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Abstract: The genus Aeromonas belongs to the Aeromonadaceae family. A patient with a pancreas–
kidney transplant had multiple episodes of abdominal sepsis after surgery. Aeromonas hydrophila
was isolated in the ascitic and biliary fluid drains. After discharge, the patient had several diarrhea
episodes, and A. hydrophila was isolated in four stool samples. We decided to test whether the one
strain that we initially isolated in ascitic fluid was the same that appeared in the successive stool
samples. Five isolates of A. hydrophila were found in the patient. Identification was performed using
the MALDI-TOF system and confirmed via multiplex PCR. The analysis of the REP-PCR fingerprint
patterns showed one cluster and confirmed that all isolates were related. We also demonstrated
the virulent character of this species associated with genes encoding different toxins (act, alt, ast,
hlyA, and aerA). The virulence of this species is associated with the expression of genes that encode
different toxins, structural proteins, and metal-associated proteins. This case report highlights the
severity of this disease, especially in immunocompromised patients, and its adequate treatment.

Keywords: Aeromonas; A. hydrophila; pancreas–kidney transplant; chronic diarrhea

1. Introduction

The Aeromonas genus belongs to the Aeromonadaceae family, a group of Gram-negative,
oxidase-positive, and catalase-positive bacteria [1]. The first time Aeromonas spp. was
considered a human pathogen was in 1954, when it was isolated from the blood, lungs,
liver, spleen, urine, cerebrospinal fluid, and necrotic parts of some striated muscles of
an immunocompromised woman [2]. Over the past years, Aeromonas spp. has received
increasing attention as an emergent agent of foodborne illness. It inhabits a variety of
niches including aquatic habitats, aquatic animals, soils, terrestrial animals, and human
beings. Most of these pathogens come into human systems through ingestion of water or
food contaminated with Aeromonas spp. For example, in India, Aeromonas spp. has been
detected in 13.4% of animal-origin food samples [3]. These bacteria grow well at higher
temperatures; so, an increase in bacterial load may be attributed to a rise in temperature in
freshwater environments [4].

Aeromonas spp. infections are mostly polymicrobial, and there can be competition
and cooperation between bacterial cells [4]. They cause a wide variety of diseases in
humans, especially gastroenteritis, septicemia, and wound infections [5]. The diarrhea
caused varies from a mild form to a Shigella-like dysentery, or a severe, watery, cholera-
like diarrhea [6]. It is also implicated in other extraintestinal pathologies, usually biliary
disease, in both immunocompetent and immunosuppressed patients [7]. It can be a cause of
sepsis, especially in patients with underlying hepatobiliary and malignant disease. In our
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healthcare district, the most prevalent species was Aeromonas caviae (78.7%) [8]. Aeromonas
hydrophila and Aeromonas veronii are the most frequent in the biliary system.

We present a case report of chronic diarrhea due to A. hydrophila and discuss its
importance in gastrointestinal tract infections. It has recently been a subject of debate due
to alarming publications on the increase in the virulence gene profiles [9]. In our study, we
used these genes to identify one strain found in different samples from a single patient.

2. Case Presentation

A 42-year-old female with a 30-year history of type 1 diabetes mellitus developed
several micro- and macroangiopathic complications, including chronic kidney disease.
After initiation of renal replacement therapy with twice-weekly hemodialysis, she required
combined pancreas and kidney transplantation. There were multiple complications. Renal
artery thrombosis influenced graft failure and transplantectomy. A pancreatic fistula
formed, which led to abdominal sepsis. A drain was placed near the intra-abdominal fistula,
and several microorganisms were isolated: Escherichia coli, Clostridium perfringens, and
Enterococcus faecium. Multiple courses of antibiotics were prescribed to treat these infections,
including meropenem, metronidazole, and vancomycin. Afterwards, A. hydrophila was
isolated in the ascitic and biliary fluid drainage; it was decided not to treat it because she
was asymptomatic.

Over the following months, the patient experienced intermittent episodes of watery
diarrhea with no fever, blood, or mucous. Laboratory data were significant for a serum
albumin level of 3.1 g/dL. Other evaluations including anti-transglutaminase IgA and
anti-endomysial IgA were unremarkable. A colonoscopy showed normal colon mucosa.
A stool examination revealed no parasites and negative occult blood. A. hydrophila was
isolated again in four stool samples taken on an outpatient basis. In accordance with the
antibiotic susceptibility test, trimethoprim–sulfamethoxazole (MIC < 2) was used to treat
the infection, but she had a poor functional recovery. Since then, the patient has had several
consultations to study this chronic diarrhea, with no new bacterial or viral isolations.

Given that there were isolations of A. hydrophila in different locations in the gastroin-
testinal tract, it was decided to test whether the strain initially isolated in the ascitic fluid
was the same as that found in successive stool samples. Indeed, five isolates of A. hydrophila
were found in the patient over a seven-month period. The first one was isolated from peri-
toneal drainage and the following four from stool. The protocol for isolates from feces at the
Marqués de Valdecilla University Hospital clinical microbiology laboratory entails culture
in BD Yersinia Selective Agar (CIN Agar; BD, Heidelberg, Germany) and incubation at
37 ◦C for 24 h. The peritoneal drainage was cultured in chocolate agar (Oxoid, Altrincham,
UK) and MacConkey agar (Oxoid, Altrincham, UK) and incubated at 37 ◦C for 24 h, as per
protocol. Bacteria susceptibility testing was performed with the Vitek2 system (bioMerieux,
Craponne, France) using VITEK® 2 AST cards (bioMerieux, Craponne, France). Identifi-
cation was performed using the MALDI-TOF system (Vitek-MS®, BioMerieux, Craponne,
France) and confirmed via multiplex PCR, developed by Persson et al. [10]. The clonal
relationship of the isolates was evaluated using repetitive extragenic palindromic PCR
(REP-PCR), as described by Vila et al., using the primers created by us [11]. Two isolates
were clonally related when two or more different bands were observed on visual inspec-
tion. The analysis of the REP-PCR fingerprint patterns (Figure 1) showed one cluster and
confirmed that all isolates were related. In addition, identical results on susceptibility tests
supported this assertion, as all isolates showed sensitivity to ciprofloxacin (MIC < 0.25)
and trimethoprim–sulfamethoxazole (MIC < 2) and resistance to β-lactams [12]. Five
virulence-associated genes (act, alt, ast, hlyA, and aerA) were found via PCR using the
primers described by Hoel et al. [13]. Although these genes do not directly imply that they
can cause clinical symptoms of infection, there is some evidence of a correlation between
these toxin genes and their virulence trait [14].
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Figure 1. REP-PCR fingerprint patterns of the Aeromonas hydrophila isolates. Lines 1 and 8 Ladder, 
Lines 2 Aeromonas hydrophila. Line 3 sample from peritoneal drainage. Lines 4, 5, 6, and 7 samples 
from feces. 
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fluid drainage and then in four stool samples and highlights the severity of this disease, 
especially in immunocompromised patients with hepatobiliary disease. The pathogenesis 
of Aeromonas-mediated infections is multifactorial, and the role of the virulence determi-
nants in human infections is associated with the expression of genes that encode different 
toxins, structural proteins, and metal-associated proteins. Genes encoding thermolabile 
and thermostable cytotonic (alt and ast), cytotoxic (act), and hemolytic enterotoxins (hylA 
and aerA) have been characterized. The role of the three enterotoxins (alt, ast, and act) in 
causing A. hydrophila-induced gastroenteritis in an animal model was established, with 
the greatest contribution from the cytotoxic enterotoxin act [15]. Furthermore, the type III 
secretion system (T3TSS or TTSS) may deliver a range of toxins into the host cell [16]. Gene 
transfers occur through conjugation and transformation, in which type IV pili play a vital 
role [17]. 

The expression of peritrichous flagella encoded by the fla gene cluster enhances eu-
karyotic cells’ adherence and invasiveness [16,18]. Polar flagella allow swimming motility 
in liquid medium, while lateral flagella offer swarming motility in a solid medium [19]. In 
fact, mutation in either flaA or flaB does not affect the development of flagellum but re-
duces the adherence and motility by approximately 50% [20]. These data also support the 
deduction that both flagellar types enhance the biofilm formation of Aeromonas spp. on 
surfaces. Bacterial flagella and pili play important roles in gastric pathogenicity. Lateral 
flagella have been reported to have a correlation with chronic dysentery [20,21]. 

Several investigators have identified cholera-like-cytotonic enterotoxins in Aeromonas 
spp. culture filtrates that could be responsible for fluid secretion in the small intestine of 
animals without causing degeneration of crypts and villi of the small intestine [22]. In the 
study by Lee et al., the alt-gene-encoding heat-labile cytotonic enterotoxin was highly 
prevalent, whereas the ast-gene-encoding heat-stable cytotonic enterotoxin was not 

Figure 1. REP-PCR fingerprint patterns of the Aeromonas hydrophila isolates. Lines 1 and 8 Ladder,
Lines 2 Aeromonas hydrophila. Line 3 sample from peritoneal drainage. Lines 4, 5, 6, and 7 samples
from feces.

3. Discussion

This case report describes the isolation of the A. hydrophila strain in ascitic and biliary
fluid drainage and then in four stool samples and highlights the severity of this disease,
especially in immunocompromised patients with hepatobiliary disease. The pathogenesis of
Aeromonas-mediated infections is multifactorial, and the role of the virulence determinants
in human infections is associated with the expression of genes that encode different toxins,
structural proteins, and metal-associated proteins. Genes encoding thermolabile and
thermostable cytotonic (alt and ast), cytotoxic (act), and hemolytic enterotoxins (hylA and
aerA) have been characterized. The role of the three enterotoxins (alt, ast, and act) in
causing A. hydrophila-induced gastroenteritis in an animal model was established, with
the greatest contribution from the cytotoxic enterotoxin act [15]. Furthermore, the type III
secretion system (T3TSS or TTSS) may deliver a range of toxins into the host cell [16]. Gene
transfers occur through conjugation and transformation, in which type IV pili play a vital
role [17].

The expression of peritrichous flagella encoded by the fla gene cluster enhances
eukaryotic cells’ adherence and invasiveness [16,18]. Polar flagella allow swimming motility
in liquid medium, while lateral flagella offer swarming motility in a solid medium [19].
In fact, mutation in either flaA or flaB does not affect the development of flagellum but
reduces the adherence and motility by approximately 50% [20]. These data also support
the deduction that both flagellar types enhance the biofilm formation of Aeromonas spp. on
surfaces. Bacterial flagella and pili play important roles in gastric pathogenicity. Lateral
flagella have been reported to have a correlation with chronic dysentery [20,21].

Several investigators have identified cholera-like-cytotonic enterotoxins in Aeromonas
spp. culture filtrates that could be responsible for fluid secretion in the small intestine of
animals without causing degeneration of crypts and villi of the small intestine [22]. In
the study by Lee et al., the alt-gene-encoding heat-labile cytotonic enterotoxin was highly
prevalent, whereas the ast-gene-encoding heat-stable cytotonic enterotoxin was not detected
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in any of the isolates [15]. The study by Albert et al. indicated that Aeromonas spp. isolates
positive with both alt and ast genes might synergistically cause severe diarrhea [23,24].

One of the most potent virulence factors is a 52-kDa cytotoxic enterotoxin encoded
by the act gene [25]. Act can bind cholesterol, which occurs only if the hydroxyl group of
cholesterol is unmodified [22]. This binding to cholesterol facilitates the aggregation of
act in lipid rafts, where it might interact with a host cell receptor or become internalized
via endocytosis [22]. It generates an inflammatory response in host cells and promotes the
degeneration of villi and mucus-producing cells, which may be related to cases of bloody
diarrhea in humans. Act is optimally expressed at 37 ◦C and at pH 7.0 and is thus produced
in greater amounts in vivo than in the external environment [26]. It has been shown to
upregulate the expression of genes encoding proinflammatory cytokines (TNF-α, IL-1, and
IL-6) and inducible nitric oxide synthase (iNOS) in murine macrophages [22]. Act also can
activate the arachidonic acid metabolism via induction of phospholipase A2 (PLA2) and
cyclooxygenase-2 (COX-2), with subsequent activation of adenylate cyclase and production
of cAMP [22]. These mediators could be responsible for act-associated gastroenteritis. In
the presence of high amounts of iron, there is a ferric uptake regulatory (fur) gene that
repressed act gene expression [27].

Aeromonas spp. has hemolytic activities due to the presence of hemolysin (hylA) and
aerolysin (aerA) genes [28]. Despite the significant differences between act and aerA, the
two toxins are cytotoxic and hemolytic in nature, and both form pores in eukaryotic cell
membranes [22,25]. The pore-forming action of aerolysin is well characterized: it binds
glycosylphosphatidylinositol anchors, which might facilitate aggregation of the toxin on
the plasma membrane and subsequent pore formation [29]. Aeromonas spp. can produce
different hemolysins [30]. The α-hemolysins produce reversible effects and incomplete
lysis of erythrocytes, while the ß-hemolysins produce holes in cell membranes, causing
complete destruction of erythrocytes by osmotic enlargement [31,32].

A recent study identified the plasmid-encoded expression of two Shiga toxin genes
(stx1 and stx2) in Aeromonas genus [33,34]. These toxins produced from enterohemorrhagic
E. coli strains represent a horizontal transfer mechanism [35]. They can cause diarrhea,
hemorrhagic colitis, and hemolytic uremic syndrome [36]. Aeromonas spp. also produces
proteases, which can cause tissue damage, overcome host cell defenses, and provide
nutrients for bacterial cell proliferation [31,37,38]. The three major types of proteases
are a heat-labile serine protease, a heat-stable EDTA-sensitive protease, and a heat-stable
EDTA-insensitive protease [22,31]. In addition, some aminopeptidases might function
specifically to activate act and/or aerA [22]. Certain metalloproteases may interfere with
host coagulation by cleaving prothrombin into its activated form, thrombin [39].

Its capacity for colonization in places such as the gallbladder has been linked to
metallostasis, a biological process to obtain metals such as iron [40]. Metal ions are essential
for the correct function of microbial biological processes; thus, the low concentration of free
iron is an evolved host defense [41]. To obtain iron, these species synthesize and excrete Fe+3

specific ligands of low molecular mass, collectively known as siderophobes. Most species
of Aeromonas genus produce the siderophobe, amonabactin [22,31]. The bacterial metal
homeostasis is also related to metallochaperones, proteins that add metal ions to specific
enzymes. One of the most studied metallochaperones is the nickel-binding protein HypA,
previously described in the human pathogens Escherichia coli and Helicobacter pylori [42].
HypA participates in nickel-dependent hydrogenases’ and ureases’ maturation, and it
could be associated with acid tolerance [42]. Resistance to acidic environments can be
a great advantage for pathogens because reactive oxygen species (ROS) production is a
defense mechanism against pathogens after phagocytosis by macrophages [4]. HypA genes
are widely conserved in certain species like A. hydrophila and A. veronii, among others [40].

Other virulence factors include lipases [21,31], adhesins [43], nucleases [44], pore
forming toxins [45], and catalysts [4].

By far, the most common disease associated with Aeromonas spp. infection is gastroen-
teritis, which varies from a mild self-limiting watery diarrhea to a more severe invasive
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Shigella-like dysenteric form. Several epidemiological studies have connected Aeromonas
spp. to traveler’s diarrhea. Chronic diarrhea, caused by A. hydrophila or A. caviae and
exceeding one year in duration, has also been reported [46]. Hematologic cancer patients
and patients with gastrointestinal tumors are more likely to be infected by Aeromonas spp.
Any portion of the colon may be affected, mostly the ascending or transverse sections;
therefore, in certain cases, Aeromonas-segmental-colitis may seem similar to ischemic colitis
or Crohn’s disease [47]. It can also cause intramural intestinal hemorrhage including small
bowel obstruction [48].

The second most common Aeromonas-related disease is skin and soft tissue infec-
tion, which can range from mild problems like pustular lesions to dangerous conditions
that can cause morbidity in an infected person, such as cellulitis, necrotizing fasciitis,
myonecrosis, septic arthritis, and septic shock [49]. Another common manifestation is
Aeromonas-associated wound infections [50]. There can be a transfer of bacteria from
the gastrointestinal tract to the blood circulatory system. Sepsis is more prevalent in
immunocompromised conditions, especially those with hematological malignancy, and
Aeromonas-contaminated catheters may serve as a point of entry into human blood [51].

Most cases of Aeromonas-associated diarrhea are self-limited and can be managed with
supportive therapy, including oral and intravenous rehydration [35]. Antibiotics may be
used to treat severe diarrhea or bacteriemia. It is also indicated in patients with a history
of immunosuppression. Aeromonas spp. is usually uniformly resistant to penicillin due to
inducible chromosomal β-lactamases. However, they are susceptible to aminoglycosides,
sulfa drugs, second–fourth generation cephalosporins, carbapenems, fluoroquinolones,
and tetracyclines [52,53]. Three major classes of β-lactamases are present in Aeromonas spp.:
C cephalosporinase, D penicillinase, and a class B metallo-β-lactamase (MBL) [54]. Among
these, MBL, which works against carbapenems, are of major concern. CphA-encoded
metallo-β-lactamase possesses an unusual spectrum of activity because it hydrolyzes car-
bapenems but not penicillins or cephalosporins [55]. Plasmids serve as a platform on which
useful resistance genes are assembled and subsequently disseminated [56]. These infections
are treatable with monotherapy, and studies with combination therapy do not show better
outcomes [57]. Empiric therapy with a fluoroquinolone, third-generation cephalosporin,
and/or TMP-SMX would provide reasonable antimicrobial coverage. Fluroquinolones
should be considered as the first-choice therapy. They have been shown to be active with
samples of A. hydrophila, A. caviae, and A. veronii, both in in vitro studies and in vivo models,
having MICs less than 1 mg/mL in 90% of the samples evaluated [5]. However, fluoro-
quinolones should not be used in treating pediatric patients [58]. For severe soft-tissue
infection, surgical debridement is recommended with adequate antimicrobial chemother-
apy, and hyperbaric oxygen therapy may be effective [55]. High fatality rates were seen in
patients with bacteremia, sepsis, severe soft-tissue infection, or pneumonia [55]. On the
other hand, patients with diarrhea and cholangitis usually were associated with a good
outcome if rational antimicrobial agents were administered [55].

4. Conclusions

In our case report, we hypothesize that A. hydrophila colonized the common bile duct
and then it reached the intestines through fistulas and surgeries that caused intestinal
motility disorders. We must consider this pathogen as a possible cause of chronic dis-
ease. Moreover, we postulate that the REP-PCR-based DNA fingerprint technique may
be a rapid typing method for use in epidemiological studies of isolates belonging to the
Aeromonas genus.

We also demonstrated the hypothetical virulent character of this species. According to
Wang et al., screening for specific enterotoxin genes is suggested to characterize virulence
factors [30]. Many virulence factors have been characterized from Aeromonas spp., especially
from A. hydrophila, the main causative organism of diarrhea and sepsis in humans and in
animals. This highlights the severity of this disease, especially in immunocompromised
patients, and its adequate treatment. Strategies to promote rational antimicrobial treatment
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are necessary to reduce antibiotic resistance and its spread by plasmid-mediated horizontal
gene transfer.
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