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Abstract: The declining honeybee populations are a significant risk to the productivity and secu-
rity of agriculture worldwide. Although there are many causes of these declines, parasites are a
significant one. Disease glitches in honeybees have been identified in recent years and increasing
attention has been paid to addressing the issue. Between 30% and 40% of all managed honeybee
colonies in the USA have perished annually over the past few years. American foulbrood (AFB)
and European foulbrood (EFB) have been reported as bacterial diseases, Nosema as a protozoan
disease, and Chalkbrood and Stonebrood as fungal diseases. The study aims to compare the bacterial
community related to the Nosema ceranae and Ascosphaera apis infection on the gut of the honeybee
and compare it with the weakly active honeybees. The Nosema-infected honeybees contain the phyla
Proteobacteria as the significantly dominant bacterial phyla, similar to the weakly active honeybees. In
contrast, the Ascosphaera (Chalkbrood) infected honeybee contains large amounts of Firmicutes rather
than Proteobacteria.
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1. Introduction

The majority of the 57 most essential crops for human consumption are produced by
bee colonies, making them the most managed pollinators in the world [1–3]. The decline of
the honeybee poses a serious threat to the productivity and stability of global agriculture.
Parasites are indeed a significant one of the many causative factors of these declines. The
honeybee gut bacteriome composition can vary, depending on various factors such as
geography, diet, season, and management practices [4]. However, some common bacterial
species found in the honeybee gut include Lactobacillus, Bifidobacterium, and Gilliamella.
These bacteria play important roles in nutrient digestion and absorption, immune system
regulation, and protection against pathogens [5]. Disease crises in honeybees have intensi-
fied in recent years and increasing attention is being paid to addressing the issue. Over the
past several years, there have been annual losses of between 30% and 40% of all managed
US honeybee colonies [6–8]. In addition to viruses, bacteria, microsporidia, and arthropods,
a wide variety of parasites pose serious risks to honeybees [1,9,10].

The viral diseases that cause problems in bees include Kashmir bee virus, acute bee
paralysis virus (ABPV), deformed wing virus (DWV), black queen cell virus (BQCV), acute
bee paralysis virus (ABPV), and deformed wing virus (DWV) [11]. Varroa destructor is
a parasitic mite that poses a significant threat to honeybee populations worldwide [12].
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These mites feed on the hemolymph (the circulatory fluid) of both adult honeybees and
developing broods, causing physical damage and weakening the bees [13]. The mite
infestation not only leads to a decline in individual bee health, but can also facilitate the
transmission of various honeybee viruses, exacerbating colony collapse [14]. American
foulbrood (AFB) and European foulbrood (EFB) have been reported as bacterial diseases,
Nosema as a protozoan disease, and Chalkbrood and Stonebrood as fungal diseases [15–17].
Among these diseases, Nosemosis and Chalkbrood disease are the most serious diseases in
the Republic of Korea [18].

Honeybees rely on a diverse community of microbes to help with digestion, nutrition,
and protection against pathogens. The developed intestine of a worker honeybee gut
consists of four core bacterial symbionts that are mainly found in the hindgut: Snodgrassella
alvi, Gilliamella apicola, Lactobacillus, and Bifidobacterium asteroides [5,19]. These constituents
are acquired within the home colony and mainly established after 9 days of the bee emerging
from the cell [20,21]. Other gut bacteria are frequent, but in relatively lower prevalence
and with less consistency across bees and colonies. Many metabolic processes happen in
the hindgut, especially in a symbiotic context. Of the core bacterial symbionts, G. apicola,
Bifidobacterium, and Lactobacillus are carbohydrate fermenters whose metabolic products
support S. alvi growth [22,23]. These symbiont-derived metabolites likely also support
bee health via intestinal absorption. These findings were supported by microbial feeding
studies focused on the physiological processes of bees, and metagenome annotations of
the symbionts [4,24]. The midgut lies upstream of the hindgut. The honeybee midgut is
the focal point of the digestion and absorption of nutrients. It possesses digestive enzymes
from the cell lining, in addition to enzymes that are secreted and translocated from the
hypopharyngeal glands [25,26]. The midgut is also lined with the peritrophic matrix,
which is a protective barrier. Relative to the hindgut, the midgut is essentially void of
bacteria, possibly due to the constant rearrangement of the peritrophic matrix [20]. The bee
midgut is speculated to harbor yeasts that offer additional digestive roles, as is common
in other insects [27]. This indicates that yeasts likely have an alternative method for the
attachment/colonization in this environment that bacteria lack [22].

Since its discovery in 1909, Nosemosis has been viewed as a seasonal disease that has a
negative impact on beekeeping profits. A microsporidian parasite called Nosema ceranae
infects honeybees and can seriously harm honeybee colonies [28,29]. Research has shown
that Nosema ceranae infection can alter the composition of the honeybee gut bacteriome,
causing the abundance and the decline of beneficial bacteria such as Lactobacillus and an
increase in potentially harmful bacteria such as Enterococcus [30,31]. In spring, many are
exhausted and due to the effects of Nosemosis, dead bees are discovered all around the
hives [32].

The most prevalent eukaryotic gut pathogen in honeybees is Nosema ceranae. Although
infection is typically chronic, it can also be fatal. Recent research has linked the develop-
ment of gut infectious diseases to the gut microbiota [21,33]. Interestingly, studies found
positive, not negative, correlations between Nosema ceranae infection and the main bacteria
in honeybee microbiota [34]. The gut microbiota of honeybees is basic and primarily made
up of a few key bacterial species. There are not many gut bacteria in the midgut, possibly
because of the peritrophic membrane’s ongoing regeneration [35–37].

A fungal pathogen Ascosphaera apis infects honeybee larvae, causing a disease known
as Chalkbrood [38]. While research has shown that Chalkbrood can have significant impacts
on a honeybee’s health, there is less information on the specific effects of Ascosphaera apis
on the alteration of gut bacteriome composition in the honeybee [39,40]. Conversely, some
studies have investigated the impact of Chalkbrood disease (caused by both Ascosphaera apis
and Ascosphaera larvis) on the gut microbiome of honeybee larvae; for instance, Chalkbrood-
infected larvae had reduced levels of certain beneficial bacterial species, such as Lactobacillus
and Bifidobacterium, in their gut compared to healthy larvae [40–42]. The study also found
an increase in the abundance of potentially harmful bacteria such as Enterobacter and
Pseudomonas in Chalkbrood-infected larvae [43].
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Firmicutes are gram-positive bacteria that include a diverse group of bacteria, some of
which are commonly found in the honeybee gut [44]. They are known to play important
roles in nutrient digestion, immune system regulation, and protection against pathogens.
Some common families of Firmicutes found in the honeybee gut include Lactobacillaceae,
Bacillaceae, and Streptococcaceae [44–46]. Studies have suggested that a higher relative
abundance of Firmicutes is associated with better honeybee health and a greater resistance
to diseases such as American foulbrood disease, while a higher relative abundance of
Proteobacteria is associated with an increased susceptibility to certain diseases [5,47]. Several
studies have suggested that Lactobacillus may play a protective role against Nosema and
Chalkbrood infection in honeybees [48,49]. For example, a study by Rubanov et al. [34]
suggested that honeybees with a greater relative abundance of Lactobacillus had a lower
prevalence of Nosema infection. Similarly, [50] research work found that honeybees with a
greater relative abundance of Lactobacillus had a lower prevalence of Chalkbrood infection.

Furthermore, Nosema ceranae infection has also been linked to changes in the gut
microbiome diversity, which may have adverse effects on the health of honeybees generally
and increase susceptibility to other illnesses. Understanding the interactions between
Nosema ceranae infection and the honeybee gut bacteriome can help in developing effective
strategies for the management and control of this parasite.

2. Materials and Methods
2.1. Experimental Design and Honeybee Collection

All the honeybees used in the experiment were purchased from the experiential
colonies of an apiary located near Chungbuk Province, South Korea. Three different source
colonies were used to collect the bees, which were then carefully transferred into mesh cages
measuring 16.5 by 16.5 by 48 inches and kept at 24± 1 ◦C until transferred to the laboratory
for dissection. The honeybees were maintained in artificial conditions for a period of up
to 12 h prior to dissection. During this time, they were fed a diet of 50% sucrose solution,
which was prepared using sterile distilled water, and provided with water ad libitum. The
honeybee gut contents were collected from four different groups: control, Nosema-infected,
Chalkbrood-infected, and weak bees. The bees were approximately 10 to 15 days old.
Approximately 10 to 15 honeybees were selected randomly from each group and the gut
contents were dissected and pooled for each sample. We conducted our analyses using five
replicates per group, except for the Chalkbrood group, which contained four replicates.
The weak group included bees collected from hives inhabited by flightless, floor-crawling
bees. In general, a characteristic of beehives inhabited by weak bees is that there is little or
no honey inside the hive.

The bees suffering from Nosema or Chalkbrood disease were confirmed through exper-
imental methods and used as an experiment group for diseases. Nosema infections were
diagnosed by a microscopic observation method of the Nosema spore. Nosema-infected
bees contain spindled-shaped spores in the midguts. Bees with at least 1 × 106 spores were
classified as an experimental group infected with Nosema. Chalkbrood disease can be easily
diagnosed using visual detection methods. Hives infected by Chalkbrood disease symptom
appeared to have hard, shrunken chalk-like mummies in the brood and surrounding the
entrance to the hive [38,51].

A molecular biology technique (Polymerase Chain Reaction, PCR) was used to dif-
ferentiate the healthy condition of the honeybee [52,53]. Nosemosis was identified using
previously described PCR methods with specific primers for N. ceranae (sense strand:
5′-CGG ATA AAA GAG TCC GTT ACC-3′, antisense strand: 5′-TGA GCA GGG TTC TAG
GGAT-3′) and N. apis (sense strand: 5′ CCA TTG CCG GAT AAG AGA GT 3′, anti-sense
strand: 5′ CAC GCA TTG CTG CAT CAT TGAC 3′) (Bioneer Co., Daejeon, Republic of
Korea). Each PCR was preheated to 94 ◦C for 2 min, followed by 94 ◦C for 15 s, 60 ◦C
for 30 s, and 72 ◦C for 45 s, with a final extension phase at 72 ◦C for 7 min. Chalkbrood
disease (Ascosphaera apis) can also be easily diagnosed using the PCR method with specific
primers [39,54,55] (sense strand: 5′-ACT CC CAC CCT TGT CTA CCT TA-3′, antisense
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strand: 5′-TCT TCG ACT GGA GTT CGT TTA TCT-3′) (Bioneer Co., Daejeon, Republic
of Korea). Each PCR was preheated to 94 ◦C for 2 min, followed by 95 ◦C for 15 s, 60 ◦C
for 30 s, and 72 ◦C for 45 s, with a final extension phase at 72 ◦C for 7 min. A variable
number of cycles was used to ensure that the amplification occurred in the linear phase. The
PCR products were separated on a 1.5% agarose gel and visualized by ethidium bromide
staining and UV irradiation.

2.2. Chalkbrood (CB) Screening

The genomic DNA for CB screening was extracted from whole-bee homogenate
aliquots using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol [27]. An assessment of the DNA yield and purity was performed
using the NanoDrop 1000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). The amplification of the internal transcribed spacer (ITS) region within the nuclear
ribosomal repeat unit of the fungus Ascosphaera apis [56], and RpS5 gene of A. mellifera
was completed using PCR. All PCR amplifications were performed using 2× Taq PCR
MasterMix (abm, Richmond, BC, Canada), in 25 µL reactions, containing 400 nM of each
primer, targeting either A. apis ITS or A. mellifera RpS5. The PCR conditions were as follows:
94 ◦C for 10 min; 30 cycles of 94 ◦C for 45 s, 62 ◦C for 45 s, and 72 ◦C for 1 min; and 72 ◦C
for 5 min [25]. The PCR product evaluation was performed as above.

2.3. DNA Isolation and Sequencing

The metagenomic DNA was isolated from 10 g of homogenized gut content with
the previously reported method [57–59]. The modifications were carried out by adding
an enzymatic digestion (lysozyme and achromopeptidase) step before the SDS lysis and
lowering the lysis temperature (55 ◦C instead of 65 ◦C). Subsequently, the DNA was purified
in two agarose gel electrophoresis steps, first using 0.7%, and then in 1% agarose. The pure
DNA was recovered from the gel with an agarose gel extraction kit (Roche). The quality of
the preparations was assessed spectrophotometrically on NanoDrop ND-1000 (NanoDrop,
Wilmington, DE, USA). Samples were preserved at −80 ◦C for future analyses.

2.4. 16S rRNA Amplification and Sequencing

The PCR amplification of bacterial 16S rRNA hypervariable region V3-V4 was carried
out using primers 341F (CCT ACG GGN GGC WGC AG) and 805R (GAC TAC HVG
GGT ATC TAA TCC). The V3-V4 region has been accepted as a low error-prone region for
taxonomic assignment and community clustering [60,61]. The PCR was carried out by 30-s
initial denaturation at 98 ◦C, 30 cycles of 10-s denaturation at 98 ◦C, 30-s annealing at 55 ◦C,
30-s elongation at 72 ◦C, and a 5 min final extension at 72 ◦C. The sequencing procedure
was carried out using Illumina (Illumina, San Diego, CA, USA). The library was prepared
by a standard library construction protocol (https://support.illumina.com/downloads/
16s_metagenomic_sequencing_library_preparation.html (accessed on 12 December 2022))
by the Nextera XT kit (Illumina, San Diego, CA, USA), following the manufacturer’s
instructions. The specific amplicons for the V3-V4 region were quantified in each reaction
mixture and Illumina sequence adapter. The index primers (Nextera XT Index kit) were
used in emulsion PCR to generate amplicon libraries, followed by a PCR clean up. The
MiSeq libraries were quantified and then subjected to 300-nucleotide paired-end multiplex
sequencing on an Illumina MiSeq sequencer.

2.5. Sequencing Data Analyses

The Illumina MiSeq sequencer produced demultiplexed (PE) raw reads, the quality
of the reads was accessed by FastQC [62] and timed using Trimmomatic [63]. The filled
demultiplexed reads were imported to the quantitative insights into Microbial Ecology
2 (QIIME2) for further analysis. The quality filtering, trimming, and denoising were
performed using q2-dada2 [64]. The read dereplications, learning of the error rates, and
the sample sequence variant inference with samples were performed using DADA2. The

https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
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amplicon sequence variant (ASV) table and the removal of chimeras were performed using
DADA2, followed by the taxonomy assignment and species assignment using the DADA2
and the SILVA v138.1 database ([65] accessed on 15 August 2022). The bacterial richness
and diversity were analyzed using alpha and beta diversity matrices and indices such as
Observed feature, Shannon index, Chao index, ACE index, Rarefaction curves, Weighted
and Unweighted Unifrac distance matrices, and PcoA plots. GraphPad Prism 8 was used
to perform a statistical analysis of the results obtained.

3. Results and Discussion
3.1. Microbial Symbiosis in the Honeybee Gut

Microbial symbiosis plays a vital function in the gut of honeybees. The gut contents of
the honeybee used in the experiment are shown in Figure 1. The results of the microbial
symbiosis in the gut of honeybees revealed that the gut microbiota plays a crucial role in
the digestion, immunity, and overall health at both the phylum and genus levels. The gut
content of the control bees supports the beneficial bacterial growth, because of the mild
acidity (pH 6.0–6.5) and the presence of enzymatic activities [4], which signify efficient
nutrient breakdown and absorption [24]. The gut microbiota of honeybees consists of a core
set of bacterial species, primarily belonging to the phyla Proteobacteria and Firmicutes [4,5].
This, in turn, supports overall bee health and colony well-being.
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3.2. Taxonomic Analysis for Sequencing Data

Sequences generated for the polluted and control samples were analyzed using QI-
IME2 tools generating 1,353,431 total frequencies with an average of 42,294 OUT per sample.
The taxonomic positions of sequenced reads were analyzed and studied using SILVA clas-
sifier, with classification based on 16S rRNA gene sequences. The analysis proposes that
98% of the reads belonged to the bacterial kingdom; other reads were omitted from further
analysis. Since 16S rRNA is widely used for taxonomic and phylogenetic studies due
to its highly conserved sequences, its hypervariable region can also be used for accurate
taxonomic evaluation.

Honeybees infected with Nosema ceranae preferred sunflower honey over honeydew
honey in dual-choice tests; sunflower honey had higher antimicrobial activity and decreased
the amount of N. ceranae spores in the bee gut [56]. The gut of honeybees is home to
bacteria that are antagonistic to parasites such as Ascosphaera apis [66,67]. Such antagonistic
interactions might offer a means of treating diseases. For instance, the inoculation of bee
colonies with the bacterium Parasaccharibacter apium resulted in the decreased levels of
Nosema ceranae infection [68].

3.3. The Microbiome of Infected Honeybees

The major bacterial community are from the phyla Proteobacteria and Firmicutes
(Figure 2 and Supplementary Table S1), which are significantly different from the Chalk-
brood honeybee’s guts. The bacterial species belonging to the genus Gilliamella, Lacto-
bacillus, Snodgrassella, Frischella, and Bombella are predominantly present in the gut of
Nosema-infected honeybees (Figure 3).
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bacterial communities.

Proteobacteria and Firmicutes are two of the major phyla of bacteria found in the
honeybee gut bacteriome. Together, they often make up the majority of bacterial species
present in the honeybee gut. The heat-map of the response of bacterial community structure
at the phylum level (Figure 4) shows the diversity of bacteria harbored in four different
gut samples of the honeybee. Proteobacteria are gram-negative bacteria that include a
diverse group of bacteria with various metabolic capabilities. They play important roles in
nutrient digestion, immune system regulation, and protection against pathogens. Some
common families of Proteobacteria found in the honeybee gut include Acetobacteraceae,
Enterobacteriaceae, and Pseudomonadaceae.
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Based on the alpha divert index (Figure 5 and Supplementary Table S3), the Chalkbrood-
infected honeybee gut harbors significantly higher OTUs compared with the other three
groups, and also shows high diversity of bacteria compared with other groups.
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Figure 5. The comparison of alpha diversity indices (A) observed OTUs, (B) ACE index, (C) Shannon
diversity index, and (D) Simpson index among four different groups. The Chalkbrood-infected
honeybee gut shows significant differences among the groups.

The bacterial diversity is significantly higher in the Chalkbrood-infected honeybee gut
compared with other honeybees. The composition of a healthy Nosema and weak honeybee
microbiome are significantly lower than the Chalkbrood-infected honeybee, which is also
observed in the Shannon and Simpson diversity index. The Venn diagram shows the shared
microbial community between the samples (Figure 6). The Nosema-infected honeybee
harbors the lowest number of unique and total OTUs compared to other groups.
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The Chalkbrood-infected honeybee displayed the most unique bacterial OTUs com-
pared with the Nosema, weak, and control honeybee. The gut of the control honeybee
shows the dominant presence of Gilliamella, Lactobacillus, Frischella, Snodgrassella, and Asaia,
whereas the Nosema-infected honeybee showed the presence of Gilliamella, Lactobacillus,
Frischella, Snodgrassella, Commensalibacter, Franconibacter, and members of the family En-
terobacteriaceae (Figure 1 and Supplementary Table S2). The weak honeybee showed the
presence of the genera Gilliamella, Lactobacillus, Frischella, Snodgrassella, Pantoea, and the
members of the family Enterobacteriaceae; meanwhile, the Chalkbrood-infected honeybee
shows the presence of Lactobacillus, Pseudoflavonifractor, Alistipes, Oscillibacter, Paenibacillus,
and three unknown bacterial genera as the dominant genera.

4. Conclusions

The primary focus of the study was to analyze and contrast the bacterial communities
present in the gut of honeybees infected with Ascosphaera apis, and to compare these
findings with those from Nosema ceranae-infected and weakly active honeybees. In the
case of Nosema-infected honeybees, the Proteobacteria phylum was found to be significantly
dominant within the bacterial community, a characteristic that was also observed in weakly
active honeybees. However, when examining the honeybees infected with Ascosphaera
(Chalkbrood), the bacterial composition diverged considerably, as these bees were found to
harbor substantial quantities of Firmicutes, rather than Proteobacteria.

The genus Lactobacillus is present predominantly in all four groups of honeybee guts,
regardless of infection or weakness. The genera Gilliamella, Frischella, and Snodgrassella
are present in Nosema, weak, and control honeybee guts, but not significantly present in
the Chalkbrood-infected honeybees. This shows that these three genera are significantly
affected by the Ascosphaera apis infection in honeybees. Studies have shown that honey-
bees infected with Nosema ceranae have a reduced gut bacteriome diversity and altered
microbial community structure. Specifically, the prevalence of specific bacterial taxa, such
as Lactobacillus and Bifidobacterium, has been found to decrease in infected bees. These
bacteria are important for maintaining a healthy gut environment and aiding in digestion.
The decrease in gut bacteriome diversity and altered microbial community structure may
have negative consequences for the health and survival of honeybees. For example, a
disrupted gut bacteriome can make honeybees more susceptible to other pathogens and
environmental stressors.

The genus Lactobacillus is consistently found in the honeybee gut across all four
groups, regardless of infection status or weakness [49]. Moreover, the genera Gilliamella,
Frischella, and Snodgrassella are observed in the guts of Nosema-infected, weak, and control
honeybees, but they are not significantly present in Chalkbrood-infected honeybees. This
finding suggests that these three genera are considerably impacted by Ascosphaera apis
infections in honeybees [49]. The research has demonstrated that honeybees infected with
Nosema ceranae exhibit a reduced gut bacteriome diversity and altered microbial community
structure [2]. Specifically, the prevalence of certain bacterial taxa, such as Lactobacillus and
Bifidobacterium, decreases in infected bees. These bacteria are vital for maintaining a healthy
gut environment and supporting digestion. The decline in gut bacteriome diversity and
the altered microbial community structure may negatively affect the health and survival of
honeybees. For instance, a disrupted gut bacteriome can increase honeybees’ susceptibility
to other pathogens and environmental stressors.

More research is required to understand the specific roles of these bacteria in the
gut. The Ascosphaera apis infection in the honeybee satirically alters the bacterial com-
munity structure in the gut, which can also be confirmed by the beta-diversity analysis
(Supplementary Figures S1 and S2) with a UPGMA phylogenic tree and PCoA analysis.
Overall, the impact of Nosema ceranae and Ascosphaera apis infection on the gut bacteriome
of honeybees highlights the complex and interconnected nature of microbial communities
in honeybee health and emphasizes the importance of studying these interactions to better
understand and protect honeybee populations.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens12050734/s1. Supplementary Table S1: The bacterial com-
munity composition at the phylum level. Percent relative abundances of bacterial taxa at the phy-
lum level are shown for samples. Relative abundances < 1% across all samples are shown as “Oth-
ers”; Supplementary Table S2: The bacterial community composition at the genus level. Percent rel-
ative abundances of bacterial taxa at the genus level are shown for samples. Relative abundances
< 1% across all samples are shown as “Others”; Supplementary Table S3: Alpha-diversity indices;
Supplementary Figure S1: UPGMA phylogenetic tree based on weighted unifrac distance across the
samples. Sequences were evenly pooled across individual samples (35,000 sequences per sample) prior
to analysis; Supplementary Figure S2: The PCoA plot of beta diversity of the gut bacteriome based
on weighted Unifrac distances of the honeybees. Each data point represents an individual sample.
Sequences were evenly pooled across individual samples (35,000 sequences per sample) prior to analysis.
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