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Abstract: Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lympho-
cytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while
maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs
display T cell receptors (TCR), including either TCRxf3 or TCRy$. Both humans and mice share
similar T-IEL subsets: TCRy6*, TCRxpf*CD8x«x*, TCRa*CD4*, and TCRxp*CD8xf3*. Among
these subsets, human T-IELs are predominantly TCRxf* (over 80%), whereas those in mice are
mostly TCRy&* (~60%). Of note, the majority of the TCRy&* subset expresses CD8oex in both species.
Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not
been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where
we identified several distinct features. The percentage of TCRy&* was comparable to that of TCRxf*
T-IELs (both ~50% of CD3"), and the majority of bovine TCRy5* T-IELs did not express CD8 (CD8™)
(above 60%). Furthermore, about 20% of TCRxf* T-IELs were CD4*CD8xf3*, and the remaining
TCRap* T-IELs were evenly distributed between CD4* and CD8«f* (~40% of TCRxp* T-IELs each)
with no TCRaB*CD8xx* identified. Despite these unique properties, bovine T-IELs, similar to those
in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and
a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels
of inflammatory cytokines such as IFNy and IL17A, and secreted small amounts of the immune
regulatory cytokine TGFf1. Hence, bovine T-IELs’ composition largely differs from that of human
and mouse, with the dominance of the CD8~ population among TCRy&" T-IELs, the substantial
presence of TCRxp*CD4*CD8uxfR* cells, and the absence of TCRxpf*CD8xx* T-IELs. These results
provide the groundwork for conducting future studies to examine how bovine T-IELs respond to
intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.

Keywords: cattle; intraepithelial T lymphocytes; T-IELs; TCR«3; TCRyo; CD4; CDS§; IFNy; IL17A;
TGFp1

1. Introduction

Gastrointestinal (GI) disorders, ranging from acute infections to chronic inflammatory
diseases, present considerable economic and health implications in humans as well as in
cattle. Intraepithelial T lymphocytes (T-IELs), which make up about 90% of all intestinal
intraepithelial lymphocytes and 50-60% of total T lymphocytes in humans, play a critical
role in pathogen clearance and gut homeostasis, and could be a central target for developing
intervention strategies against GI diseases [1-7]. However, our understanding of the
composition and function of bovine T-IELs is limited by technological constraints and the
delayed availability of specific research tools [8-21].

In contrast to the peripheral T cells, T-IELs are found in the antigen-abundant mucosal
environment and possess unique homing molecules, activation states, and effector func-
tions [3-5,22-33]. For instance, T-IELs express high levels of gut-homing molecules such
as CD103 and CCR9, while expressing very low levels of lymphoid trafficking molecules
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like CD62L [1,23,34-42]. Furthermore, T-IELs are routinely exposed to both commensals
and pathogens, and their behaviors are affected by a variety of distinct factors, including
dietary nutrients such as glucose and vitamins, microbial metabolites like indole deriva-
tives, and neighboring cells such as intestinal epithelial cells (IECs) [3,6,22,24-31,43-69].
Unlike peripheral T cells, which are mostly naive and are activated upon sensing antigens
presented by antigen-presenting cells in the context of an MHC molecule, T-IELs possess
a highly restricted T cell receptor (TCR) repertoire and typically display a semi-activated
phenotype [2,32,33,70-78]. Understanding the unique features and compositions of T-IELs
is essential to deepen our knowledge of mucosal immune responses within the gut of cattle
and to advance the development of targeted immune interventions.

T-IELs are categorized into two groups based on their origin: natural and induced [79].
Natural T-IELs comprise the TCRaf*CD8xx* and TCRyd* subsets, both of which ex-
hibit innate-like features [22,42,61,80-86]. After encountering endogenous self-antigens
through their TCR in the thymus or extrathymic organs, these natural T-IELs rapidly
populate the T-IEL compartment [22,80,87-90]. Despite the fact that the potential ex-
trathymic origin of the TCRxB*CD8xo* subset remains a topic of debate, it has been
generally accepted that they originate in the thymus [22,42,80,87,91]. Both natural T-IEL
subsets are considered to be pathogen non-specific due to their selection from self-antigen
recognition [22,92-95]. Meanwhile, the TCRaB*CD8xo* subset expresses natural killer
(NK) receptors such as NKG2A/CD94 and the Ly49 family, which modulate immune
responses by detecting altered MHC class I molecules on compromised cells and by pro-
ducing immune regulatory cytokines like IL-10 and TGF(1 [79,96,97]. On the other hand,
TCRyd™" cells depend on IEC-intrinsic MyD88 signaling, which induces TCRy5* T-IELs
to produce antibacterial lectin ReglIly along with cytokines like IFNy and IL-13, facilitat-
ing the clearance of pathogens such as Salmonella, Toxoplasma, Listeria, and Nippostrongy-
lus [2-6,24,57,79,98-107]. In contrast to their natural counterparts, induced T-IELs comprise
the TCRa3*CD4" and TCRa3*CD8«x3* subsets, which originate from antigen-stimulated
peripheral T cells [22,79] and function predominantly in a pathogen-specific manner. For
instance, in both humans and mice, TCRxf3*CD4* T-IELs contribute to anti-inflammatory
responses by producing immune regulatory cytokines, such as IL-10 [63,108,109], and the
TCRaB*CD8xP" subset initiates cytotoxic effector memory responses against pathogens
such as simian immunodeficiency virus, lymphocytic choriomeningitis virus, Toxoplasma,
and Giardia through TCR [2,98,110-114]. Interestingly, human TCRa*CD8xf3* T-IELs can
also respond in an antigen non-specific manner by expressing NK receptors in conditions
like celiac disease whereas, in mice, it is the TCRap*CD8xx* subset that performs this
function [1,22,40,61,79,98,115]. Despite the overall functional similarities between the sub-
types, mice predominantly have natural T-IELs, while induced T-IELs are more common
in humans [1,2,79].

As ruminants, cattle possess a four-chambered stomach and a significantly longer
intestine, differing from humans and mice not only in terms of gut environment but also in
variations in the immune system [79,116-121]. For instance, the TCRyd" population consti-
tutes approximately 60 percent of the total peripheral blood mononuclear cells (PBMC) in
young cattle, a proportion significantly higher compared to the 2-15% found in humans
and mice [120,122-124]. Moreover, during pathogen infections, bovine CD4* T cells in
blood and lymph nodes mount immune responses that differ partially from those of hu-
mans and mice [117,118]. Despite these anatomical and immunological differences, bovine
T-IELs have been reported to respond to various infections caused by viruses, bacteria,
and nematodes in a manner similar to humans and mice, suggesting crucial roles in im-
mune responses, immune tolerance, and epithelial healing [8,10,11,13,14,16,21,125,126].
For example, T-IELs in cattle, including CD4* and CD8" cells, proliferate in response
to various pathogens such as Cryptosporidium parvum and Escherichia coli [8-10,19,127].
Conversely, a decrease in the CD4* and CD8* T-IEL population correlates with increased
disease severity [12]. Historically, studies on T-IELs in cattle have been limited by resources
and technology. Recent advancements and improved research tools provide a fresh op-
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portunity to deepen our understanding of bovine T-IELs [10,11,15-21]. We investigated
the T-IELs in the bovine small intestine, particularly in the jejunum, using flow cytometry.
Our findings highlight that while bovine T-IELs do exhibit some similarities with those
in humans and mice, they also display unique composition patterns. The uniqueness is
especially apparent in the even distribution of the TCRy5* and TCRa3* T-IEL subsets,
the presence of distinct subsets such as TCRaB*CD4*CD8uxf3* and TCRyd*CD8~, and the
absence of TCRxf*CD8xo™ cells. Despite these variations, bovine T-IELs, similar to their
human and mouse counterparts, continue to express T-IEL markers and produce various
cytokines in the gut.

2. Materials and Methods
2.1. Cattle

Since 1958, the Wye Research and Education Center, University of Maryland Exper-
imental Station (Queenstown, MD, USA) [32,128], has maintained the Wye Angus as a
closed herd. All cattle were born between January and April, weaned at approximately
six months of age, and had access to pastures before weaning. After weaning, the calves
were randomly allocated to receive either grain or grass. The grain-fed group had no access
to pasture and was fed a diet consisting of maize silage, corn cobs, and soybeans with
added trace elements. The grass-fed group was allowed to graze on alfalfa-dominated
pasture during the grazing season and hay during the winter [129]. Li et al. (2019) found
that grain-fed steers attained market weight at approximately 14 months of age [130]. The
animals in this investigation were grain-fed and euthanized in a commercial facility (George
G Ruppersberger & Sons, Baltimore, MD, USA). Blood, lymph nodes, and entrails were
collected at the slaughterhouse. Animal Care and Use Protocols were authorized by the
UMD Institutional Animal Care and Use Committee (R-FEB-18-06 and R-JAN-21-02). All
procedures were carried out in accordance with the relevant guidelines and regulations.

2.2. Isolation of Cells from Lymph Nodes and Blood

The inguinal lymph nodes (IGLN) were cut into 2-3 mm? fragments and subjected
to mechanical disruption and digestion in 5 mL of RP10 medium supplemented with
400 U/mL of V Collagenase, 0.1 mg/mL of DNase, and 2.5 U/mL of hyaluronidase at
a temperature of 37 °C for a duration of 2 h [15,21]. The single-cell suspension obtained
was subjected to cell counting and antibody staining. Peripheral blood mononuclear
cells (PBMCs) were similarly performed as in our previous reports [130-132]. Blood
was collected from the jugular vein using EDTA-coated vacutainers (Becton Dickinson
Vacutainer Systems, Franklin Lakes, NJ, USA) and transferred to 15 mL conical containers
(Fisher Scientific, Pittsburgh, PA, USA), which were centrifuged at 1200x g-force (G) for
30 min. Following centrifugation, the buffy coat at the interface was carefully collected into
anew 15 mL tube and re-suspended in 8 mL of 1x phosphate-buffered saline (PBS) (Fisher
Scientific, Fair Lawn, NJ, USA). Then, 5 mL of lymphocyte separation medium (LSM) with
a density of 1.077 g/mL (Corning, Manassas, VA, USA) was added, followed by 30 min of
centrifugation at 900G with break off. The interface’s second buffy coat was collected and
cleaned twice with PBS. The cell pellet was resuspended in 5 mL Allos medium following
the final rinsing, and a small aliquot was used for cell counting. Allos media was RPMI-
1640 supplemented with FCS (10%), HEPES (10 mM), MEM non-essential amino acid (1),
sodium pyruvate (1 mM), penicillin and streptomycin (100 U/mL), L-glutamine (2 mM),
and 2-mercaptoethanol (50 uM) (all from Mediatech, Manassas, VA, USA).

2.3. T-IEL Isolation

The T-IEL isolation protocol for the abomasum was adapted from [21], and for the je-
junum and ileum, it was based on [15]’s method for mucosal small intestine T-IEL isolation.
Both procedures included minor modifications. Briefly, approximately 100 g of the aboma-
sum sample and about 10 cm sections each of the jejunum and ileum were gently washed,
dipped in 95% ethanol, and then rinsed in CMF Hanks (Corning, NY, USA) containing
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2 mM DTT (Fisher Bioreagents, Ottawa, ON, Canada) to remove surface mucus. These
sections were subsequently cut into 1 cm? pieces. These tissue pieces were then incubated in
50 mL of CMF Hanks with 2% FBS at 200 rpm at 37 °C for 30 min (SI-600, LAB Companion,
Daejeon, Republic of Korea). After each incubation, the supernatant was collected, and
the procedure was repeated twice using fresh CMF Hanks with 2% FBS. The accumulated
supernatants were pooled together into a 200 mL beaker, allowing the epithelial cells to
settle for 10 min. Without disturbing the sediment, the supernatants were decanted into
new 50 mL conical tubes (Cellstar, Greiner Bio-one, NC, USA) and then strained using
70 pum cell strainers (VWR, Radnor, PA, USA). The tubes were then centrifuged at 500 G for
15 min at 22 °C. The resulting pellets were resuspended in 40% isotonic Percoll (Cytiva,
Upsala, Sweden) in RPMI supplemented with 5% FBS. These suspensions were carefully
layered over 80% isotonic Percoll and centrifuged at 600 G for 30 min at 22 °C without
break. Cells from the 40%/80% interface were collected into 15 mL conical tubes. They
were then washed with RPMI1640 containing 5% FBS, followed by centrifugation. The final
cell pellet was resuspended for counting and subsequent experiments.

2.4. Antibodies and Reagents

All the antibodies used in this study are listed in the following tables: Supplementary
Table S1 (primary antibodies) and Supplementary Table S2 (secondary antibodies and
isotype controls). Staining buffer (SB) was 1 x PBS with 2% FBS, and fix solution was 4%
paraformaldehyde (W/V)in 1 x PBS with pH 7.4. Intracellular staining permeabilization
wash buffer (P/W) (BioLegend, San Diego, CA, USA) was purchased and used following
the manufacturer’s instruction.

2.5. FACS

Approximately 10 cells were allocated to FACS tubes (Fisher Scientific, Falcon,
USA) for surface staining. These cells were sequentially stained with primary antibodies
(Supplementary Table S1), followed by secondary and fluorescence-conjugated antibodies
(Supplementary Table S2). Each staining step involved a 25 min incubation at 4 °C and was
followed by a wash with SB to remove any unbound antibodies. After the final wash, cells
were incubated with a fix solution for 15 min at 4 °C. This was followed by another SB wash,
and then the cells were resuspended in 100 uL SB for analysis with the FACSCalibur™
flow cytometer.

For the intracellular staining, 10° cells per sample were aliquoted and resuspended
in 1 mL of complete Allos medium supplied with a cell activation cocktail (Bio-techne,
Minneapolis, MN, USA) to achieve a final concentration of 1x in the medium to activate
T cells while ensuring retention of the cytokines they produce within the cells [133,134].
This cocktail consisted of monensin sodium salt (1.5 mM), Phorbol 12-myristate 13-acetate
(0.0405 mM), and Ionomycin calcium salt (0.67 mM). Additionally, Brefeldin A (BFA)
(BioLegend, San Diego, CA, USA) alone was used as a control to determine the baseline
production of cytokines in the absence of an added stimulus [135,136]. The cell suspensions
were incubated at 37 °C with 5% CO; for 4 h to allow stimulation. Surface staining was
performed first, which was followed by permeabilization using P/W for 15 min at 4 °C. The
subsequent intracellular staining followed the same protocol as the previously described
surface staining process, with all antibodies incubating for 25 min at 4 °C. After each
antibody incubation, the cells were washed with P/W. After the final P/W wash, cells were
rinsed with SB and then resuspended in 100 puL SB. Isotype controls were stained using
isotype antibodies, and an unstained control was included following the same protocol.
Flow cytometry was performed, acquiring a minimum of 20,000 events. Data analysis was
conducted using Flow]Jo version 10 (Tree Star, Ashland, OR, USA).

2.6. Statistical Analysis

Statistical analyses were performed with Prism 8 (GraphPad Software, Inc., La Jolla,
CA, USA); specific details thereof are provided in the figure legends. Overall, all data
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have passed the Anderson-Darling normality test. All data were analyzed using one-way
ANOVA with Tukey’s Multiple Comparisons Test. Asterisks indicate statistical significance.
*p<0.05; ** p <0.01; *** p < 0.001; *** p < 0.0001.

3. Results
3.1. Similar Levels of TCRyé* and TCRa " T Cells in Bovine T-IELs

Tissues from the blood and inguinal lymph nodes were collected from finished steers
as in our previous report [32]. The protocol for T-IEL isolation was based on previous
research but with some modifications [15,21,32]. After processing the samples, T-IELs were
retrieved from the interface (Figure 1A), washed, and prepared for subsequent procedures.
The yield of T-IELs was abundant, about 100 x 10° in the ileum mucosa (ILM) and the
jejunum mucosa (JJM) from a 10 cm segment of each, which dropped by about 90% in
abomasum mucosa (ABM) (~100 g) (Figure 1B). The low frequency of T-IELs in ABM
has been observed previously [21]. T cell fraction, as indicated by CD3* staining, was
about 70% in JJM but was significantly lower in both ABM and ILM (Figure 1D), which
suggests that the T cell fraction may vary across different segments of the GI tract. Since
more than 90% of T-IELs express either TCRy$ or TCRa[3, we used the exclusion of TCRyd
as the marker for TCR«f in T-IELs (as there is no TCR«f3 antibody available for cattle)
(Figure 1C). The frequency of TCRaf3* T-IELs was not different from that of TCRy&* T-IELs.
However, TCRxp" T cells were in a higher proportion compared to TCRyd* T cells in
PBMC and IGLN (Figure 1E). This even distribution of TCRxf3* and TCRy&* T-IELs in
cattle is different from that in humans (>85% TCRxf* T-IELs), but comparable to mice [79].
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Figure 1. Similar levels of TCRy5* and TCRafB* T cells in bovine T-IELs. ABM, JJM, ILM, blood,
and inguinal lymph node (IGLN) were harvested from finished steers as described in our previous
report [32]. ABM: abomasal mucosa. ILM: ileum mucosa. JJM: jejunum mucosa. PBMC: peripheral
blood mononuclear cells. A-B: T-IELs collected from the interface (A), and comparison of their
yield per unit (B): ABM (~100 g), ILM and JJM (both 10 cm in length), PBMC (10 mL of blood), and
IGLN (~2 g). (C) Gating strategies: CD3" cells were gated based on single lymphocytes, which were
further separated into TCRyb" and TCRyd~, representing TCRyd" and TCRaf* T cells. The TCRx*
(TCRy6 ™) population was further analyzed for CD4* and CD8o*. D-E. Comparison of T cells (CD3*)
in isolated T-IELs (D), and TCRy%" and TCRxp* T cells in T-IELs, PBMC, and IGLN (E). The data
were presented as the mean of the individual cattle plus the standard error. This data presentation
will be the same in the rest of the figures. All data passed the Anderson—Darling normality test
and were analyzed using one-way ANOVA with Tukey’s Multiple Comparisons. Asterisks indicate
statistical significance. * p < 0.05; ** p < 0.01; **** p < 0.0001. “NS” indicates not significant. This
statistical analysis and these indications will be applied throughout the rest of this manuscript.
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3.2. TCRyé* T-IELs Are Dominantly CD8-Negative

TCRy&* T-IELs make up a small population of T-IELs in humans (<15%), but a major
proportion in mice (40-60%) [79]. In adult cattle, TCRyd" T-IELs were approximately 40%
of T-IELs (CD3") (Figure 1E), comparable to those in mice. Nonetheless, most murine
TCRyd" T-IELs are CD8xo™ (>75%); bovine TCRyd" T-IELs were predominantly (>60%)
CD8-negative (Figure 2A,B), and a small percentage of TCRy5*CD8" T-IELs expressed
both CD8 subunits (CD8wxf3*) or only the CD8«* subunit (CD8a«x*) (Figure 2B) as defined
using established methods [137,138]. TCRy&* T cells are abundant in the blood of young
calves, and decrease with age [120]. In addition, CD8-negative TCRy&* T cells from the
blood have been extensively studied, and are recognized for both their immune stimulatory
and regulatory functions [120,139-144]. We plan to investigate whether the composition
and function of TCRyd" T-IELs changes with age in a manner similar to that in the blood.
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Figure 2. TCRy6" T cells are dominantly CD8-negative in T-IELs. (A) Gating strategies for CD8«*
and CD8fR* expression in TCRyb™" T cells are based on CD3™" as indicated in Figure 1C. DN: double
negative for CD8c and CD8f. CD8o" and CD8B~ were defined as CD8xo*, according to previous
reports [137,138]. Iso: isotype antibody control. (B) Comparison of CD8o" and CD8* expression in
TCRy8* T cells from different tissues. Each population (CD8xx and CD8«xf3) was indicated in the
dot plot for the “Sample” in panel A. **** p < 0.0001.
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3.3. TCRaB*CD4*CD8uap* T Cells Are Substantial in T-IELs but Not in the Blood and
Lymph Nodes

TCRap* T-IELs constitute a major portion of T-IELs in humans (>80%) and a sig-
nificant portion in mice (>30%) [79]. Indeed, bovine TCRxp" T-IELs expressing either
CD4 and/or CD8x made up more than 50% of the total T-IELs (CD3*) across all the
tissues (Figure 3A,B). Furthermore, the percentages of CD4" and CD8«*, which are
the single positive T-IELs in JJM, were nearly equal (~20% of CD3"), and collectively
reached the number of TCRyb™ cells in T-IELs (CD3*) (~40%) (Figures 1E and 3B). The
frequency of CD4* in T-IELs was lower in JJM than in PBMC and IGLN (Figure 3B).
Notably, there was a subpopulation of CD4*CD8«* (double positive) TCRaf3* T-IELs
in the mucosa, which was almost absent in the blood and IGLN (Figure 3B). These
TCRap*CD4"CD8o" T-IELs were predominantly CD8x* (Figure 3C), so they are different
from the TCRaB*CD4*CD8xxt T-IELs in mice and the TCRxBTCD4" or TCRa*CD8x 3+
T-IELs in humans [145]. The TCRxf*CD4"CD8x " T-IELs may have combined function of
TCRaPB*CD4" and TCRxp*CD8xf* T-IELs, potentially playing a crucial role in controlling
Gl extracellular pathogens and in exerting cytotoxicity to infected epithelial cells, which will
be further investigated in the future [61,79,108,146,147]. Furthermore, the CD8o* single pos-
itive TCRa3* T-IELs were also CD8f™* across all bovine tissues (Supplementary Figure S1),
suggesting an absence of TCRa3*CD8xo* T-IELs, a profile different from that seen in
humans and mice.
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Figure 3. TCRaPB*CD4*CD8«xp* T cells are substantial in the T-IEL population but not in the
blood and lymph nodes. TCRxf3* were based on CD3" and TCRy%™ as indicated in Figure 1C.
(A) Representative dot plots and gating strategies for CD4* and CD8" analysis based on TCRxf3*.
CD8* was indicated via CD8« staining. (B) Comparison of subpopulations based on TCRx3*CD4*
or TCRxB*CD8* in total CD3* lymphocytes. (C) Representative dot plots of CD8x and CD8f3
expression in CD4* /CD8* TCRa3* T-IELs in (B). * p < 0.05; ** p < 0.01. “NS” indicates not significant.

3.4. CD69 Is Highly Expressed in T-IELs, While CD62L Is Expressed at a Lower Level Compared to
Their Counterparts in the Blood or Lymph Nodes

CD69 is a marker for T-IEL activation [148] and is also associated with tissue resi-
dency [149,150]. Conversely, CD62L, also known as L-selectin, is linked with homing into
secondary lymphoid tissues, especially lymph nodes [151]. T-IELs are believed to be in
an activated-yet-resting state, allowing them to respond to innate signals beyond those
from the TCR [1]. Indeed, CD69 expression was greater in TCRy&*, TCRxp*CD8«*, and
TCRapB*CD4" T-IELs compared to those in PBMC and IGLN (Figure 4A,B), indicating
their tissue residency and activation status. TCRxf3*CD4" T-IELs exhibited significantly
less CD69 expression than the TCRyd" and TCRa*CD8«™* T-IELs (Figure 4B). Consis-
tently, T-IELs from JJM had the lowest expression of CD62L compared to T cells from
PBMCs and IGLN, indicating distinct homing patterns. Among T-IELs, TCRx3*CD8" and
TCRaB*CD4" cells had lower levels of CD62L than TCRy&* (Figure 4C). The subunit of the
IL-2 receptor, CD25, is a characteristic activation marker for conventional T cells [152,153].
CD25 is enhanced in bovine CD4* T cells in response to TCR stimulation in vitro [32], and is
expressed at a low level on CD4" and TCRy&* T cells from the blood, but is virtually absent
in CD8" T cells [121]. To determine whether the expression of CD25 is associated with
the activation status of T-IELs, the CD25 expression of various subsets of T-IELs from JJM
was compared to that of their blood and IGLN counterparts. Consistent with our previous
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report [121], among T-IELs, TCRx3*CD4* and TCRy&* had modest but significantly higher
levels of CD25 than TCRaB+*CD8" (Supplementary Figure S2), following a similar trend
in the blood and IGLN. Moreover, the expression of CD25 in T-IELs was similar to that
in blood and IGLN T cells (Supplementary Figure S2), indicating that CD25 expression
may not be used as an indicator of activation status in T-IELs as it is in conventional T
cells. This suggests that IL-2 signaling may not be critical for the maintenance of these
half-activated T-IELs, but does not exclude its importance in their activation such as after
TCR stimulation.
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Figure 4. CD69 and CD62L are differentially expressed in T-IELs compared to T cells in PBMC
and lymph nodes. TCRx*CD8* and TCRaf*CD4* T cells were based on CD3* and TCRyd ™~ as
indicated in Figure 1C. (A) Gating strategies for CD69 and CD62L expression. B-C: comparison of
CD69 (B) or CD62L (C) expression on subpopulation TCRy%*, TCRaf*CD8*, and TCRa3*CD4+ T
cells in T-IELs, PBMC, and IGLN. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3.5. T-IELs Are Able to Produce Cytokines

Cytokines play an important role in regulating immune responses. To test whether T-
IELs could be induced to produce cytokines, these cells were stimulated with an activation
cocktail as described in our previous reports [32,121], using PBMC and IGLN as controls.
Indeed, all T-IEL subsets produced IFNy and a trace of IL17A, with TCRa*CD4" T-
IELs producing less than their PBMC counterparts (Figure 5A—C). IENy-producing T-
IELs were rarely stained positive for IL17A (Figure 5A), suggesting functionally distinct
subpopulations, with some producing IFNy and others producing IL17A. The production
of IFNYy and IL17A was undetectable without induction by the cocktail (data not shown).
Since only activated or memory T cells are able to produce IFNy and IL17A in response to
short-time stimulation, these data support that bovine T-IELs are semi-activated, similar to
those in humans and mice [154,155]. Immune regulatory cytokines such as TGFf31 play a
significant role in maintaining the homeostasis of the epithelial barrier [1]. Usually, TGF31
has to be induced by the cocktail stimulation before detection of T cells in humans, mice,
and cattle [139,156,157]. To our surprise, TGF1 was detected in all subpopulations in fresh
samples (without stimulation) (Figure 5E), suggesting the constitutive production of TGF31
in T-IELs and T cells in other tissues. Further stimulation of T-IELs induced enhanced
TGEFR1 production in the TCRy3* T cells within PBMCs but induced no response in the
TCRap* T cells within PBMCs or in any T-IEL subtypes (Figure 5F and Supplementary
Figure S3). TGFB1-producing TCRxp3*CD4* T-IELs were rarely stained positive for Foxp3,
a Treg marker (Figure 5D), implying that TGFB1-producing TCRxp*CD4* T-IELs are not
Tregs. These data confirm that different subsets of bovine T-IELs differ in their functions
from their counterparts in the blood and lymphoid tissues, as demonstrated by cytokine
production differences.
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Figure 5. T-IELs are able to produce cytokines. Single-cell suspensions from different tissues were
incubated for 4 h with an activation cocktail [121] before staining for IFNy (B) and IL17A (C) or
TGFB1 (G). (A-C) Gating (A) and comparison of IFNy (B) and IL17A (C) production in TCRxp* T
cells (CD4* or CD8*) and TCRyb™ T cells as indicated in Figure 1C. Iso: Isotype antibody control.
(D) Gating strategy for TGF31 expression based on TCRxp*CD4" T-IELs. (E) Direct staining for
TGFf1 in fresh samples without further stimulation. (F) Comparison of TGFf31 expression in samples
after stimulation as in (A-C). CON: no stimulation control in culture. STIM: stimulated. Colors
indicate tissues in (B,C,EF). * p < 0.05; ** p < 0.01; *** p < 0.001. “NS” indicates not significant.

4. Discussion

Bovine T-IELs, while demonstrating certain similarities, evidently differ from their
counterparts in humans and mice. These variations are particularly noticeable in the distribu-
tion of the TCRy5" and TCRaf3* T-IEL subsets. Uniquely, subsets such as TCRxp+*CD4*CD8uf3*
and TCRy5*CD8™ are present in bovine T-IELs, while the TCRxf*CD8x«* T-IELs are
notably absent. Despite these distinct features, bovine T-IELs continue to demonstrate
key immunological functions analogous to those in humans and mice, specifically in their
pre-activated states and with the production of immune regulatory as well as inflammatory
cytokines, suggesting similar functions in maintaining gut homeostasis and pathogen con-
trol. This is the first time that T-IELs in the bovine gut have been characterized, furthering
our understanding of bovine mucosal immunity and offering insights into the development
of innovative drugs and vaccines against mucosal diseases.

Variations in the number and proportions of T-IELs might stem from the diverse
GI microenvironments and age-related differences across species [116]. While direct evi-
dence is still lacking, there are indications that dietary compounds/residues affect T-IEL
numbers [43,46,48,50,58,158-171]. For example, the aryl hydrocarbon receptor in T-IELs
is vital for maintaining their population, and its deficiency reduces T-IEL numbers [172].
Furthermore, the proportions of different T-IEL subtypes within intestinal segments are
significantly influenced by age. For instance, younger individuals typically display higher
proportions of natural T-IELs, but this balance shifts towards induced T-IELs with age
in humans and mice [1,79,98]. This age-related trend is also observed in cattle, which is
demonstrated by the dominance of TCRy&* T-IELs in the ileum immediately post-birth
and during early life and the presence of higher proportions of CD4* and CD8" T-IELs
in weaned calves compared to those in suckling calves [20,173,174]. Our studies in cattle
have shown comparable proportions of TCRyd" and TCR[3* T-IELs. As bovine peripheral
TCRy&* T cells inhibit the proliferation of TCRxf* T cells by producing IL-10 and TGF{1
and the depletion of TCRyd™ T cells results in enhanced proliferation of antigen-specific
TCRap* T cells in cattle infected with Mycobacterium bovis [139-143], we postulate that
an initial dominance of natural TCRy$" T-IEL in young calves could assist in tolerating
non-harmful antigens. In contrast, adult cattle may host a larger proportion of induced
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T-IELs in the gut due to increased antigen exposure over time. Additionally, induced T-IELs
constitute a large proportion of the total T-IELs in humans, while mice maintain a signifi-
cant proportion of natural T-IELs [79]. It could be hypothesized that species with longer
lifespans might host a larger proportion of antigen-stimulated induced T-IELs. In con-
clusion, species-specific GI microenvironments and age-related shifts should significantly
impact the proportions and functions of T-IEL subsets.

The unique TCRyd*CD8™~ subset in bovines potentially plays a crucial role in pathogen
defense and immune homeostasis. Bovine TCRy$* T-IELs are predominantly CD8-negative,
with only a small fraction expressing either CD8wf3 and/or CD8«x«. In contrast, mouse
TCRyd" T-IELs mainly express CD8xx [42,79,116,175]. CD8u«f* is associated with cy-
totoxicity, while CD8o« is linked to immune suppression and cell survival [98,176,177].
For example, human CD8wx[3* T-IELs exhibit cytotoxic responses and can enhance T cell
sensitivity to a cognate antigen by 100-fold compared to their CD8xo-expressing counter-
parts [98,176]. Conversely, CD8xo represses TCR stimulation by avoiding integration into
the TCR complex lipid raft and can prevent the exhaustion of chronically activated CD8* T
cells or excessive cytolytic responses, thus serving as an immunosuppressive and survival-
aiding molecule in mice [98,176,177]. This evidence suggests that the minor population
of bovine TCRy$" T-IELs expressing CD8«f3 likely plays a dominant role in defending
against pathogens, whereas those expressing CD8xx might promote immune homeostasis.
Moreover, the TCRy5*CD8™ population is also observed in the blood, peripheral lymph
nodes, skin, and spleen marginal zones in cattle [178]. Despite the TCRy5*CD8~ T cell sub-
set being known to display inflammatory functions in response to various infectious agents
such as Anaplasma marginale and Mycobacterium bovis in the bovine periphery [120,144],
the same population is also a major regulatory T cell subset [139-143]. This resembles our
findings, where the TCRy&* subpopulation in T-IELs and in blood expressed low levels of
TGFpB1. However, the function of the TCRy&* T-IELs may differ from their counterparts in
the blood, as further stimulation enhanced TGF[31 production only in those from the blood,
not those from T-IELs. We predict that TCRy&* T-IELs play a crucial role in maintaining
intestinal immune tolerance and also mediate certain immune responses. Additionally,
the absence of the TCRxB*CD8xx* subset in cattle suggests a potential divergence in
their immunological profile compared to humans and mice, implying the possibility of
compensation through alternative subsets. Under normal conditions, TCRa3*CD8oxa*
T-IELs constitute a significant portion of T-IELs in mice and perform immunomodulatory
functions, supported by a wide array of NK receptor expressions, including NKG2A /CD9%
and the Ly49 members [61,79]. In contrast, the TCRxB*CD8wfB* T-IELs in mice are geared
towards immune responses and cytolytic functions, demonstrated by their substantial
capacity to produce cytokines such as IFNy and express high levels of granzyme B [61,79].
Interestingly, humans have a minimal proportion of TCRxp*CD8x«* T-IELs, while the
TCRaB*CD8xP* subset exhibits the dual capacity for immunomodulation and cytotoxicity
by expressing NK receptors and displaying the potential to produce IFNy and granzyme
B [79]. We might also anticipate similar dual functionalities of TCRx3*CD8x3* T-IELs in
cattle. Given these findings, it is worth considering that other bovine T-IEL subsets such as
TCRy$"CD8~, TCRy§*CD8x«*, and/or TCRa*CD4" T-IELs might compensate for the
immune regulatory role of the TCRx3*CD8x« " T-IELs found in mice. However, further
research is required to generate confirmatory results.

The significant presence of distinct TCRx*CD4*CD8«f3* T-IELs in cattle may pos-
sess the combined characteristics of both CD4" and CD8«f* T-IELs. In mice, various GI
microenvironment factors such as food components like retinoic acid and gluten, as well
as cytokines like TGF(31 and IFNYy, can downregulate the CD4 lineage transcription factor
ThPOK and upregulate the CD8 lineage transcription factor Runx3, which leads to the ex-
pression of CD8xox in CD4* T-IELs [1,179-182]. In this context, both TCRo3*CD4*CD8ocex*
and TCRxp*CD4" T-IELs contribute to immune tolerance [108,109,146,147,179,183]. Al-
though CD8« induction in TCRx*CD4* T-IELs has been well established [181,184,185],
it is atypical for mature T cells to switch the CD4 and CD8«xf3 coreceptors once they have
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differentiated into the CD4 or CD8«f3 lineage post positive selection in the thymus. For
instance, a CD4" T cell will generally not express CD8«f3, and vice versa [186]. At present,
we speculate that this unique TCRaB+*CD4"CD8xf* T-IEL subset in cattle might possess
both the immunoregulatory functions of CD4" and the cytotoxicity of CD8wxf3* T-IELs.
Nonetheless, this concept warrants further studies.

Bovine T-IELs exhibit an activated-yet-resting state in the gut, similar to their hu-
man and mouse counterparts, but with potential differences. CD62L is essential for T
cell adhesion, facilitating lymphocyte homing to secondary lymphatic organs. In con-
trast, CD69 serves a dual role: it counters the sphingosine-1-phosphate receptor, which
typically signals to T cells to move into the bloodstream, and acts as a T cell activation
marker [149,150,187-189]. Bovine T-IELs express low levels of CD62L and high levels of
CD69, a pattern also observed in humans and mice [61,190]. Moreover, the TCRy6* and
TCRapB*CD8xx* T-IELs express substantially lower levels of CD62L compared to their
PBMC and IGLN counterparts (Figure 4C). This variation suggests that T-IELs might utilize
distinct adhesion and migration molecules, consistent with their roles in retention and
surveillance within epithelial barriers [1]. Furthermore, minuscule populations of T-IELs in
humans, mice, and cattle produce IFNy and IL17A under normal conditions. Upon stimu-
lation, these T-IEL populations increase their production of both cytokines [185,191-193].
Notably, all T-IEL subsets in humans and mice include an IFNy/IL17A co-producing
population [185,191,192,194]. In cattle, however, the populations that produce IFNy and
IL17A are distinct and do not overlap, potentially representing functionally different sub-
populations. In summary, while bovine T-IELs display residency and activation markers
comparable to those in human and mouse T-IELs, cattle exhibit unique T-IEL populations
for IFNYy and IL17A production, suggesting potential functional variances.

Bovine T-IELs, similar to those in humans and mice, secrete low amounts of the im-
mune regulatory cytokine TGF1, which helps maintain immune tolerance under normal
conditions [24,195-199]. TGF1 exerts several effects, such as downregulating IFNy pro-
duction, enhancing CD103 expression in Tregs, strengthening epithelial tight junctions,
promoting the differentiation of goblet cells, paneth cells, and tuft cells, and stimulating
fibrosis to reduce inflammation [199-202]. These effects promote immune tolerance and
epithelial barrier protection in humans and mice. In our study, similar to humans and mice,
all subsets of bovine T-IELs, particularly the TCRyd* subpopulation, produced TGFf31
under normal conditions, suggesting similar functions in cattle. Furthermore, stimulation
enhanced TGFf1 production only in TCRy&* T cells in the PBMC in cattle, indicating the
regulatory role of this subset in systemic circulation during immune reactions as previously
found [139-143]. In summary, our findings suggest that bovine T-IELs possess the ability
to maintain homeostasis by producing the immune regulatory cytokine TGF(31.

Our research shows that bovine T-IELs differ from those in humans and mice, making
it of paramount importance to understand their roles in cattle. Although we characterized
the bovine T-IELs by analyzing their surface and intracellular molecules, we have not yet
tested their functions such as how they respond to different stimuli, which is currently an
ongoing project in the lab.

5. Conclusions

Our study reveals the unique composition and potential roles of T-IELs for the first
time in cattle, highlighting functional conservation across species as well as specialized
adaptations. These findings open avenues for further investigations into bovine T-IELs and
their role in developing strategies against gastrointestinal disorders including both acute
and chronic infections in cattle. Our next steps involve functional assays and molecular
analyses to further understand the mechanisms by which bovine T-IELs contribute to
maintaining homeostasis and immune responses in cattle.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/pathogens12091173/s1, Figure S1: TCRaf3*CD8" T-IELs express
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both CD8« and CD8f; Figure S2: CD25 is higher in TCRa+*CD4* T-IELs than in TCRxp*CD8*
T-IELs; Figure S3: Activation does not affect TGFB1 expression in TCRxf*CD4* or TCRx3*CD8*
T-IELs; Table S1: Primary antibodies; Table S2: Secondary antibodies and isotype controls.
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