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Abstract: Human papillomavirus (HPV) is implicated in over 90% of cervical cancer cases, with
factors like regional variability, HPV genotype, the population studied, HPV vaccination status, and
anatomical sample collection location influencing the prevalence and pathology of HPV-induced
cancer. HPV-16 and -18 are mainly responsible for the progression of several cancers, including cervix,
anus, vagina, penis, vulva, and oropharynx. The oncogenic ability of HPV is not only sufficient for the
progression of malignancy, but also for other tumor-generating steps required for the production of
invasive cancer, such as coinfection with other viruses, lifestyle factors such as high parity, smoking,
tobacco chewing, use of contraceptives for a long time, and immune responses such as stimulation of
chronic stromal inflammation and immune deviation in the tumor microenvironment. Viral evasion
from immunosurveillance also supports viral persistence, and virus-like particle-based prophylactic
vaccines have been licensed, which are effective against high-risk HPV types. In addition, vaccination
awareness programs and preventive strategies could help reduce the rate and incidence of HPV
infection. In this review, we emphasize HPV infection and its role in cancer progression, molecular and
immunopathogenesis, host immune response, immune evasion by HPV, vaccination, and preventive
schemes battling HPV infection and HPV-related cancers.

Keywords: HPV-infection; HPV-associated carcinogenesis; immuno-pathogenesis; immune evasion;
vaccination

1. Introduction

Human papillomavirus (HPV) is an infectious agent that contributes to sexually
transmitted diseases (STDs) worldwide. Sexually active individuals are at a high risk of
infection during their lifetime, with 80% of women being more susceptible [1]. In addition,
49% of men have been infected with some type of genital HPV [2]. HPV infection is
observed in >90% of cervical cancers [3]. However, HPV is not the only virus participating
in cervical cancer development; other hazardous situations such as coinfections (with
herpes simplex virus type-2 and Chlamydia trachomatis), smoking, persistent use of oral
contraceptives, multiparity, nutritional deficiencies, immunosuppression, and immune-
associated diseases are also involved in cancer progression [4–8]. Host immune responses
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fight against HPV infection and eliminate most of the viral part (nearly 90%) within
2–3 years or remain in the dormant phase, while the remaining 10% are converted into
chronic infections; however, only 1% can cause cervical cancer [9]. Appropriate innate
and adaptive immune responses and efficient immune control mechanisms are required to
inhibit HPV infection. However, HPV can use the evasion process to escape the immune
response. Therefore, HPV can multiply in host cells during viral replication without causing
cytolysis, which neither stimulates the inflammatory process nor presents viral antigenic
representatives. In host cells, type-I IFNs levels are reduced by the E6 and E7 proteins of
HPV16 and generate an immune tolerance stage in the absence of costimulatory factors
through inflammatory cytokines [10]. In addition, its E5 protein controls the reduced
expression of class 1 HLA, which further leads to the obstruction of CTL assault [10].
These immune escape phenomena may contribute to the existence and stability of HPV
infection, which further addresses cancer progression. Generally, HPV infection seems
to be clinically silent because it does not show any significant symptoms; however, a few
lesions can be observed in genital organs that might convert into invasive cancers [11].
Persistent HPV infection and a lower host immune response collectively support instigating
carcinogenesis by conversion of a low-grade squamous intraepithelial lesion (LSIL) into a
high-grade squamous intraepithelial lesion (HSIL), which ultimately transforms into an
invasive form of cervical carcinoma [12]. The involvement of HPV in cancer induction and
progression can take many years for conversion into a carcinoma with the help of different
tumor-stimulating steps, such as E6/E7 proteins that interact with cellular proteins. This
ultimately transforms normal cells into cancerous cells with immortal, proliferative, and
malignant characteristics [5]. Additionally, a few reports have suggested that imbalanced
immunity and chronic inflammation in the tumor microenvironment (TME) may provoke
precancerous cervical lesions that turn into invasive cancer [13–15]. In this article, we
reviewed the prevalence status of HPV infection, its mechanistic role in carcinogenesis, its
molecular and immunopathogenesis process, host immune response activated by HPV, its
immune escape mechanism, its vaccination scheme, and preventive measures and strategies
that could protect against HPV infection and associated cancers.

2. Epidemiology of HPV-Induced Cancers

Human Papilloma Virus (HPV) is the most common sexually transmitted viral infec-
tion disease in women and men worldwide. At some point in their lives, 85% of women
and 95% of sexually active men are infected with HPV [16]. Virtually all cases of cervical
cancer, most anal cancers, and a substantial percentage of noncervical malignancies, such
as vaginal, penile, vulvar, and oropharyngeal cancers, are also caused by HPV. With an
estimated 604,127 new cases and 341,831 deaths in 2020, cervical cancer is the second most
common cancer between ages 15 and 44 years in the world [17,18]. Higher rates of infection
are prevalent in India, Eastern Europe, Latin America, and sub-Saharan Africa [19]. Glob-
ally, its prevalence fluctuates significantly and is higher in developing regions. Nearly 90%
of cervical cancer-related deaths occur in low- and middle-income countries (LMICs). The
fractions linked to HPV infections and associated cancers vary across geographical regions
and levels of economic development. Compiled studies from cytologically healthy women
showed that HPV prevalence was greater in Sub-Saharan Africa (SSA) (24.0%), especially
in Eastern Africa (33.6%) and Latin America [17,20]. The highest prevalence of HPV among
females was observed in Asian regions, where nearly half of the Eastern Asia (China), and
South Central Asia (India) (57.7 and 44.7%, respectively), were carriers. In the SSA region,
42.2% of women in Southern and 32.3% of women in Eastern Africa were HPV carriers,
respectively. In nearly all European countries, HPV prevalence is minimal (<30%), as in
Western Europe (3.7%). Hence, HPV infection rates were greater in the developing regions
(42.2%) than in the developed regions (22.6%) [21,22].

Numerous strains of HPV (16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73,
and 82) are classified as carcinogenic to humans and cause anogenital and oropharyngeal
cancers [23]. While the majority of people recover from an HPV infection within one to
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two years, 10% to 20% of infected women will continue to have the infection. Cervical
cancers and a sizable portion of anogenital and head and neck cancers have been linked
to chronic HPV infection, particularly with HPV types 16 and 18 [24]. HPV16/18 and
HPV6/11/16/18/31/33/45/52/58 are carcinogenic and attributed to cancers of the cervix,
other anogenital tracts, and head and neck. The burden of HPV-attributable cancers can
be reduced by enhancing the programs for HPV vaccination and HPV-based cervical
screening [25].

The age distribution of HPV infection indicates an early peak in the teens and twenties,
followed by a gradual decline; however, in some nations, a second peak appears later in
life [26]. Most cancers related to HPV affect women; consequently, sex-stratified estimates
were considered. The global ASIR (age-standardized incidence) rate of cervical cancer
is 13.1, with a mortality rate of 6.9 per 100,000 [27]. Cervical cancer is the second most
common cancer in women under the age of 50 years, and the fourth most common cancer
in women of any age.

In men, the global prevalence rate of genital HPV infection is comparable to that in
women (3.5–45% vs. 2–44%) [28]; transmission rates are also similar [29]. Homosexuals
and HIV-infected men are at higher risk, with higher rates of HPV anal infection (≥90%)
compared with heterosexual men, whose risk of HPV infection is determined by the
number of sexual partners [30,31]. This tendency differed from that observed in women. In
terms of regional distribution, the incidence of HPV infection in men is higher in Africa,
particularly among South African men (17.2% per year), and lower in Asia (3.2% per
year) [32]. Giuliano et al. showed that a higher prevalence of all HPV genotypes was
found in low- and middle-income countries than in developed countries [33]. In 2020, India
accounted for 24% of HPV-related cancer cases and 7% of all cancer cases worldwide [34].
Four of the five cervical cancers reported in India were caused by HPV types 16 and
18 [35]. Furthermore, as part of a cancer prevention strategy in India, health facilities
are implementing opportunistic screening for common cancers such as oral and cervical
cancer [36]. Population- and hospital-based cancer registries in India can be used to track
the effects of primary and secondary preventive interventions. A thorough understanding
of the epidemiology of cancers linked to HPV infection would help define a country’s
preventive intervention strategies.

While studying the global impact of HPV from the GLOBOCAN 2018 data, the World
Health Organization (WHO) has called for global action towards the elimination of cervical
cancer (a threshold of 4 per 100,000 women years) and has set targets to be accomplished
by 2030 [37–39]. Almost all sexually active individuals, regardless of their gender identity,
sex, or sexual orientation, are infected with HPV during the first couple of years of sexual
activity, and nearly half of them are infected with high-risk (HR) HPV types. HPV is
responsible for almost all cervical cancers and plays a major role in other cancers, including
anal (90%), vaginal (75%), oropharyngeal (70%), vulvar (69%), and pancreatic (63%) cancers.
More than 50% of the morbidity and mortality of vaginal and penile cancer cases occur
in Asia, and vulvar cancer is predominant in Europe [34]. As reported in several parts of
the world, the three currently approved HPV vaccines, bivalent, tetravalent, and 9-valent,
are potent in lowering HPV infection. They target and induce immunity against low-risk
(LR) and HR HPVs, which are responsible for 70 and 90% of genital and cutaneous warts
and cancers, respectively. Moreover, available (bivalent, tetravalent, and 9-valent) vaccines
based on virus-like particles have been proven to be effective and safe [3]. Among these,
the new 9-valent vaccine appears to be a favorable next-generation vaccine.

3. HPV Molecular Structure and Classification

HPV is a nonenveloped, covalently closed, circular DNA virus. It contains an ~8 kb
genome and is divided into three main regions (Figure 1): early (E), late (L), and long
Control Region (LCR) segments [40,41].
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Figure 1. The structure of the HPV16 genome. The figure was modified and redrawn from [42].

Early (E) region: The early region genes E1, E2, and E4–E7 constitute a major part of
the HPV genome. E1, E2, and E4 are responsible for DNA replication, E2 also functions
as a transcriptional repressor of E6/E7, E5 is responsible for cell transformation and
proliferation, and E6 and E7 regulate the cell cycle. This early region is necessary for DNA
replication, viral particle synthesis, discharge, and cell transformation [43].

Late (L) region: Approximately 40% of the HPV genome is composed of late-region
genes, L1 and L2, which encode structural capsid proteins.

Long Control Region (LCR): This region is also known as the upstream regulatory
protein (UPR) and forms 10% of the HPV genome. It is a noncoding segment with the
origin of replication and transcription factor (TF)—binding sites that participate in viral
gene transcription regulation to control DNA replication [44].

Depending on the HPV genome structure and its tropism to human epithelial tissues,
there are more than 200 HPV genotypes, which are grouped into five different genera (alpha-
, beta-, gamma-, Mu-, and Nu-) based on their life cycle and cause of infection [40,45,46].
Among them, the alpha genus is the largest group, and the HPV genotypes belonging to
the alpha genus are responsible for cancer. Although HPVs under beta and gamma genus
generally show asymptomatic effects, they can generate immunosuppressive stages, which
can instigate other types of skin cancers or cutaneous papilloma and sometimes mold
their hosts to complete the life cycle without generating any noticeable disease [43,47,48].
According to the risk levels of activation of oncogenic ability, HPVs are further classified
into low-, intermediate-, and high-risk groups, and potentially generate infected cell prolif-
eration and malignancy [49,50]. HPV6, 11, 42, 43, and 44 belong to the LR category and
are responsible for condylomas and benign cervical lesions with no malignancy [50,51].
The intermediate oncogenic risk group contains HPV31, 33, 35, 51, and 52, which cause
malignant transformation; however, this remains a controversial issue [23,50]. The high-risk
(HR) group of HPVs includes HPV16, 18, 45, and 56, which are predominantly involved in
triggering neoplastic transformations [23]. Furthermore, 15 HPVs belonging to the alpha
group, including HPVs 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82, are classified
as ‘HR’ types and have oncogenic properties and are responsible for causing anogenital
cancers [42,52]. However, HPV 16 is responsible for nearly 55% of cervical cancer cases,
while HPV 18 is responsible for 15% of cancer cases, and the remaining percentages of
cancer cases are caused by other HR types [42].
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4. HPV Infection and Its Role in Cancer Progression

HPV can be transmitted through sexual or nonsexual interactions. However, sexual
transmission is the most common cause of HPV infection, especially the genital type [53].
Women, particularly those with several sexual partners, are most frequently affected
by this infection. Sometimes, HPVs are transferred from mother to child through the
perinatal transmission of other viruses or microbes [54,55]. In one report, HPV infection
was horizontally transferred to a 5-year-old child through genital finger transmission via
warts on his hands and anus [56].

First, Human Papilloma Virus enters the body through skin abrasions/warts, epider-
mal injuries, and mucous membranes (Figure 2) [53].

Figure 2. HPV infection in the cervix, viral particles shedding and HPV protein expression. The
figure was modified and redrawn from [44].

There are three main regions in the cervical mucosa: the endocervix, made up of
simple columnar epithelium; the transformation zone, which contains both squamous and
columnar cells; and the ectocervix, which forms the non-keratinized stratified squamous
epithelium. Stratum basale, also known as stratum germinativum or the basal layer, acts as
a parent layer for the formation of new cells [57]; therefore, a basal cell undergoes cell divi-
sion via mitosis into two daughter cells: one grows and becomes differentiated, while the
second cell is retained in the basal layer for further cell division. HPVs target basal cells and
are transmitted to the epithelium via microabrasions/microwounds [58,59]. Furthermore,
HR-HPVs enter the junction of the endo- and ectocervix through single-layer squamous
cells [60]. For effective infection, these viruses attack actively dividing basal-layer cells,
which act as stem cells [61,62]. Cellular receptors bind to the HPV L1 capsid protein [63].
Several kinds of cellular receptors are reported for HPV entry on the basis of HPV geno-
type, infected cell types, and various receptor attachment strategies, including integrins
(α6 integrin) [59,64,65], epidermal growth factor receptors (EGFRs) [65], laminins [66],
the annexin-A2 heterotetramer [67], vimentin [68], tetraspanin-enriched membrane mi-
crodomains [69] and syndecan-1 [65,70]. After initial binding of HPV to a primary receptor
such as heparin sulphate proteoglycans (HSPGs) [71], there is a conformational change
facilitated by cyclophilin B that occurs at the N-terminus of the L2 region, a viral capsid
protein present on the virion surface [72], resulting in L2 cleavage by proprotein convertase
(PC), furin, and/or PC5/6, followed by N-terminus L2 epitope exposure and binding with
a secondary receptor present on the target cell plasma membrane [73,74]. HPV enters
target cells via endocytosis in a manner similar to micropinocytosis [75]. Once the virus
attaches to the cell, it enters the nucleus in nearly 24 h through post-endocytic trafficking via
membrane-bound endosomes, the Golgi network, and the endoplasmic reticulum [76,77].
Ultimately, the viral genome is transferred to the nucleus via the tubulin-mediated path-
way through nuclear pores or fragmented nuclear membranes in the mitosis process [78],
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which then associates with promyelocytic leukemia (PML) nuclear bodies to form a nuclear
infection [79] and initiates viral transcription [80].

During microinjuries, HPVs generally infect the basal layer of the squamous epithe-
lium. In basal or para-basal cells, E6 and E7 proteins are expressed to stimulate cell division
in the epithelium [10,81]. During cell division, HPV DNA replication begins using cellular
machinery. HPV DNA replication is initiated by E1 and E2 proteins, which are expressed
in the middle epithelial cell layer. The E4 protein is expressed in the cells of the middle
to upper epithelium, which breaks the keratin links of the host cell cytoplasm and pauses
cell division. This protein enables the proliferation and release of HPV particles from the
dying host cells. In these HPV particles, the HPV genome is inserted into the viral coat and
assembles with L1 and L2 proteins in the uppermost epithelial layer. Most HPV proteins
are expressed in the upper epithelial layer during productive infection; however, E6 and E7
proteins are expressed in the basal cell layers [10].

5. Molecular and Genetic Basis of HPV-Induced Carcinogenesis

When the virus enters the nucleus of basal layer cells, early transcription begins
with the expression of E1 and E2 (viral replication/transcription factor) proteins, which
are needed for replication, partitioning of newly formed DNA, and positioning the HPV
genome into the cellular chromosome [59,82,83]. Early transcription of the viral transcrip-
tion factor E2 controls the expression of regulatory proteins (E6 and E7) by regulating their
promoter regions, and E6 and E7 proteins are necessary for the survival of HPV-infected
cells [84]. The E2 protein contains two regions, one for DNA binding and the other for the
protein-binding region, which prepares a homodimer for binding with four palindromic
regions present on the LCR, also known as upstream regulatory region (URR), and its three
regions are situated near the origin of replication [83]. E2 binds to viral helicase E1, which
interacts with and efficiently recognizes the origin of replication, recruits the machinery
for DNA replication, and initiates viral genome replication [42,85,86]. During replication,
the HPV genome produces nearly 50–100 copies per nucleus. This controlled genome
replication occurs in undifferentiated cells because of the expression of E8ˆE2, a highly
conserved viral repressor protein composed of a combination of the C-terminal halves of
E2 and E8 proteins [87]. It binds to specific DNA sequences and inhibits viral replication.
The E8 protein has repressive properties through interactions with cellular NCoR/SMRT
corepressor complexes [87]. The E8ˆE2-fused protein controls the replication process in
undifferentiated cells and facilitates constructive replication in differentiated cells [87]. In
infected basal cells, viral genome replication and equal division into daughter cells through
association with host cellular chromosomes via E2 attachment to mitotic chromosomes
are facilitated by contact with Brd4 (a human bromodomain protein) [88]. Brd4, like other
proteins, has been reported to anchor the HPV genome to host chromosomes, including
TopBP1 [89], ChlR1 [90] and MKlp2 [91]. The E2 protein also suppresses the P97 promoter
by limiting the access transcription of promoter transcription factors as well as by changing
chromatin conformation in infected cells to eliminate stimulation of the local immune re-
sponse [92–94]. Through this process, HPV can persist in the epithelial cells for a long time.
Infected basal cells then divide and develop transit cells with a viral genome that can move
towards the upper epithelial layer [95]. Viral gene replication and expression are conducted
with the process of epithelial differentiation. HPV16 and HPV18 have early promoters, such
as P97 and P105, respectively, which are responsible for the protein expression of early-stage
replication cycles such as oncoproteins E6 and E7 [96]. The E6 protein is required for the
maintenance of the episomal genome, and the E7 protein is responsible for the activation of
the G1 to S-phase checkpoint and potentially controls transcriptional alterations in infected
cells [97–99]. E7 activates the cell cycle in differentiating infected cells through interactions
with pRb (retinoblastoma tumor suppressor protein) and other proteins p107 and p130
(called pocket proteins) via the sequence LXCXE in CR2 sequences [100]. These pocket pro-
teins control the function of E2F family transcription factors, which regulate multiple cell
cycle transitions. E2F releases and stimulates the expression of cell cycle-associated genes,



Pathogens 2023, 12, 1380 7 of 24

cyclins A and E, which activate the conversion of the cell phase from G1 to S [84,101,102].
The E7 protein can also directly interact with E2F1 in a retinoblastoma-independent manner
in an in vitro and in vivo study, in which the E7 protein generated by the HR-HPVs binds
more tightly to E2F1 than to LR-HPVs and activates E2F1-dependent transcription and
promoter activities, which participate in the deregulation of the cell cycle and induction of
transformation [103]. Some studies have reported that the expression levels of E6 and E7
increased in the lower and middle-upper layers of the epithelium [104,105] but decreased
in the epithelial upper layer [51]. E7 is always present with E6 during the viral life cycle
because of the bicistronic nature of E6/E7 genes in the viral genome [106]. After viral
integration, the expression of the E6/E7 genes was constantly maintained, whereas other
genes were deleted or not expressed properly [107]. Two main HPV transcripts are gen-
erated: one encodes both E6 and E7 proteins, and the second encodes the complete part
of the E7 protein and the spliced E6 protein [108]. Most HPV transcripts are spliced using
cellular splicing and the polyadenylation processes and may enhance the stability of HPV
transcripts in cervical cancer cells [108].

5.1. E7 Protein

E7 acts as a regulator of the G1/S checkpoint (Figure 3). It induces neoplastic activ-
ity through its interaction with and further inactivation of retinoblastoma protein (pRb),
whose phosphorylation state depends on the cell cycle stage; that is, in the G0 and G1
phases, it is dephosphorylated. Phosphorylation inactivates the pRb, which in turn triggers
uncontrolled cell proliferation. The pRb regulates the cell cycle by interaction with the
E2F transcription factor in a phosphorylation-dependent manner. The Rb protein is phos-
phorylated by cyclin D kinases (CDKs) in the G1 phase, whereas after phosphorylation,
it cannot interact with E2F, and its inhibitory effect is no longer observed; thus, the cell
enters the S phase [44,109]. During the S phase, the Rb protein remains phosphorylated
until the hypophosphorylated state cannot be developed by a specific phosphatase in
later stages of the M phase [110]. These activities are essential for the replication and life
cycle of HPV [111]. In contrast, when damaged DNA is detected, p53 is activated, further
stimulating p21 (a CDK inhibitor). The p21 restricts the function of cyclin E-CDK2, which
does not phosphorylate the pRb. Therefore, the Rb protein can bind to E2F and inhibit the
function of E2F, thereby stopping the G1 to S transition [44].

Figure 3. The figure presented a schematic representation of HR-HPV-inducing carcinogenesis. The
figure was redrawn from [108].

The E7 oncoprotein also controls DNA methylation by regulating cell propagation
pathways; thus, epigenetic alterations occur via the Rb family of tumor-suppressor pro-
teins [112]. HPV-16 E7 has been shown to bind to DNA methyltransferase DNMT1 in vivo
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as well as in vitro studies for its activation [113]. When E7 interacts with Rb and E2F is
removed from the inhibitory complex, E2F binds to DNMT1, which is responsible for the
hypermethylation of CpG islands [114].

5.2. E6 Protein

In HPV-infected cells, the E6 protein primarily represents the neoplastic effect abroga-
tion of p53 depending on ubiquitin (Figure 3) [59].

p53 is a tumor-suppressor gene and a key regulator of apoptosis that stops the gener-
ation of cancer-causing destructive mutations. These mutations can cause DNA damage
and errors during replication. In such a situation, in the presence of abnormal DNA, p53
activates, the cell cycle ceases, and the DNA repair mechanism begins before cell separation.
Otherwise, cells undergo apoptosis when the DNA is not repaired [111]. In cervical cancer
cells, the level of p53 is lower than that in healthy cells, and its half-life is short. Therefore,
mutations persist in an unrepaired form and are carried forward to the next generation,
ultimately leading to genomic aberrations [110]. These conditions are deficient in DNA
repair mechanisms and encourage the mutagenesis of cancer cells.

The binding of E6 to p53 depends on E6-associated protein (E6AP). E6AP is an E3
ubiquitin protein ligase that performs proteasomal degradation via substrate recognition
through ubiquitination machinery [110]. HR E6 proteins inhibit the transcriptional activity
of p53 by binding to the histone acetyltransferase CBP/p300 [115,116] and induce con-
formational alterations in p53 [117]. E6 also accomplishes gene silencing through DNA
hypermethylation by increasing the DNMT1 levels. Degradation of p53 liberates the speci-
ficity protein 1 (Sp1) transcription activator, which interacts with the DNMT1 promoter
and upregulates its expression [112].

6. HPV Infection Generates Host Immune Response

Because the host immune response can combat HPV, specific symptoms do not often
occur during HPV infection. However, the recurrence of HPV infection develops in special
situations, including in people with immune disorders, sexual partners, comorbidities,
and elderly persons. Particularly during infection with HPV16 and HPV18, viruses cause
cancer progression in a few cases [118]. Both the innate and adaptive immune responses
are generated to combat HPV infections. During infection or sexual contact, highly specific
antigen-presenting cells (APCs), such as Langerhans cells (LCs), are activated and represent
HPV proteins on their surfaces. LC levels were significantly lower in the transformation
zone than in the exocervix. In addition, an increase in the number of LCs was observed in
squamous intraepithelial lesions (SILs), although they showed inadequate action [9,119].
In addition, during HPV16 L1 infection, LCs are unsuccessful in generating an appropriate
immune response owing to their immune tolerance [10]. Localization of LCs is expected
to be reduced in the epidermis because of lower E-cadherin expression in the epidermis
caused by most HPV species [120]. In epidermis that do not have lesions, LCs are unable
to induce a satisfactory immune response compared to DCs of the dermis because of the
absence of proper costimulatory signals [121]. In the skin, DCs and monocyte-macrophages
play a major role in recognizing HPV antigens and utilize major histocompatibility complex
(MHC) molecules to represent the antigens. These cells are immunologically induced by
interactions with various viral elements, including ssDNA, viral RNA, CpG motifs, and
Toll-like receptors (TLRs), and represent antigenic epitopes on their surface [10]. Effective
innate immune responses are generated via TLRs, which recognize specific patterns of
microbial components, such as PAMPs/DAMPs, and stimulate the production of type 1
interferons (IFN), defensins, and proinflammatory cytokines, such as TNF-α, IL-1β, IL-6,
and IL-12, which induce local inflammation [9,122–124]. These signals are required to
induce an adaptive immune response. TLR 9 significantly distinguishes the ds DNA of
HPV virus and starts the cascade process of INF-α, INF-β, and INF-γ interferons [125].
However, the HPV oncoproteins target both TLRs and interferon pathways, resulting in
an irregular expression pattern that enhances viral persistence as well as the carcinogenic
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process [126]. The oncoproteins E6 and E7 of HPV16 lowered the expression of TLR9 [127].
In addition, INF-γ and IL10 expression were interrupted in the malignant epithelium by
methylation of the promoter region or by oncogenes [128,129]. Cytokine secretion acti-
vates the macrophages, which can destroy HPV-affected cells through the production of
TNF-α or antibody-dependent cytotoxicity [130]. Monocyte chemotactic protein-1 (MCP-1)
chemokine is secreted by keratinocytes (KCs) under the influence of TNF-α, which can
attract macrophages at the site of infection, however, its secretion is reduced by the E6
protein of HPV 16 [131]. Similarly, E6 and E7 proteins of HPV 16 influence the expression
of another monocyte chemoattractant chemokine Macrophage inflammatory protein (MIP)-
3α [132]. NK cells also play an important role in innate immune response to fight against
viral infected cells or tumor cells that do not present MHC molecules on their surface. NK
cell deficiency was found in cervical cancer patients due to downregulation of NK cell
receptors expression, including NKp30, NKp44, NKp46 and NKG2D on the surface of NK
cells, resulting in lowered NK cell cytotoxic activity against tumor cells [133]. Likewise, in
the patients of severe combined immune deficiency (SCID) who received hematopoietic
stem cell transplantation therapy, which is a life-saving treatment, those having a defi-
ciency in NK cells or gamma(c)/JAK-3-dependent signaling represented inadequacy in
the generation of immune response against HPV infection [134]. When CD1d interacts
with CD1d-restricted natural killer T (NKT) cells, it activates NKT cells, releases cytokines
and stimulates adaptive immune responses, and acts as a link between the innate and
adaptive immune responses, whereas during infection, HPV6 or 16 expression of CD1d
is downregulated by the influence of E5 protein by the immune escape mechanism [135].
Figure 4 indicates the host–microbe interplay in HPV-induced invasive cancer.

Figure 4. HPV-related carcinogenesis hypothesis linking stromal cells, such as cancer-associated
fibroblasts (CAF), myeloid-derived suppressor cells (MDSCs), etc., immune cells and keratinocytes.
The figure was modified and redrawn from [136].

Innate immunity plays a key role in the primary removal of viral infection, and
adaptive immunity is responsible for the retrogression of lesions. The HPV oncoproteins
E2 and E6 are recognized by TH1 (CD4+ T helper 1) cells that secrete IL-2, IFN-γ, and
CD8+ Tc cells and facilitate the clearance of low-grade HPV infection. However, high-grade
neoplasia can be regulated by distinguishing E7 proteins from CD4+ TH1 cells [10,137,138].
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In addition, CD8+ cytotoxic T cells are considered imperative factors for the exclusion
of HPV infection and increasing patient survivability [139,140]. During HPV infection,
specialized APCs process HPV proteins into antigenic peptides expressed on MHC II
molecules on their cell surfaces, which recognize CD4+ helper T lymphocytes and initiate
an adaptive immune response. The generated immune cells secrete different cytokines,
such as interleukin (IL)-1, IL-6, TNF-α, and IL-12, which direct the immune response,
generate local inflammation, and act as danger signals [9,10]. After activation, CD4+ Th
cells differentiate into Th1 and Th2 cells. Th1 cells stimulate cell-mediated immunity,
while Th2 cells activate antibody production [10]. Th1 cells release cytokines, including
IL-2, IL12, and IFN-γ, which activate differentiation of the CD8+ T cells into cytotoxic
T lymphocytes (CTLs). These CTLs act as effector T cells that kill cancer or CIN cells,
representing HPV antigens. CIN is a type of cancer-stage dysplasia that occurs in cervical
squamous cells and acts as a potent premalignant transformation primarily generated by
HR-HPV 16 and 18 [141]. CIN is grouped into three types: (1) CIN1 (mild dysplasia),
(2) CIN2 (moderate dysplasia), and (3) CIN3 (severe dysplasia, and carcinoma in situ) [141].
CTLs secrete granzyme B and perforins and perform histological regression in the CIN
stages. Immunohistochemical studies have reported that CD8+ T cells present in CIN1 and
koilocytes in cervical lesions expressed α4/β7 integrin [124].

7. Immune Escape Mechanism for HPV Perseverance

HPV uses a variety of immune evasion mechanisms to suppress immune responses
and promote cancer progression [142]. HPV can show an immune escape strategy not only
by hiding itself from recognition by immune cells by downregulating viral antigens, but
also by disturbing the expression of immune response proteins, which further encourages
prolonged viral persistence [142]. Another mechanism of immune escape involves viral
particles formed by the natural process of cell shedding in the uppermost epithelial layer,
where limited access to the immune cells facilitates HPV evasion from immune recogni-
tion and the immune response [143]. In addition, HPV disturbs the DNA methylation
status and modifies the gene expression of host cell proteins, especially by downregulating
significant immunomodulators, such as cytokines/chemokines, adhesive molecules, and
TLRs [144,145]. HPV also hinders protein–protein interactions in host cells by interrupting
protein function [145]. HPV16 alters the expression of proteins involved in antigen process-
ing, such as the immunoproteasome subunits PSMB8 and PSMB9, in infected cells [146].
E5 oncoprotein of HPV16 lowers the cell surface expression of HLA class-1 molecules
on the APCs by retaining them into the Golgi compartment, which could interfere in the
action of the CTL attack [147,148]. The E5, E6, and E7 proteins of HPV16 interrupt the
interferon pathway by interacting with transcription factors (interferon response factors)
that activate interferon genes [149]. HPV18 dysregulates the expression of the cyclic guano-
sine monophosphate–adenosine monophosphate synthase-stimulator of interferon genes
(cGAS-STING), which represents a defense strategy against DNA viruses [150]. In an
in vitro study, HR-HPV (HPV16 and HPV18) episomes transfected to KCs illustrate the
disturbance in of inflammatory cytokine/chemokine expression [123]. HR-HPV expressing
E6 and E7 decreases the expression of TLR9 and hinders its function in viral particle recog-
nition [151,152]. These E6/E7 oncoproteins disrupt NFκB signaling by obstructing NFκB
translocation to the nucleus via hindrance of its transcriptional activities and inhibition
of its production of TLR-mediated proinflammatory cytokines/chemokines, which pre-
vent trafficking of innate immune cells and stimulation of appropriate Ag-specific effector
cells [153,154]. Further KCs infected with HPVs do not generate type-I IFN and proinflam-
matory cytokines, including IL-6, IL-8, TNF-α, and MIP3a [153,154]. HR-HPV infection
also stops the TNFα-associated necroptosis and IFN-γ-associated cell-cycle arrest via de-
creased expression of receptor-interacting protein kinase 3 (RIPK3) and interferon-induced
transmembrane protein 1 (IFITM1), respectively [155]. HPV can acquire all these strategies
to evade an effective immune response, which may eventually support the prolonged
persistence of HPV infection and cervical cancer progression.
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8. Prevention Strategies to Control HPV-Associated Cancers

There are three major strategies to regulate HPV infection as well as mortality and inci-
dence rate by its infection or by its consequent cervical cancer: (1) screening (pap screening)
for early detection of cancer, (2) vaccination programs, and (3) treatment coverage, which
are considered the most effective preventive strategies [156]. These three core activities can
be efficiently monitored by measuring the incidence of natural history of HPV infection,
cervical lesions, and cancers to reduce their occurrence. Comprehensive surveillance pro-
grams at national or subnational levels targeting these three pillars (screening, vaccination,
and treatment) are a framework in the WHO Global Strategy to reduce cervical cancer for
public health concerns [157]. The aim of the strategy is to achieve targets by 2030, especially
in low- and low-middle-income countries. This involves screening 70% of women at the
age of 35 and repeating the screening at the age of 45, ensuring that 90% of girls are fully
vaccinated by age 15 with the HPV vaccine, and ensuring that 90% of women diagnosed
with cervical disease receive proper treatment.

• (A) Screening:

The early detection of HPV plays a critical role in the prevention and management
of HPV infection and cervical cancer progression. Regular screening is critical for moni-
toring disease progression or regression as HPV infection is present in a latent form. HPV
infections (DNA or mRNA) in cervical or vaginal samples can be detected using the HPV
nucleic acid amplification test (NAAT) [158,159]. The primary test to detect HPV infection
is a nucleic acid base, while the examination of exfoliated cells by microscope to detect
the HPV-induced changes in the cervical epithelium is known as the Papanicolaou (Pap)
cytology test (Pap test or Pap smear) [160]. These tests illustrate that HR-HPV infections
and abnormal cell changes, such as precancerous alterations, can be treated earlier before
they are converted into cancerous cells. In addition to HPV NAATs and cervical cytology,
visual inspection with acetic acid (VIA) can also be used [161]. Therefore, VIA screening is
useful in locations with limited medical facilities. In this test, only a few tools are required,
and a dilution of white vinegar is applied to the cervical region, which turns white upon
contact with the vinegar; any abnormalities can be observed by the health care server
(cancer.net). The WHO, American College of Obstetricians and Gynecologists (ACOG),
and American Cancer Society (ACS) recommend the Pap smear test every three years for
women aged 21–65 and more frequently for immunocompromised women [162,163]. Nu-
cleic acid-based tests are available for the early detection and/or screening of HPV-infected
cervical cancer; however, there is no parallel system for screening HPV infection in other
cancers. Further research is required to develop methods for the detection and/or screening
of HPV infection in other malignancies, such as oropharyngeal cancer [164]. Surveillance-
based programs for effective cervical screening should be scaled up and strengthened to
support the elimination strategy using survey-based methods, population-based screening
studies, encouraging women to participate in screening programs and regular screening
based on cytology or VIA, and extending the infrastructure and healthcare staff facilities in
resource-limited areas [156].

• (B) Vaccination:

The HPV vaccination program against HPV was started in 2006, and Austria was the
first country to introduce a government-funded National Human Papillomavirus (HPV)
Vaccination Program. Before the recommendation of the World Health Organization in
2009, most high-income countries had already started funding national HPV vaccination
programs [165,166]. To date, 131 countries (67.52% of member states) have fully adopted
HPV vaccination and three have partially adopted HPV vaccination in their national
immunization schedules. However, the world’s most populous countries, that is, India,
China, Russia, and most Central and Middle East Asian and African countries, have not
started nationalized immunization.

Currently, six HPV vaccines are available: three bivalent (cervarix, cecolin, and walrin-
vax) that are effective against HPV-16 and 18; two quadrivalent (gardasil and cervavax)
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that are effective against four strains (HPV-16, 18, 6, and 11); and one nonavalent (gardasil
9) that is effective against the maximum number of strains (HPV-16, 18, 6, 11, 31, 33, 45, 52,
and 58). These vaccines are based on virus-like particles (VLPs) that self-assemble in the L1
capsid protein when expressed by recombinant DNA vectors and provide immunogens for
prophylactic vaccines [167,168].

Nearly 134 countries have HPV vaccination programs and mostly target females
only [18]. High-income countries have better vaccination coverage than other countries.
To date, of more than 200 HPV genotypes, only 14 have been classified as carcinogenic
(HR HPV) in humans by the International Agency for Research on Cancer (IARC), namely
HPV genotypes 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68 [169]. Among various
carcinogenic HPV types, only two, namely HPV16 and HPV18, are highly potent carcino-
gens and are responsible for the majority of the disease burden [170]. The mathematical
model and meta-analysis recommended that vaccination will lead to a strong herd effect,
and nearly 80% of HPV vaccinations in both sexes could eliminate HPV-16, 18, 6, and
11 [171]. Recent studies in the United States, Austria, Canada, Switzerland, and Australia
observed that targeting both sexes, i.e., gender-neutral vaccination (GNV), compared to
female only vaccine, has the potential to decrease HPV-associated disease significantly [171].
In 2022, the Strategic Advisory Group of Experts on Immunization (SAGE) of the World
Health Organization (WHO) concluded, on the basis of evidence over the past years, that
single-dose vaccines provide strong efficacy against HPV comparable to 2–3 doses. This
recommendation has a tremendous effect on the vaccination and prognosis of HPV in
LMICs, as more life-saving jabs are available [172]. However, the data are opaque regarding
individuals who have compromised immune systems, including those with HIV, and SAGE
suggested that they should receive at least two doses and, if feasible, three doses [172].

The WHO recommended a national immunization schedule for preliminary young
girls aged 9 to 14 years before they become sexually active, which helps to significantly
prevent HPV infection and associated cancer mortality; secondary targets are women over
15 years of age [173]. Research has shown that HPV vaccines are safe and facilitate the
reduction of HPV infections, genital warts, and HPV-associated cancer [174–178]. Although
HPV vaccination has several benefits, the global coverage of immunization is far from the
target, and at least 80% coverage is required to eliminate HPV infection [179]. To achieve the
elimination of cervical cancer in this century, the WHO targets fully vaccinating 90% of girls
at the age of 15 years, screening 70% of women 35–45 years, and treating 90% of women
who have cervical cancer by 2030 [180]. To eradicate cervical cancer, a successful model
adopted by high-income countries for immunization will provide a roadmap for LMICs.
The successful model adopted by high-income countries for immunization against HPV
infection will provide a roadmap for LMICs to eradicate cervical cancer. One of the most
successful pioneers is the Australian national HPV immunization program, which had over
89% and 86% coverage in girls and boys at age 15, respectively, for the single dose in 2017
and had among the highest coverage rates in the world [181]. In 2007, Australia started a
highly efficient government-funded school-based delivery of three doses of a quadrivalent
vaccine, which also involved multi-age cohorts of women (18–26 years of age). It is predicted
that cervical cancer will be reduced to less than four cases per 100,000 women per year
by 2028 and will have a very high probability of becoming the first nation to eliminate
cervical cancer by 2040 [182,183]. With a vaccination coverage of 90%, the Flanders region
of Belgium is another success story in the European Union; vaccine awareness among
health providers, better school health services with an improved vaccination database,
less vaccine hesitancy, and the influence of advertisements are successful pioneers in this
community compared to other regions [184]. In Sweden, since 2010, the introduction of a
fully funded government school-based program of quadrivalent vaccine covers more than
80% of the population; this mode of the program has reduced social disparities and showed
higher efficiency in immunization [185,186]. A recent survey with a 93% positive attitude
toward vaccines in Sweden is another example where vaccine hesitancy in lower-educated
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and socioeconomic communities was changed toward positive vaccination by well-aware
health providers [185].

• (C) Treatment:

An effective treatment strategy involving screening surveillance programs is crucial
to reduce the morbidity and mortality of cervical cancer. The WHO Health Organization
elimination strategy aims to achieve these goals by scaling up effective treatment rates to
maximize optimal care facilities or palliative care services, especially in low-resource set-
tings, to decrease cervical cancer incidences [187,188]. Surveillance of treatment approaches
is critically important to prepare a bridge between public health screening programs and
clinical services for the timely management of the disease. The appropriate treatment
for cervical cancer depends on specific settings such as healthcare facilities, resources,
services, and human resources [189]. Transformation of data and information between
local healthcare centers (where screening facilities and primary care services are available)
and cancer centers (where optimal care facilities are present and deciding which type of
therapies such as surgery, radiotherapy, chemotherapy, and other palliative care refer to
the patients) is critically important [156]. Additionally, electronic healthcare datasets with
subsequent healthcare records (e.g., hospitalization, emergency, and cancer treatment ser-
vice records) should be properly maintained in pathology and cancer registry records [156].
Various treatment methods for HPV-associated infections include surgical excision, vaginec-
tomy, cryotherapy, electrocautery, loop electrosurgical excision, carbon dioxide (CO2) laser,
salicylic acid, Imiquimod, Trichloroacetic acid, podofilox, and Brachytherapy, among oth-
ers [190]. However, there is no consensus on the best method. Management and diagnosis
of vaginal intraepithelial neoplasia (VaIN) are difficult; otherwise, it can evolve into inva-
sive cancer. Treatment of the VaIN depends on the grade of the lesion, VaIN 1 (low-grade
vaginal squamous intraepithelial lesions (SIL)) can be followed up, whereas VaIN 2–3 (high-
grade vaginal SIL) should be treated [190]. VaIN 1 shows a high potential for regression
in 48.8–88% of cases without treatment and has a low risk of progression. Clinical data
suggested that observation illustrated better results in comparison to recurrence, which
occurred in 22–24% of cases after treatment with a laser or excursion [191–194]. High-grade
lesions of the vagina (VaIN 2/3) have a 9–50% probability of progressing to invasive can-
cer without treatment [195]. The treatment choice depends on the characteristics of the
disease (extent of disease, severity, and site of disease), patient background and history
(age, immune status, parity, and sexual activities), prior treatment procedures, etc. [190].
The International Society for the Study of Vulvovaginal Disease (ISSVD), the European
Society of Gynecological Oncology (ESGO), the European College for the Study of Vulval
Disease (ECSVD), and the European Federation for Colposcopy (EFC) collaborated on
consensus statements for the management of pre-invasive vulvar lesions. This initiative
aims to improve the quality of care for patients infected with VaIN [190].

9. Vaccination Stratagems to Fight against HPV Infection

The Centers for Disease Control and Prevention (CDC) defines a vaccine as a prepara-
tion used to stimulate the body’s immune response against diseases. It trains our immune
system to protect our body when exposed to a disease; it contains a weak or killed form
of bacteria, peptides, nucleic acids, or proteins that do not cause disease or risk of compli-
cations. Although prophylactic HPV vaccines developed over the last decade have been
extremely successful in preventing HPV infections, they are incapable of eliminating or
treating HPV or HPV-associated lesions or infections [196]. HPV etiologic factors play a
critical role in HPV-associated diseases such as cervical cancer, anal cancer, and non-cervical
malignancies, and a cost-effective public HPV vaccination strategy will play a major role
in eradication, even in places with low cervical cancer screening, especially among girls.
Ideal HPV vaccines should have the following characteristics: safety, targeting cancer speci-
ficity, long-lasting effect, ability to potentially activate an HPV-specific immune response,
minimum dose requirement, and last but not least, minimal cost [168].
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Bacteria and viruses are utilized as delivery vehicles in live vector vaccination, to
immunize the system; they infect the host, replicate in the body, and spread the antigen [197].
Live vector-based vaccines are immunogenic and are capable of boosting robust humoral
and cell-mediated immune responses. Therapeutic HPV vaccines can deliver E6 and/or E7
antigens through live vectors to antigenic-presenting cells, and present antigens on cells
via the MHC-I and MHC-II pathways [198].

Several bacterial vectors have been reconstituted for the delivery of antigens of interest
to APCs and have been developed into therapeutic HPV vaccines. Some of these atten-
uated bacterial vectors include Listeria, Shigella, Salmonella and Escherichia coli. [199–201].
Listeria monocytogenes, a Gram-positive intracellular facultative bacterium, is a promising
vector candidate for antigen delivery [202]. Live Listeria monocytogenes-based fused (pore-
forming toxin, listeriolysin O) vaccine antigens are processed and presented through the
MHC-I and MCH-II pathways, which can induce antigen-specific CD8+ and CD4+ T cell
responses [203–205]. In preclinical trials, Listeria monocytogenes-based HPV E7 vaccine has
been able to restrain the growth and burden of tumors in wild-type and transgenic mice by
stimulating E7-specific CD8+ T cell response [206–211]. The immunogenicity demonstrated
by Listeria monocytogenes-based HPV E7 vaccine in preclinical studies has been further
translated into clinical studies. ADXS11-001, a fusion of a modified LLO molecule and
HPV16 E7 protein, is a live, attenuated Listeria monocytogenes-based vector vaccine that
has demonstrated safety and efficacy in women with cervical cancer (NCT01266460) and
HPV-associated head and neck (NCT02002182) cancer in a clinical trial [201,204,212].

In addition to bacterial vectors, several live virus vector-based HPV vaccines have
been explored for the development of therapeutic HPV vectors in preclinical and clinical
trials owing to their high immunogenicity. To deliver HPV E2, E6 and E6 antigens, sev-
eral live viral vectors, such as alphaviruses, lentiviruses, adenoviruses, adeno-associated
viruses, and vaccinia viruses, have been used [201,203,213]. Among these viral vectors,
the vaccinia virus, an envelope, and a double-stranded DNA virus have demonstrated
high immunogenicity in clinical studies. In phase I/II clinical trials, live recombinant
vaccinia-based vaccine expressing HPV16 and 18, E6/E7 proteins (TA-HPV) showed im-
munotherapeutic effects against cervical cancer [214]. Another modified vaccinia Ankara
virus (MVA), encoding the bovine papillomavirus type 1 (BPV-1) E2 protein, showed a
robust antigen-specific immune response and complete regression of precancerous lesions
in patients with CIN1/2/3 lesions [215–217] and in a phase III clinical trial, it was also used
for the treatment of HPV-associated intraepithelial lesions in anogenital [218]. Although
live vector-based therapeutic vaccines have shown promising results in clinical trials, they
have safety issues, particularly in immunocompromised individuals.

A long or short peptide derived from the epitope of the HPV antigen that is exposed
to DCs for processing and presentation to MHC-I molecules can activate antigen-specific
immune responses. Compared to live vector-based vaccines, peptide vaccines provide
several advantages, such as stability, safety, and ease of production, but have weak im-
munogenicity and MHC restriction [201,219]. Adjuvants such as lipids, toll-like receptor
(TLR) ligands, chemokines, and cytokines are used to improve the strength and efficacy
of peptide-based HPV vaccines. In addition, some specific adjuvants that have been
previously applied to improve the potency of HPV vaccines are the IgG fragment [220],
aluminum adjuvants [221], the cytokine bryostatin that stimulates DC [222], and TLR
agonists [221,223–226]. Another drawback of HPV peptide-based vaccines is that they are
only effective against specific epitopes of the HPV antigen and require the identification
of each individual. HPV peptide-based vaccines are major histocompatibility complex
(MHC)-specific, which is a major challenge for the treatment of HPV-associated diseases
and large-scale production. This challenge can be overcome by producing overlapping
long-peptide vaccines that can stimulate antigen-specific T cells [227,228].

In a phase II trial, it was observed that two doses of the HPV16-SLP vaccine were
capable of eliciting a robust and stout response in HPV16-specific T cells with low-level
abnormalities in cervical cancer, and when combined with standard chemotherapy, they
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demonstrated enhanced immunogenicity in advanced cervical cancer [226,229]. This result
led to the design of additional clinical Phase I/II studies to evaluate the potential of vaccines
for advanced cervical cancer ((NCT02128126) and other HPV-associated malignancies
(NCT01923116) [230]. There are several other studies in different clinical phases to evaluate
peptide-based therapeutic HPV vaccines with different adjuvants also in trials, such as the
PepCan ((NCT02481414) vaccine (four cGMP-manufactured synthetic peptides) in high-
grade squamous intraepithelial lesions [231], with adjuvant Montanide™ and granulocyte-
macrophage colony-stimulating factor with recurrent/metastatic squamous cell carcinoma
of the head and neck [232].

10. Concluding Remarks

Human papillomavirus (HPV) is the most common sexually transmitted agent that
causes lethal cancers, particularly cervical cancers. The high mortality and prevalence
rates of cervical cancer, particularly in developing countries, have reached an alarming
level and drawn urgent attention. The immunological components of the effective innate
and adaptive immune responses are essential r for fighting viruses in the HPV lesion
microenvironment. These immune responses have been endorsed using effective and safe
vaccines that can stimulate the cytokine milieu, Treg cell generation, and cell-mediated
immune responses for the clearance of HPV infections. HPV displays an immune evasion
mechanism to escape the host’s immune response, particularly HR-HPVs, HPV-16 and -18.
The 9-valent vaccine seems to provide satisfactory and effective results, but there is a need to
develop broad-spectrum, next-generation vaccines that efficiently target HR-HPV variants
and other HPV-existential proteins. Surveillance and awareness programs for diagnostics
(screening), immunization (vaccination), and treatment should be budget- and resource-
strengthened to reduce the burden of infection on women and prevent infection progression.
Prevention of HPV infection is better than the treatment of cervical cancer; therefore, a
nationwide vaccination program for HPV infection would help lower the prevalence of
cervical cancer in the future if most girls and women participate in immunization programs.
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