics [54] or
antibiotics [55], or pathogen infection [56], and these have been shown to affect coloniza-
tion resistance [25]. For example, the administration of anthelmintic drugs significantly
altered the microbial community of Welsh ponies, causing instability and disrupting the
time-dependent network of interactions [54]. This disruption had long-term effects on mi-
crobial resilience [54]. Antibiotic use also disrupts the balance between host and microbiota,
leading to Clostridium difficile infection [55]. Moreover, acute infection by Yersinia can induce
long-term immune and microbiota changes, ultimately resulting in chronic inflammatory
disease [56].

Furthermore, changes in centrality measures may impact the key microbial species
involved in colonization resistance, potentially compromising the microbiota’s ability to
resist pathogen colonization. An example of this can be seen in the protective role of Entero-
coccus faecalis against Staphylococcus aureus in Caenorhabditis elegans [57], where E. faecalis
becomes a keystone taxon in the nematode’s microbiota [58]. Our findings on network
robustness support the notion that Plasmodium infection has an impact on colonization
resistance. Infected birds experienced greater disruption of network connectivity when
taxa were removed, but their networks also showed higher stability and less pronounced
changes after node additions.

5. Conclusions

In conclusion, this study on avian malaria parasite P. relictum infection suggests that,
while overall microbial diversity remains stable, specific bacterial communities crucial
for colonization resistance may be compromised. The infection disrupts the composition
and connectivity of the microbiota, potentially weakening its ability to resist pathogen
colonization. These findings have broader implications beyond avian malaria infections.
Disruptions in community assembly, alterations in network structure, and changes in
microbial abundances have been linked to compromised colonization resistance in other
systems. Similar disruptions have been observed due to drug administration or pathogen
infections, highlighting the importance of maintaining a healthy and stable microbiota
for the host defense. Further research is needed to understand the intricate mechanisms
underlying these interactions and develop strategies to enhance colonization resistance
and host health.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pathogens13010091/s1. Figure S1: Heatmaps representing the
relative abundance (expressed as centered log ratio) of taxa with significant differences between
uninfected and P. relictum-infected birds at 22 DPI (A) and 38 DPI (B). Figure S2: Network tolerance
to node removal. The resistance of the networks to directed, degree, cascading, and random attacks
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