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Abstract: Human T cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with a lymphopro-
liferative disease known as adult T cell leukemia/lymphoma (ATLL). HTLV-1 infection efficiently
transforms human T cells in vivo and in vitro. The virus does not transduce a proto-oncogene, nor
does it integrate into tumor-promoting genomic sites. Instead, HTLV-1 uses a random mutagenesis
model, resulting in cellular transformation. Expression of the viral protein Tax is critical for the
immortalization of infected cells by targeting specific cellular signaling pathways. However, Tax
is highly immunogenic and represents the main target for the elimination of virally infected cells
by host cytotoxic T cells (CTLs). In addition, Tax expression in naïve cells induces pro-apoptotic
signals and has been associated with the induction of non-replicative cellular senescence. This review
will explore these conundrums and discuss the mechanisms used by the Tax viral oncoprotein to
influence life-and-death cellular decisions and affect HTLV-1 pathogenesis.

Keywords: HTLV-1; transformation; Tax; NF-kB; senescence; cell cycle; tumor suppressor; DNA
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1. Introduction

HTLV-1 is the only human retrovirus etiologically linked to cancer [1–3]. In vivo and
in vitro, the virus preferably infects and induces the proliferation of mature CD3+ CD4+
T cells [4], eventually culminating in the development of T cell leukemia or lymphoma.
Clinically, ATLL can present in different forms that differ in disease progression, treatment,
and survival outcomes and are referred to as smoldering, chronic, or acute type [5–7]. HTLV-
I-associated diseases have no cure and the mean survival of acute and lymphoma ATLL
patients is 6–10 months, with a projected 4-year survival rate of 6% [8]. Disease progression
is intractably linked to a higher proviral load (PVL) in infected patients. Epidemiological,
clinical, and molecular studies have shown that the expansion of HTLV-1-infected cells
in vivo mainly occurs through the cellular replication of infected cells [9,10], and, as a result,
HTLV-1 presents with very low antigenic variability. Since viral antigens elicit vigorous
humoral and cell-mediated immune responses, reducing the expression of viral antigens is
a critical step for virus survival in an infected host. There is a constant dynamic balance
between virus-infected cells eliminated by the host immune system and the expansion of
infected cells via cellular proliferation and de novo infection. Both cytotoxic T-lymphocytes
(CTLs) and natural killer cells (NK) play critical roles in controlling HTLV-I virus expansion
and the PVL in vivo. In support of these observations, several studies have reported
the rapid occurrence of ATL in HTLV-I-infected individuals after immune-suppressive
treatment following transplantation. Finally, the adoptive transfer of Tax-specific CTLs is
sufficient to prevent HTLV-I-associated disease in animal models [11,12].

The HTLV-1 provirus exhibits several properties not seen in animal oncogenic retro-
viruses. The c-terminus of the provirus genome contains a region known as pX with
at least five open reading frames (ORFs) encoding for regulatory proteins involved in
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viral pathogenesis [13–15]. The viral Tax (transactivator of the X region) protein specifi-
cally interacts with the cAMP response element (CREB) and acetyltransferase coactivators
CBP/p300 (CREB-binding protein) and PCAF (p300/CREB-binding-protein-associated fac-
tor) to stimulate the expression of viral mRNA transcripts from the viral LTR (long terminal
repeats) [16–20]. Tax is a potent modulator of transcription that can activate or repress
many cellular genes involved in growth and survival [21] and is the driving factor behind
the HTLV-1 random mutagenesis transformation model [22]. A matter of debate is whether
Tax expression is needed in transformed ATL cells. On one hand, a common and striking
feature of ATL cells is the apparent absence of detectable Tax expression in half of patients,
suggesting that Tax expression may not be required in fully transformed cells. While the
5′ LTR is methylated in ATL patient samples, these results were obtained from global
analyses and did not account for possible temporal and spatial differences. These results
are confounded by possible differences in different ATL tumor clones within a patient and
require analyses at the single-cell level. Whether Tax is or is not expressed in ATL cells has
been controversial, but published evidence leaves little doubt that Tax expression is indeed
present and required in ATL cells. The sporadic on/off switching of HTLV-1 Tax bursts of
expression is essential to maintain the whole population of virus-induced leukemic cells.
Tax is indeed expressed in a minor fraction of leukemic cells at any given time and the
knockdown of Tax rapidly induces apoptosis in most cells, indicating that Tax is critical
for maintaining the population, even if its short-term expression is limited to a small
subpopulation [23]. Studies confirmed that primary ATL cells from patients with acute
or chronic ATL express very low levels of Tax [24]. However, inhibition of Tax expression
results in the reversal of nuclear factor-κB (NF-κB) activation, p53/promyelocytic leukemia
protein (p53/PML) activation, and apoptosis [24]. In contrast, suppression of HTLV-1 bZIP
factor (HBZ) expression in ATL cells was associated with increased Tax expression but did
not affect the growth or the survival of ATL cells, suggesting that Tax is the cornerstone
of HTLV-1 transformation [24]. Along these lines, the anti-sense transcript HBZ which is
frequently expressed in ATL cells may serve to control Tax expression to optimal levels.

Overview of the Molecular Mechanisms Associated with Tax-Induced Cellular Immortalization
and/or Transformation

Although it is possible to immortalize (IL-2 (interleukin-2) ligand-dependent) or trans-
form (ligand-independent) human primary T cells with HTLV-1 in vitro [25–27], most cell
lines have been established by co-cultivation with lethally irradiated virus-producing cells
rather than direct expansion of ATL tumor cells in vitro. In addition, the immortalization of
primary T cells with viral Tax only occurs after a long culture period of over 8–10 months
and is very inefficient; indeed, only one Tax-immortalized human T cell line has been
reported in the literature [28]. Studies have shown that an autocrine mechanism may play
a role in the growth of some HTLV-1-infected T cells in vitro, and the specific cytokine
receptor may vary from cell line to cell line. Tax has been shown to activate the promoter for
IL-2 and the IL-2Rα chain [29–32]. Similarly, transcription of IL-15 and the IL-15Rα chain is
increased by Tax through the activation of the NF-κB pathway [33,34]. Furthermore, in the
chronically infected HUT102 cell line, the expression of IL-15 and IL-15Rα is upregulated,
supporting the notion that an autocrine mechanism of growth is important during some
stages of infection [33]. Indeed, anti-IL-2R antibodies have been shown to reduce the tumor
burden in NOD/SCID (nonobese diabetic/severe combined immunodeficiency) mouse
models and ATL patients in vivo [35]. Previous investigations have demonstrated that
Tax alone is unable to achieve full transformation of human primary T cells, referred to
as growth in the absence of exogenous IL-2 [28]. In contrast, both human and murine
fibroblasts have been transformed with Tax.

The reasons behind these observations can be attributed to general differences between
these cell types. In general, primary fibroblasts have a higher proliferative capacity com-
pared to primary CD4 T cells, which may make them more amenable to the sustained cell
division associated with cellular transformation. CD4 T cells are subject to stringent control
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mechanisms to avoid uncontrolled proliferation, making them generally less permissive to
transformation. Finally, fibroblasts are relatively undifferentiated, and their transformation
might require fewer obstacles related to differentiation status when compared to primary
CD4 T cells. Although Tax appears to be a weak oncogene, it is indispensable to the virus
transformation potential.

Transduction of Tax and Tax mutants into primary T cells and immortalization assays
have revealed a selection process characterized by several distinct crises with intermit-
tent, excessive cell death followed by active proliferation [28]. We can speculate that
some of these steps are related to pathways that are activated in HTLV-1-transformed ATL
cells, such as the inactivation of tumor suppressors such as p53 and FBXW7 (F-box/WD
repeat-containing protein 7); activation of specific oncogenic signaling pathways such as
JAK/STAT (Janus kinase/signal transduction and transcription activation), PI3K (phos-
phatidylinositol 3-kinase), and NOTCH (notch receptor 1); activation of anti-apoptotic
pathways; genetic and epigenetic alterations associated with genome instability; and finally
the reactivation of hTERT (human telomerase reverse transcriptase) expression. While Tax
can directly affect some of these events, others are the result of the in vitro selection of
clones that have acquired specific genetic mutations. Inactivation of tumor suppressors
and cell cycle checkpoints is often the result of the direct actions of Tax [22]. This results in
unchecked cellular proliferation, creating a conducive environment for transformation. For
example, the absence of cell cycle arrest in HTLV-I-transformed cells in vitro, despite an ele-
vated level of p21WAF/CIP (cyclin-dependent kinase inhibitor 1), could be attributed to the
phosphorylation of p21WAF/CIP by PI3K/AKT (protein kinase B), resulting in cytoplasmic
retention and inactivation of p21WAF/CIP [36]. Therefore, Tax may, through its activation
of PI3K/AKT, regulate p21WAF/CIP activity. In addition, Tax can directly interact with
cyclin-dependent kinase 4 (CDK4) to form a complex capable of phosphorylating and
inactivating Rb protein (retinoblastoma 1) to stimulate active cell cycle proliferation [37,38].
Tax directly inhibits cyclin-dependent kinase inhibitors to stimulate progression through
the cell cycle and uncontrolled proliferation [39].

Activation of the JAK/STAT signaling pathway is a hallmark of HTLV-1 transfor-
mation [40] and represents a promising therapeutic target [41–43]. It is not clear how
JAK/STAT is activated in ATL cells. While frequent mutations have been found in
STAT3 [44], a high frequency of activating mutations in JAKs has not been reported.
The most likely model for JAK activation in ATL cells is through hormone and cytokine
receptor(s) signaling, resulting in JAK aggregation in lipid rafts at the cell membrane.
Constitutive activation of the JAK pathway was associated with loss of src homology 2
(SH2)-containing phosphatase (SHP1) expression [45,46]. A direct implication of Tax in the
activation of JAK/STAT has not been experimentally demonstrated. However, it is likely
that, at least in the initial stages, Tax-mediated NF-κB activation results in the elevated
expression of a myriad of cytokines and their receptors and indirect activation of JAKs.
Activation of other oncogenic pathways such as PI3K/AKT and NOTCH is also found in
HTLV-1-transformed cells [47–50]. In contrast to JAK/STAT, Tax has been shown to directly
affect these pathways and to play a role in Tax-mediated fibroblast transformation [51].
Tax binds to PDZ domain-bearing proteins, including DLG-1 (discs large MAGUK scaf-
fold protein 1), hScrib (scribble planar cell polarity protein), and MAGI-1 and MAGI-3
(membrane-associated guanylate kinase inverted −1 and −3) via its C-terminal PDZ-
binding motif [52–54]. A physiological consequence of these interactions is Tax competition
with PTEN (phosphatase and tensin homolog) for binding to DLG-1 [55]. Experimental
data demonstrate that Tax induces the activation of the PI3K-Akt-mTOR (mechanistic
target of rapamycin kinase) pathway by causing the mislocalization of the tumor suppres-
sors PTEN and PHLPP (PH domain and leucine-rich repeat protein phosphatase) from
the plasma membrane. Interestingly, the authors demonstrated that forced membrane
localization of either PTEN or PHLPP was sufficient to prevent the negative effects of Tax
on their phosphatase activity for PI3K [55]. The effects of Tax are likely important in the
early steps of HTLV-1 transformation; however, it is unclear how PTEN is inactivated in
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transformed ATL cells in the absence of Tax expression. While early studies proposed a
loss of PTEN expression in ATL cells, analyses of fresh uncultured samples demonstrated
that PTEN is expressed at normal levels in ATL cells [49]. Studies have also shown that
Tax can act downstream of the PI3K pathway by inducing the phosphorylation of AKT at
Ser473 and Thr308 residues, resulting in the activation of AKT and subsequent inactivation
of GSK3β (glycogen synthase kinase 3 beta) [56]. Another important oncogenic pathway
in lymphoid cells is the NOTCH pathway. While activating genetic mutations have been
found in the PEST (sequences enriched in proline (P), glutamate (E), serine (S), and threo-
nine (T)) domain of the transcriptionally active NOTCH intracellular domain (NICD) and
ubiquitin ligase FBXW7, a direct role of Tax has also been reported. Studies have shown
that Tax increases the half-life of NICD, enhances the association of NICD with RBP-jκ
(recombination signal binding protein for immunoglobulin kappa J region), and forms a
ternary complex to stimulate transcriptional activation of NOTCH genes targets [57]. The
stimulating effects of Tax on proliferation are clear shortly after its transfer to primary
cells; however, after several days, these effects wane and are masked by an increase in cell
death and permanent cell cycle arrest. In the sections below we will review the published
literature and discuss both the pro- and anti-apoptotic functions of Tax, and how this
integrates into its transforming abilities.

2. HTLV-1 Tax Control of the Apoptosis Cell Death Pathways
2.1. Activation of Apoptotic Pathways by Tax

The establishment of stable Tax-expressing cell lines in vitro is notoriously difficult
and has been elusive, since continuous culturing of Tax-expressing cells results in negative
selective pressure leading to loss of expression or cell death. In contrast, in vivo Tax
transgenic models have been associated with a broad range of tumors from fibroblasts to
hematopoietic B- and T cells. However, to our knowledge, none of these tumors have been
able to be grown in vitro, suggesting that either Tax can sustainably be expressed only in
primary cells and/or that the tumor microenvironment (TME) is required to sustain the
proliferation and survival of Tax-expressing cells. Experimental studies have shown that
Tax is a potent inducer of apoptosis. Factors that influence cellular fate in response to Tax are
the cell type, the level of Tax expression, and the duration of Tax expression. Because Tax is
highly immunogenic, its apoptotic-inducing functions can be viewed as a mechanism used
by the virus to select infected clones with low suboptimal expression of Tax sufficient to
evade immune surveillance while allowing Tax-mediated immortalization. Animal models
of Tax-transgenic mice display increased apoptosis in in vivo tumors, which correlates with
elevated expression of c-Myc, JUN (AP-1 transcription factor subunit), and p53 in Tax-
expressing cells [58]. In vitro, Tax induces caspase-dependent cell death that correlates with
the ability of Tax to regulate p300/CBP activity and not NF-κB. Experimental data showed
that nuclear expression of the minimal CREB-binding protein (CBP)/p300-binding domain
of Tax triggered an apoptotic death signal in both short-term clonal analyses as well as in
transient cell death assays [59]. In HTLV-1-transformed cells that do not express detectable
Tax protein, USP10 (ubiquitin-specific peptidase 10) inhibits stress-induced reactive oxygen
species (ROS) production and apoptosis. However, in Tax-expressing cells, USP10 anti-
apoptotic functions are blocked by Tax [60]. The dynamics of gene expression revealed
by time-lapse imaging revealed a close correlation between Tax-induced apoptosis and
alterations in the expression levels of IL-8 (interleukin-8), SMAD3 (SMAD family member
3), CDKN1A (cyclin-dependent kinase inhibitor 1), GADD45A and GADD45B (growth
arrest and DNA damage-inducible alpha and beta), and IL-6 (interleukin-6). Given that
these genes are associated with the regulation of stress kinase pathways, these data suggest
that Tax might in part trigger apoptosis by activating genes linked to stress-response
signaling pathways [61]. Consistent with this idea, over-expression of Tax sensitizes
cells to DNA-damaging agents and triggers p53-independent apoptosis [62,63]. Several
studies have also shown the effects of Tax on downstream events of death receptor (DR)
signaling. Tax induces caspase-dependent cell death in Jurkat cells expressing CD95
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(Fas) [64]. Additional studies showed that Tax expression in human T cells was associated
with a significant increase in the expression of the Fas ligand (FasL) gene. This was
significant because the induction of apoptosis by Tax was blocked upon interruption of the
Fas/FasL signaling pathway [65]. Interestingly, fibroblasts expressing Tax are protected
from apoptosis triggered by serum deprivation but are susceptible to tumor necrosis factor-
alpha (TNFα)-mediated apoptosis. These observations indicate that Tax has distinct effects
on cell death, contingent upon the cell type and the apoptotic stimulus [66].

2.2. Anti-Apoptotic Functions of Tax

The section above highlights how high levels of Tax expression are associated with
cell death; however, Tax is also a potent activator of cellular transduction pathways and
induces the constitutive activation of major cellular pro-survival pathways NF-κB and
PI3K [30,56] (Figure 1).

Figure 1. Control of apoptosis pathways by HTLV-1 Tax. Tax-mediated activation of the IKK complex
results in IκB degradation and nuclear translocation of RelA/p65 to activate the expression of
pro-survival genes. Increased expression of survivin and IAPs (inhibitors of apoptosis) efficiently
inhibits caspases while cFLIP inhibits death receptor FAS/FASL signaling. In addition, BclxL can
translocate to the mitochondria where it blocks Bax- and Bak-mediated release of cytochrome C and
activation of caspases. Activation of NF-κB is also associated with the release of cytokines resulting
in an autocrine/paracrine activation loop engaging receptor tyrosine kinase and activation of the
JAK/STAT pathway. Tax also prevents pro-apoptotic functions of p53.

These observations suggest that depending upon the level of Tax expression, the cell
type, and the signaling molecules present in the microenvironment, the balance can be
tipped from death to survival and vice versa. In vivo and ex vivo studies demonstrate the
importance of Tax expression for the survival of HTLV-1-transformed ATL cells [24,67].
Numerous in vitro studies have demonstrated that Tax expression is associated with the
production and release of numerous cytokines and growth factors with anti-apoptotic
activities, listed below and summarized in Table 1 (IL-2, IL-15, IL-10, IL-6, IL-8, IL-1α, IL-5,
IL-4, IL-13, IL-17, IL-12, IL-9, IL-21) [24,68–79]. Tax activates the expression of cytokine
receptors such as IL-2R [29,30], IL-15R [34], IL-6R [80], IL-21R [79], and IL-17R [81]. In
addition, Tax also stimulates the expression of various chemokines and chemokine ligands
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such as IFN-γ (interferon-gamma) and TNF-α [77], GM-CSF (colony stimulating factor
2) [82], MIP-1α/CCL3 (C-C motif chemokine ligand 3) [83], MIP-1β/CCL4 (C-C motif
chemokine ligand 4) [84], MIP-3 (C-C motif chemokine receptor 7) [85], MCP-1 (C-C motif
chemokine ligand 2) [86], CCL5/RANTES(C-C motif chemokine ligand 5) [87], CCL1 (C-C
motif chemokine ligand 1) [88], CCL22 (C-C motif chemokine ligand 21) [89], CXCR7
(atypical chemokine receptor 3) [90], and CCR9 (C-C motif chemokine receptor 9) [91].

Tax activates the NF-κB pathway through several different mechanisms. Tax can
directly interact with the IKKγ (inhibitor of nuclear factor kappa B kinase regulatory
subunit gamma) to stimulate the IKK complex, triggering the continual phosphorylation
and ubiquitin-mediated degradation of IκB to allow NF-κB RelA/p65 translocation to the
nucleus and activation of canonical NF-κB1. Alternatively, Tax can form a complex with
the p100 NF-κB precursor protein along with IKKα/IKKβ to facilitate the cleavage of p100
into the active p52 NF-κB subunit, resulting in the activation of the non-canonical NF-
κB2 [92]. Some studies suggest that Tax-mediated NF-κB activation may result in opposite
outcomes depending upon the cell dividing state. This notion may in part be explained
by the effects of Tax on cellular DNA replication (see below). In human actively dividing
KIT-225 cells, Tax was associated with growth arrest and cell death in a RelA/p65 canonical-
dependent NF-κB pathway. In proliferative cells expressing Tax, inactivation of the non-
canonical NF-κB and p38 MAPK (mitogen-activated protein kinase 1) pathways released
Tax-mediated apoptosis, suggesting a role for Tax-NF-κB2-p38 MAPK axis in apoptosis.
By contrast, in resting cells, Tax-mediated activation of RelA-NF-κB1 was required to
prevent apoptotic cell death [93]. The activation of canonical NF-κB by Tax has been
associated with increased expression of anti-apoptotic factors such as BclxL (BCL2 like 1),
survivin, and Bfl-1(BCL-2-related protein A1) [86,94–96]. Another important anti-apoptotic
factor in HTLV-1-transformed ATL cells is myeloid cell leukemia 1 (MCL1) protein. MCL1
protein stability is largely controlled by the ubiquitin ligase FBXW7, which is frequently
inactivated in HTLV-1-transformed cells [50,97]. Furthermore, Tax-induced activation
of IKK and TRAF6 (TNF receptor-associated factor 6) results in K63 ubiquitination of
MCL1, thereby protecting it from genotoxic stress-induced degradation and enhancing
its anti-apoptotic functions [98]. Experimental evidence in vitro demonstrates that Tax-
induced cell death can be efficiently prevented by co-expression of B-cell lymphoma 2
(Bcl-2) [59,99]. Tax can increase c-FLIP (FADD-like anti-apoptotic molecule 1) protein
expression through the Tax-IKK-NF-κB signaling pathway, providing resistance against
death receptor-mediated apoptosis, such as FasL and TNF-related apoptosis-inducing
ligand (TRAIL) [100]. Interestingly, Tax-triggered autophagy depends on the activation of
IKK but not the activation of NF-κB RelA/p65 [100]. This phenomenon is reminiscent of
Tax’s ability to stimulate telomerase activity through the IKK complex independently of
transcriptional activation [101].

In addition to the upregulation of pro-survival proteins, Tax may also confer apoptosis
resistance by suppressing the expression or activities of pro-apoptotic factors or signaling
pathways. For instance, Tax has been shown to suppress the expression of the pro-apoptotic
BH3-only proteins Bim (BCL2-like 11) and Bid (BH3-interacting domain death agonist)
by enhancing the expression of hypoxia-inducible factor-1α (HIF-1α) [102]. Enforced
expression of Bim or Bid reverted resistance to CD95- and TRAIL-induced apoptosis of
Tax-expressing cells [102]. Another example is the pro-apoptotic factor Bcl-2-associated X
protein (Bax). Transcription of the Bax gene expression is controlled by p53 and strongly
activated in response to chemotherapeutic DNA damaging agents. Tumor suppressor p53
is a central regulator inducing cell cycle arrest and apoptosis in response to DNA damage.
However, in HTLV-1-transformed ATL cells, p53 functions are inactivated. Furthermore,
several laboratories have demonstrated that Tax efficiently inhibits p53 transcriptional
activities [103–106]. Other functions of Tax such as CREB activation also play a role in
Tax-mediated protection from cell death. Under serum starvation conditions, Tax protein
protects cells from apoptosis by preventing cytochrome c release and Bax relocation to the
mitochondria [107].
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Table 1. Summary of signaling and apoptosis genes regulated by HTLV-1 Tax. References are
provided in the main text.

Effects of Tax Mechanism of Activation
Cytokines

IL-1α activated NF-κB
IL-2 activated NF-κB/NF-AT
IL-4 activated NF-κB/NF-AT/NF-IL6
IL-6 activated NF-κB
IL-8 activated NF-κB
IL-9 activated NF-κB/IRF4
IL-10 activated NF-κB
IL-12 activated NF-κB
IL-13 activated NF-AT/GATA3
IL-15 activated NF-κB
IL-17 activated CREB/ATF
IL-21 activated NF-κB/AP1

Cytokine Receptors
IL-2R activated NF-κB/NF-AT
IL-6R activated ?

IL-15R activated NF-κB/IRF-4
IL-17R activated ?
IL-21R activated AP1/IRF

Chemokines/Ligands
IFN-γ activated IL-12
TNF-α activated NF-κB

GM-CSF activated NF-κB/CREB/ATF/NF-IL6
MIP-1α/CCL3 activated NF-κB
MIP-1β/CCL4 activated NF-κB

MIP-3 activated NF-κB
MCP-1 activated NF-κB

CCL5/RANTES activated NF-κB
CCL1 activated ?
CCL22 activated ?
CXCR7 activated NF-κB
CCR9 activated ?

Apoptosis Regulators
Bcl-xL activated NF-κB/CREB/ATF

Survivin activated NF-κB
Bfl-1 activated NF-κB/cJun/JunD

MCL-1 activated TRAF6
c-FLIP activated NF-κB

Bim suppressed HIF-1α
Bid suppressed HIF-1α
Bax suppressed TP53
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3. Context-Dependent Expression of Tax Induces Senescence or Immortalization
3.1. Tax Overexpression Is Associated with Rapid Stress-Induced Senescence (SIS) in
Pre-Transformed p53-Deficient Cells

Cells that are subjected to stress signals can undergo apoptosis or enter permanent
cell cycle arrest and senescence. Different types of stress signals have been characterized,
such as those produced by oncogene-induced senescence (OIS) [108], chronic inflammation,
and therapy-induced senescence (TIS). TIS is a type of cellular senescence caused by the
accumulation of DNA double-strand breaks (DSBs) in cancer cells and is most common
during cancer chemotherapy treatment [109]. Expression of Tax has been shown to interfere
with the cellular DNA repair machinery. Tax has been shown to prevent nucleotide excision
repair (NER) in part through increasing PCNA (proliferating cell nuclear antigen) gene
expression [110,111], to inhibit base-excision repair (BER) of oxidative damage [112], and
to block homologous recombination (HR) [113]. How Tax interferes with the HR repair
pathway is currently unknown, but some studies suggest that Tax forms speckled structures
(TSS), which recruit and sequester 53BP1 (tumor protein p53 binding protein) upon ATM
(ATM threonine/serine kinase) signaling, thereby preventing 53BP1 binding to DDSBs [114].
In addition, Tax has been shown to interact with Chk1 (checkpoint kinase 1), resulting
in premature attenuation of the ATM/Chk1 signaling axis in Tax-expressing cells [115].
Several studies have also shown that Tax expression not only blocks DNA repair but is
associated with the accumulation of DNA strand break foci and increased phosphorylation
of H2AX [113,116] (Figure 2).

A direct implication of Tax in the formation of DDSBs was demonstrated by molecu-
lar combing techniques showing that DNA replication forks encounter difficulties when
replicating complex DNA, resulting in slower progression and more frequent pauses or
stalls in the presence of Tax expression. Tax-related replication defects can be partially
mitigated by an upsurge in the activation of backup origins of replication but at the expense
of DDSBs [117]. The status of p53 may play a major role in deciding the fate between apop-
totic death and senescence, and in p53-deficient cells, Tax overexpression may be associated
with a similar physiological cellular response as described for TIS. Additional studies have
demonstrated that Tax-mediated NF-κB activation induces the formation of R-loops [118].
Like the effects of Tax on DNA replication, R-loops can also interfere with DNA replication,
resulting in replication fork collapse and formation of DDSBs [119]. Although Tax-mediated
NF-κB activation plays a central role in the secretion of cytokines that stimulate cellular
proliferation, excessive cytokine signaling can result in chronic inflammation and increased
expression of p21WAF/CIP and p27KIP (cyclin-dependent kinase inhibitor 1B), leading to
cellular senescence [120,121]. In turn, senescent cells can produce senescence-associated
secretory phenotype (SASP) vesicles, which can stimulate inflammation in their tumor
microenvironment. Studies have shown that transient overexpression of Tax-mediated
activation of IKKα and RelA/p65 results in OIS in transformed epithelial cells deficient for
p53 such as HeLa [121,122]. Because of the nature of HeLa cells, it is difficult to assess the
physiological relevance of these data, and confirmation of these results in primary T cells
is needed.

3.2. Tax Expression in Primary Cells Is Associated with the Reactivation of hTERT and Stability of
Telomere Ends

Even in the absence of stress signal-induced senescence, each cellular replication is
associated with a progressive shortening of the telomeres in normal cells, eventually result-
ing in the activation of the replicative senescence program and a permanent irreversible
cell cycle arrest (Figure 2). Replicative senescence restricts the proliferative capacity and
blocks the accumulation of mutations and genomic defects that are responsible for the
initiation and progression of cellular transformation. In cancer cells, preservation of suf-
ficient telomere ends and unlimited cellular replication is ensured by the reactivation of
hTERT, or the activation of a pathway known as the alternative lengthening of telomeres
(ALT). Reactivation of telomerase activity has been associated with the development of
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HTLV-1-induced leukemia [123,124]. Indeed, activation of the hTERT promoter by Tax-
induced NF-κB was demonstrated by transduction into human primary lymphocytes [125].
In addition, transcriptional activation of the hTERT promoter by the PI3K pathway and
direct activation of hTERT enzymatic activity by Tax stimulation of IKK suggests multiple
levels of control to preserve telomere end integrity [48,101].

Figure 2. Cellular senescence pathways affected by Tax. Schematic representation of different
physiological processes associated with induction of cellular senescence. While cellular division is
associated with telomere shortening and replicative senescence, Tax can reactivate hTERT expression
and stimulate its activity. These effects are sufficient to prevent telomere-induced foci (TIF) and
activation of the DDR. Tax expression is associated with rapid cell proliferation and various metabolic
stress progression, such as the production of reactive oxygen species (ROS). In turn, ROS induces DNA
damage and activation of ATM/p53 response. Tax expression impairs DNA replication fork, resulting
in stalling and fallout, creating an accumulation of double DNA strand breaks and activation of the
DDR. Activation of the DDR can stimulate ATM/p53 or p16INK pathways, leading to irreversible
cellular senescence.

4. Discussion and Perspectives

This review describes some of the opposing functions of the HTLV-1 virus Tax protein
in cellular death and transformation. For 30 years, Tax has been at the center of HTLV-1
research and there is no doubt that Tax is a critical factor for virus replication and pathogen-
esis. Although the expression of Tax in vivo has been a matter of debate, recent evidence
demonstrates that Tax is indeed expressed in ATL cells in vivo [23,24,126], and required for
tumor cell expansion and survival. Targeting Tax expression has been found to provide
benefits in pre-clinical models [67,127–129]. In HTLV-1 infected patients, CTLs directed
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against the Tax protein play a major role in controlling the expansion of virus-infected
cells and maintaining a low proviral load. Impaired CTL responses in patients with high
PVL compared with asymptomatic patients with low PVL support the notion that effi-
cient control of HTLV-I in vivo depends upon the quality rather than the quantity of the
CTL response [130,131]. Therefore, understanding how the virus prevents CTL activity
is essential. Indeed, the findings that infected cells with extremely low levels of Tax ex-
pression can be targeted by high-avidity CTLs in vitro raises the possibility of developing
therapeutic vaccines for the treatment of HTLV-I-associated diseases [132]. Notably, the
adoptive transfer of Tax-specific CTLs is sufficient to prevent HTLV-I-associated disease
in animal models [133]. Because of its low antigenic variability, the virus has evolved
multiple strategies to avoid high expression of Tax and unmasking of infected cells to
the hosts’ immune system. Along these lines, Tax-induced apoptosis may be regarded as
a self-defense mechanism used by the virus to fight against the host immune response.
The fact that Tax uses several different strategies to induce cellular apoptosis in newly
infected cells exerts a selective pressure against elevated Tax expression and the acquisition
of mutations in the pro-apoptotic pathway. This allows an overall increase in cell survival.
These events favor selection and emergence of tumor clones with low Tax expression. In
addition, it is possible that in some infected cells, the high level of Tax stimulates apoptosis
to generate apoptotic bodies carrying virus particles [134]. This allows the virus to spread
the infection to the monocytes/macrophages that are attracted by the apoptosis-induced
microenvironment and inflammation. Additional viral factors may control Tax expression.
The 5′LTR is frequently methylated in ATL patient samples, thereby reducing viral tran-
scription. However, previous studies have shown that in the presence of phobol esters, Tax
can effectively activate transcription from methylated 5′ LTR [135]. The virus also encodes
regulatory proteins that can suppress Tax activities. HTLV-1 p30 is a nucleolar non-shuttling
protein capable of interacting with and blocking the nuclear export of Tax/rex mRNAs,
thus reducing Tax expression and virus replication [136,137]. Another viral regulatory
protein, p13, has been found to interact with Tax and reduces recruitment of the CBP/p300
transcriptional co-activator by Tax, thereby dampening transcriptional activities [138]. Fi-
nally, the HTLV-1 viral HBZ factor has been shown to prevent both Tax-mediated cell
death and Tax-induced senescence [122,139]. These effects of HBZ are associated with the
silencing of Tax mRNA expression by HBZ anti-sense mRNA rather than some inherent
function(s) of HBZ. Furthermore, HBZ has been shown to interact with CREB and prevent
the formation of the ternary complex Tax/CREB/CBP on the 5′LTR, thereby reducing the
expression of viral mRNAs [140]. In HTLV-1-transformed ATL cells, HBZ expression is
likely required to keep Tax under control for provirus expression. Although the induction
of senescence is widely regarded as a tumor suppressor defense mechanism, it also comes
with risks (Figure 3).

Indeed, in vivo senescent cells that are not eliminated may play a role in prevent-
ing new tissue and promoting the proliferation, migration, invasiveness, and epithelial–
mesenchymal transition (EMT) of tumors [141,142]. Senescent cells produce SASP that
can stimulate tissue remodeling and angiogenesis, thereby facilitating the growth and
spread of precancerous cells (Figure 3). In addition, while SASP factors may attract immune
cells to eliminate potential threats, this may in certain instances create an inflammatory
environment conducive to tumor growth. Given the multiple roles of HTLV-1 in both
transformation and senescence, combination therapy including senolytic agents may be a
promising approach for future anti-cancer therapy in HTLV-1 ATL patients.
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Figure 3. Schematic representation of cellular fates in response to various stress stimuli. Evolution
of infected cells relative to the levels of Tax and HBZ expression. Upon stress signals, induced
by replicative senescence, metabolic stress, high expression and oncogene-induced senescence,
genotoxic agent exposure, and genomic DNA damage or chronic inflammation, the cell may undergo
transient cell cycle arrest to repair and/or prevent accumulation of more cellular damages. If cell
cycle checkpoints are not functioning properly or the damage is too extensive to be repaired, the
cell may undergo apoptosis. Cells that undergo early senescence may progress to the irreversible
late senescence stage in the presence of an active p53 signaling pathway or transformation if p53
is inactivated.
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