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Abstract: Pathogens can influence the physiology and behavior of both animal and plant hosts in a
manner that promotes their own transmission and dispersal. Recent research focusing on insects has
revealed that these manipulations can extend to the production of pheromones, which are pivotal
in chemical communication. This review provides an overview of the current state of research
and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on
chemical communication across different insect orders. While our understanding of the influence
of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown
to induce behavioral changes in the host, such as altered pheromone production, olfaction, and
locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular
hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to
influence insect behavior by affecting the production of pheromones and other chemical cues. The
effects induced by these infections are explored in the context of the evolutionary advantages they
confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated
behavioral changes, as well as the dynamic and mutually influential relationships between the
pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms
will prove invaluable in identifying novel targets in the perspective of practical applications aimed at
controlling detrimental insect species.
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1. Introduction

Pathogens can manipulate host physiology and behavior to their benefit across the
tree of life, with effects reported from plants to animals, including both vertebrates and
invertebrates [1–11]. The effects of this manipulation are extremely variegated. In plants,
for instance, bacterial pathogens can hijack the host physiology, affecting its metabolites
and immune proteins to promote their own dissemination through increased attraction
of insect vectors [9,10,12], or they can alter hormonal signaling and susceptibility, aug-
menting pathogen growth and its ability to evade host defensive responses [11]. In land
snails, parasitic flatworms can concentrate in the host eye stalks and pulsate to attract snail
bird predators, which are the primary flatworm hosts [7]. Similarly, the manipulations
induced in rats and mice by Toxoplasma gondii (Eucoccidiorida: Sarcocystidae), an obligate
intracellular protozoan able to reduce their fear of cats and increase the chances of being
predated, favors the transfer of the parasite to the cat, its primary host [13–16]. These effects
are achieved through the modification of vasopressin and dopamine metabolism and the
consequent epigenetic brain reprogramming. Hairworms (Nematomorpha) can alter crick-
ets’ behavior, making them jump into water, thus enabling the hairworms to reach their
reproductive habitat [5]. The fungus Ophiocordyceps unilateralis (Hypocreales: Ophiocordy-
cipitaceae), a parasite of Camponotus leonardi Emery, 1889 (Hymenoptera: Formicidae) ants,
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is known to induce its hosts to reach an elevated position (i.e., summiting behavior) and
bite into vegetation before death [17]. This extended behavioral phenotype [18,19] allows
the fungus fruiting body to grow, ensuring widespread spore dispersal [20]. Ants of the
species Formica fusca Linnaeus, 1758 (Hymenoptera: Formicidae) can be infected by another
parasite, the lancet liver fluke Dicrocoelium dendriticum (Rudolphi, 1819) (Plagiorchiida:
Dicrocoeliidae), a trematode that can take over the host’s navigational abilities until the
ant is predated by grazing animals [21,22]. Analogous suicidal behaviors are induced by
infections of Mermis nematodes in parasitized ants, which, after infection, search for water,
jump in, and drown [23]. Similar behavioral phenotypes have been recently observed in
several other summit disease systems, including those mediated by fungal and baculovirus
infections (see [24] for a review). The mechanisms underlying such peculiar phenotypes
are poorly understood and recent multi-omic approaches are beginning to reveal a dysreg-
ulation of neuronal signaling and the levels of neurotransmitters [25]. Numerous fungal
molecules have been proposed to interact with ant molecular pathways, resulting in be-
havioral changes such as modified locomotion, feeding, light-sensing, circadian rhythms,
and muscular hyperactivity [26–32]. The use of machine learning to predict host–parasite
protein–protein interaction (PPIs) is an emerging approach aimed at generating fresh in-
sights into the mechanisms behind these behavioral alterations, as recently shown by Will
and colleagues [33]. In this study, PPIs involving fungal S8 proteases, oxidation-reduction
processes, gene regulation, GPCRs, and cuticular proteins have surfaced as promising
candidates for functional validation, providing new insights into co-evolved adaptations
that underlie these modified behaviors.

Pathogens have also demonstrated the ability to manipulate the central mechanisms in
the brain of vertebrates, thereby altering social interactions, including aggressive, reproduc-
tive, and parental behaviors, to promote their own transmission [34]. Intriguingly, recent
research has revealed that infection with the bacterial pathogen Mycoplasma gallisepticum
Edward and Kanarek, 1960 (Mycoplasmatales: Mycoplasmataceae) can lead to an increase
in social preferences among juvenile house finches Haemorhous mexicanus (P.L. Statius
Muller, 1776) (Passeriformes: Fringillidae) [35]. Specifically, infected finches spent more
time associating with healthy flocks compared with uninfected individuals, with significant
implications for Mycoplasma transmission. Additionally, male guppies (Poecilia reticulata
Peters, 1859 (Cyprinodontiformes: Poeciliidae)) hosting high loads of the flatworm ec-
toparasite Gyrodactylus turnbulli Harris, 1986 (Gyrodactylidea: Gyrodactylidae) exhibited
increased sociality, possibly to enhance their mating opportunities and consequently trans-
fer the parasite onto other hosts [36].

Pathogen-induced alterations in social behavior are not limited to vertebrates, they
also extend to invertebrates. An example of this phenomenon can be observed in crus-
tacean hosts (genus Artemia (Anostraca: Artemiidae)), which, when infected with two mi-
crosporidian parasites, show increased swarming and surfacing propensity, resulting in aug-
mented spore transmission to new hosts [37]. In a recent study, adult Caenorhabditis elegans
(Maupas, 1900) (Rhabditida: Rhabditidae) hermaphrodites exposed to the bacterial pathogen
Pseudomonas aeruginosa (Schroeter 1872) (Pseudomonadales: Pseudomonadaceae) displayed
a modulated sensory response to pheromones [38]. Considering that ascaroside pheromones
repel hermaphrodites and attract males, this avoidance was shown to facilitate individual
dispersal, promoting mating with a potential adaptive role for the host, as outcrossing may
be advantageous over selfing in certain environmental conditions. This study shed new
light on the roles played by pathogens in inducing social behavior plasticity, which can in-
crease genetic diversity and favor host adaptation. The documented instances of increased
sociality are thus not only advantageous for the pathogen but they might also ultimately
enhance host fitness. This underscores the intricacy of such infection-related behavioral
changes, which can be driven by the host or the pathogen, or can be a combination of both
types of manipulations [39].

Pathogen-induced behavioral changes represent an interesting research area in en-
tomology, with ecological and practical implications for the preservation of beneficial
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species and the management of agricultural pests and disease vectors. For instance, fungal
infections can impact host thermal tolerance, as shown in the system involving the fun-
gal pathogen Beauveria bassiana (Bals.-Criv.) Vuill., 1912 (Hypocreales: Cordycipitaceae),
the herbivorous insect Acyrthosiphon pisum (Harris, 1776) (Hemiptera: Aphididae), and
its predator beetle Hippodamia convergens (Coleoptera: Coccinellidae) [40]. In this case,
fungal infection reduced the heat tolerance of both the pea aphid and the beetle. Con-
versely, the effects on cold tolerance were species-specific, with reduced cold tolerance
found only in H. convergens. This example illustrates how pathogens can play a role in
shaping predator–prey interactions and food webs, carrying implications for insect control.
Furthermore, parasite infection may increase insect activity, potentially leading to higher
parasite dispersion and, consequently, higher transmission rates. This is exemplified by
the case of the nymphs of the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae),
which exhibit increased locomotor activity when infected with Trypanosoma rangeli Tejera,
1920 (Trypanosomatida: Trypanosomatidae) [41]. Along the same lines, the mosquito
vector Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae), when infected with a virulent
strain of Wolbachia pipientis Hertig, 1936 (Rickettsiales: Anaplasmataceae) able to shorten
insect lifespan, displays increased activity and metabolic rates [42]. In the same mosquito
species, infection with the dengue virus DENV-1 not only affects locomotion but also odor-
mediated behavior. The mosquito peripheral olfactory system is altered by this arbovirus
infection, with enhanced antennal neural responsiveness resulting in improved mosquito
host-seeking capacity and, consequently, increased virus transmission risks [43].

Chemical communication is fundamental to fulfil insect needs, such as locating food,
mates, and oviposition sites, as well as avoiding predators and detrimental microbes. In
this context, pheromones play a well-established role. Pheromones are generally defined
as molecules capable of mediating communication between conspecifics [44], and they
serve a wide spectrum of functions, including sexual interaction, aggregation, alarm sig-
naling, and trail and host marking [45,46]. Pheromones are typically mixtures of different
compounds and their composition is strongly influenced by various factors, including
diet and endosymbionts (for a comprehensive review, see [47] and references therein).
The important role of microbiota on the physiology and ecology of insect species is a
widely described phenomenon. It comprises nutritional symbiosis, provision of bioactive
compounds, protection against toxins and parasitoid wasps, enhanced resistance towards
fungal and bacterial pathogens, pesticide detoxification, and effects on prey–predator inter-
actions [48–60]. Interestingly, symbionts can also influence insect chemical communication.
For example, endosymbionts can produce volatiles used as sex pheromones [61–64] or
aggregation pheromones [65,66], other can convert pheromones into repellents [67], or can
participate in the metabolism of cuticular hydrocarbons [68].

Conversely, there is still limited information regarding the influence of insect parasites
and pathogens on the alteration of host pheromone production and, thus, their communica-
tion capacity [48]. Expanding our understanding in this field is crucial for gaining insights
into the impact of pathogen infections on the biology of insect hosts.

In this review, we aim to provide an up-to-date overview of the literature that explores
the impact of pathogens on insect pheromone production and the related sexual behavior.
These findings are described in the context of the adaptive role of these manipulations,
which are generally known to alter host behavior in a way that enhances the likelihood of
pathogen transmitting [69].

This topic has so far been investigated in insect hosts belonging to the Diptera, Lep-
idoptera, Hemiptera, Hymenoptera, Orthoptera, Blattodea, and Coleoptera orders, as
summarized in Table 1.
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Table 1. Insect pathogens and their impact on the host chemical communication at the genomic,
physiological, and behavioral levels.

Pathogens
(Superkingdom/Kingdom)

Insect Host Species
(Order) Effects on Host References

Bacteria

Pseudomonas entomophila
Serratia marcescens

Pectobacterium carotovorum

Drosophila spp.
Aedes aegypti

(Diptera)
Increased pheromone emission [70]

Viruses

Hz-2V Helicoverpa zea (Lepidoptera)
Females: calling behavior, increased pheromone

production, stronger male attraction.
Males: cannot produce pheromonostatic peptide

[8,71,72]

SeMNPV 1 Spodoptera exigua
(Lepidoptera)

Changes in expression of larval odorant
receptors resulting in behavioral responses to

its ligands
[73]

AcMNPV 2
Spodoptera frugiperda

Trichoplusia ni
(Lepidoptera)

Co-induction of Desaturase1 and bond
(pheromone production/perception and

conspecific signaling).
Enrichment in functions related to fatty acid
biosynthesis and pheromone metabolisms

[74]

DCV 3 Drosophila spp.
(Diptera) Induction of pherokine-2 [75]

DENV-2 Aedes aegypti
(Diptera)

Effects on the expression of
chemosensory-related genes involved in the

regulation of blood feeding
[76]

RVFV 4 D. melanogaster
(Diptera) Changes in odor response and activity [77]

RhPV 5 Rhopalosiphum padi
(Hemiptera) Increased sensitiveness to the alarm pheromone [78]

Fungi

Beauveria bassiana Triatoma infestans
(Hemiptera)

Differences in the profile of volatile
organic compounds.

Increased expression of genes involved in the
synthesis of volatile short-chain fatty acids

[79,80]

Beauveria bassiana
Beauveria brongniartii

Melolontha melolontha
(Coleoptera)

Ostrinia nubilalis
(Lepidoptera)

Alterations in cuticular hydrocarbon profile [81]

Nosema spp. Apis mellifera (Hymenoptera)

Workers: Increased production of the primer
foraging pheromone ethyl oleate. Increased

flight activity and mortality.
Queen: Increased vitellogenin titer, antioxidant

capacity, and mandibular pheromones.
Increased synthesis of alarm

pheromone component.
Alterations in cuticular hydrocarbon profile

[82–86]

Paranosema (Nosema) locustae Locusta migratoria manilensis
(Orthoptera)

Inhibition of aggregation behavior due to
decreased production of aggregation pheromone [87,88]

Pandora neoaphidis Acyrthosiphon pisum
(Hemiptera) Increased release of alarm pheromone [89]
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Table 1. Cont.

Pathogens
(Superkingdom/Kingdom)

Insect Host Species
(Order) Effects on Host References

Conidiobolus coronatus Blatta orientalis
(Blattodea)

Increased production of cuticular hydrocarbons
and other surface compounds [90]

Metarhizium brunneum Lasius neglectus
(Hymenoptera)

Changes in cuticular hydrocarbon profile and
alteration in volatile chemical cues emission [91]

Entomophthora muscae Musca domestica
(Diptera)

Production of a mixture of volatile
sesquiterpenes altering the CH profile in

female cadavers
[92]

Eukaryota

Phylum Apicomplexa

Plasmodium falciparum Anopheles gambiae
(Diptera)

Production of terpenes putatively mediating
mammalian host preference [93]

Plasmodium berghei Anopheles albimanus
(Diptera) Altered cuticular hydrocarbon profile [94]

Phylum Euglenozoa

Trypanosoma brucei Glossina morsitans morsitans
(Diptera)

Altered chemical profiles of infected
mated individuals.
Reduced fecundity

[95,96]

Phylum Platyhelminthes

Hymenolepis diminuta Tenebrio molitor
(Coleoptera)

Decreased production of non-volatile copulatory
pheromone in females.

Negative effects on male response to pheromone
[97]

Tribolium castaneum
(Coleoptera)

Altered behavior.
Decreased male sperm precedence and fitness.

Decreased production of defensive compounds
[98–100]

Tribolium confusum
(Coleoptera)

Reduced survival, fecundity, mating vigour,
carbohydrate metabolism,
and pheromone response.

Upregulation of pheromone binding proteins

[101–104]

Phylum Nematoda

Heterorhabditis bacteriophora Diabrotica virgifera
(Coleoptera)

Increased emission of volatiles such as butylated
hydroxytoluene [105]

1 Spodoptera exigua multiple nucleopolyhedrovirus. 2 Autographa californica multiple nucleopolyhedrovirus.
3 Drosophila C virus. 4 Rift Valley fever virus. 5 Rhopalosiphum padi virus.

Achieving a wider understanding of the pheromone-mediated behavioral changes
triggered by pathogen infections also offers substantial potential for the development and
improvement of tools for insect pest and vector control within integrated pest and vector
management (IPM and IVM, respectively) approaches. Given that environmentally friendly
insect control strategies often rely on communication disruption methods (see [106] for a
review), exploring the molecular underpinnings of pathogen-mediated behavioral changes
is a promising research field.

The following sections of this review will illustrate the existing knowledge concerning
the impact of pathogens belonging to bacteria, viruses, fungi, and eukaryote taxa on the
chemical communication of their insect hosts. The described effects are examined within the
context of the evolutionary advantages they provide to the pathogen, as well as in relation
to the life history traits that insect hosts can compromise in their efforts to counteract
pathogen infection.
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2. Bacteria

Although Drosophila is considered a powerful model to study the host immune, hor-
monal, and metabolic responses to pathogenic bacteria [107–116], the specific effects these
infections cause on pheromone production and, consequently, on chemical communication
are still largely unexplored.

So far, only one study showed that the infection of pathogenic bacteria can induce
a pheromone change in D. melanogaster Meigen, 1830 (Diptera: Drosophilidae) [70]. In-
deed, gas chromatography mass spectrometry (GC-MS) analyses of the volatile and non-
volatile chemicals emitted by Drosophila infected by pathogenic and non-pathogenic bac-
teria resulted in sharply different results. Infection with the non-pathogenic bacteria
Lactobacillus plantarum (Orla-Jense 1919) (Lactobacillales: Lactobacillaceae) and Acetobac-
ter pomorum Sokolle et al., 1998 (Rhodospirillales: Acetobacteraceae) and the facultative
endosymbiont Wolbachia did not result in differences in the odor profile. Conversely, in-
fection with the natural bacterial pathogens Pseudomonas entomophila Mulet et al., 2012
(Pseudomonadales: Pseudomonadaceae), Serratia marcescens Bizio, 1823 (Enterobacterales:
Yersiniaceae), and Erwinia carotovora carotovora (Pectobacterium carotovorum (Jones, 1901)
Waldee, 1945 (Approved Lists, 1980) emend. Portier et al., 2019) (Enterobacterales: Pectobac-
teriaceae)) strongly affected the chemical profile of both male and female adult flies. These
pathogenic manipulations affected olfactory cues related to both attraction and aggregation.
Infected flies were found to release increased levels of chemicals, including the aggregation
pheromones methyl laurate, methyl myristate, and methyl palmitate. These volatiles were
demonstrated to attract healthy flies, thereby facilitating the further spread of the pathogen
once the healthy flies became infected.

In the same study, authors also tested P. entomophila infection in other dipteran species,
namely eight other Drosophilids, the blue bottle fly, Calliphora vomitoria (Linnaeus, 1758)
(Diptera: Calliphoridae), and the two mosquitoes Aedes aegypti and Culex pipiens Linnaeus,
1758 (Diptera: Culicidae). The infections proved lethal for all the tested species. However,
intriguingly, a significant increase in the emissions of potential fatty-acid pheromones was
observed in seven Drosophila species and Ae. aegypti. This discovery paves the way for
further exploration into the potential conservation of pheromone manipulations induced
by P. entomophila across distantly related insect species.

To the best of our knowledge, no additional effects of pathogenic bacteria on insect
chemical communication and, consequently, their behavior have been reported thus far,
rendering this research field largely unexplored.

3. Viruses

Viral replication has been observed to influence the reproductive physiology and
behavior of infected insects, indicating the existence of a co-evolutionary relationship
between the virus and the host aimed at facilitating transmission. This is the case of the
rod-shaped enveloped virus Helicoverpa zea nudivirus 2 (Hz-2V) (Lefavirales: Nudiviridae),
found to be able to persistently infect a colony of Helicoverpa zea (Boddie, 1850) (Lepidoptera:
Noctuidae), the corn earworm moth [8,117,118]. This virus can be horizontally transmitted
during mating [118]. In infected females, the virus primarily replicates in the oviducts,
where the viral particles accumulate with a matrix, forming a plug of virus-filled vesicles
located on the tip of the vulva [119] that contributes to further infection upon mating
with healthy males [120]. Interestingly, viral replication in reproductive tissues results
in insect malformations and sterility (agonadal condition) [119,121,122], with effects on
insect behavior. Indeed, in flight tunnel assays, agonadal females exhibit calling, producing
five to seven times more pheromones than controls, resulting in attraction of more males
than those attracted by uninfected females [8]. This increased attractiveness of infected
females may facilitate viral transmission across insect populations. Moreover, infected
agonadal males lack accessory glands and cannot produce the pheromonostatic peptide
(PSP) that, when transferred to females upon mating, induces a strong decrease in female
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pheromone titer. These effects thus negatively affect calling behavior [72] and favor viral
transmission [71].

Viral infection can induce alterations in host perception by modulating the expression
of olfactory genes. Notably, infection by baculoviruses, which are double-stranded DNA
entomopathogenic viruses, has recently been shown to affect the olfaction of the host. This
effect is likely related to the enhanced locomotion activity shown by baculovirus-infected
larvae of Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae), suggested to promote
viral dispersion [123]. The multiple nucleopolyhedrovirus of Spodoptera exigua (SeMNPV)
can induce changes in the expression of some odorant receptors (ORs) during the larval
stage [73]. The functional characterization of SexiOR35, which was strongly upregulated
upon SeMNPV infection, revealed a link between the change in transcription and infection-
related shifts in larval behavioral responses to linalool and estragole, two of its main ligands.
Whether the observed changes resulted from a specific effect of infection or a related side
effect remains to be determined.

The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is
known to cause systemic infections in over 35 lepidopteran species [124]. Among the
insect species most vulnerable to AcMNPV infection, we can find the serious agricultural
pests Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae), the fall armyworm, and
Trichoplusia ni (Hubner, 1803) (Lepidoptera: Noctuidae), the cabbage looper. The infection
of this baculovirus via horizontal transmission derived from virus consumption has fatal
effects, leading to the liquefaction of the insect larval host [125]. In addition, the infection
of the midgut epithelial cells results in secondary infection in the open circulatory system,
favoring invasion of other tissues and hampering larval growth or molting [74]. The genetic
bases of AcMNPV infection are still poorly characterized but are extremely important to be
unraveled to exploit the biocidal activity of AcMNPV on its hosts. In this view, interesting
perspectives have been provided by a recent study that generated transcriptomes from the
hemolymph of AcMNPV-infected S. frugiperda and T. ni fourth instar larvae [74]. In infected
hosts, chitin metabolism, tracheal development, and immunity genes were found to be tran-
scriptionally suppressed, and induction of oxidative stress indicated disease progression in
the insect hosts [74]. Interestingly, the genes Desaturase1 (Desat1), known to have effects
on Drosophila pheromone production and perception [126,127] and bond, which has roles
in conspecific signaling [128], are co-induced in infected hosts [74]. In addition, functions
related to fatty acid biosynthesis and pheromone metabolisms are observed to be enriched
in response to AcMNPV infection, similar to the trend detected in other insect species, such
as Drosophila [75] and Aedes aegypti [76], as explained below. The finding that pheromone
signaling pathways appear to be generally inducted during viral infection in different
insect models suggests that the pathogen may exploit them to favor host aggregation,
thus facilitating viral spread and, consequently, disease progression among individuals.
On this basis, Pantha and colleagues suggest that the pleiotropic gene Desat1 may be a
good candidate for future studies as it may be co-opted for behavioral traits evolved in the
context of the co-evolution between lepidopteran hosts and baculoviruses [74].

Additional studies used the Drosophila model to investigate response to viral infection.
For example, Sabatier and colleagues developed a model using the Drosophila C virus
(DCV) [75]. Drosophila is a natural host for this pathogen, which is a non-enveloped small
single-stranded (+) RNA virus transmitted horizontally [129–131] and that was found to
induce one peptide, namely pherokine-2 (Phk-2), in the hemolymph of infected flies [75].
In the same study, pherokine-3 (Phk-3) was found to be induced by bacterial challenge. On
this basis, and since these pherokines correspond with the products of a gene related to
sequences specifically expressed in the antennal olfactory region, a potential role of the
sensory system in host-defense in Drosophila has been suggested [75,132], as occurring in
social insect species [133,134]. However, the overexpression of Phk-2 in transgenic flies was
not found to increase protection against infection with DCV [75].

In this context, an additional recent study focused on analyzing the effects of a human
pathogenic arbovirus on the olfaction of D. melanogaster. Infection with the Rift Valley
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fever virus (RVFV) resulted in decreased antennal responses to food-related odorants and
reduced locomotor activity, potentially due to a direct effect of the virus on the host nervous
system [77]. This study provides a novel perspective in the field, indicating Drosophila as a
useful model to investigate arbovirus–vector interactions.

Among the human pathogenic arboviruses of major public health importance, the
dengue virus DENV-2 has been reported to affect the expression of chemosensory-related
genes that regulate blood feeding in its vector, the mosquito Ae. aegypti [76]. Two odorant-
binding proteins (OBPs) identified as responsive to DENV-2 infection seem to play a role
in the probing process, as their silencing negatively affects blood acquisition. This viral
induction of OBPs could theoretically increase viral transmission efficiency.

The Rhopalosiphum padi virus (RhPV) (Picornavirales: Dicistroviridae) can infect aphids
(Hemiptera: Aphididae) and affect their biology, including reduction of longevity and
fecundity [135]. In the aphid Rhopalosiphum padi (Linnaeus, 1758) (Hemiptera: Aphididae),
uninfected individuals were observed to be attracted to the odor emitted by other unin-
fected aphids, leading to aggregation on the host plant. In contrast, infected individuals did
not exhibit this attraction and failed to respond to cues, indicating host suitability. Interest-
ingly, infected aphids were more sensitive to the alarm pheromone [78]. Additionally, the
ladybird Coccinella septempunctata Linnaeus, 1758 (Coleoptera: Coccinellidae) exhibited a
higher predation rate on infected aphids compared with uninfected individuals. The aphid
parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) demonstrated a preference
for attacking infected insects. These observations underscore the potential interference
of pathogens with insect chemical communication. The question of whether the reported
effects are advantageous for the aphid or the virus remains an open inquiry.

4. Fungi

In comparison to other pathogens, the infection of fungal pathogens in insects has
received more extensive attention. The reported effects on the host primarily involve
altered pheromone production, modification of volatile organic compounds (VOCs), and
changes in cuticular hydrocarbon (CH) profiles.

Adults of Triatoma infestans (Hemiptera: Reduviidae) can secrete a mixture of VOCs
with alarm function and potential sexual and defensive roles [79,136–139]. Lobo and
colleagues observed that T. infestans infected with the entomopathogenic fungus B. bassiana
showed differences in the VOCs’ profiles [80]. In particular, the amount of propionic acid,
a major component of the alarm pheromone in this species, was up to three-fold higher
1–4 days post-infection with respect to its level in uninfected individuals. In addition, the
two genes Ti-brnq and Ti-bkdc, involved in the volatile short-chain fatty acid synthesis,
increased their expression in individuals in the early stages of fungal infection. These data
contribute to shedding light on the chemical ecology of triatomine bugs, a research field of
particular importance, especially from an applied perspective in vector control, given the
major role of T. infestans as a vector of the causative agent of Chagas disease in the Southern
region of South America.

The obligate specialist pathogen of aphids, Pandora neoaphidis (Entomophthorales:
Entomophthoraceae), has been suggested to face higher selection pressure to enhance its
transmission and subsequent survival compared with B. bassiana, a generalist pathogen
capable of surviving as a saprotroph in the soil while also acting as a pathogen with a broad
host range [89]. Indeed, Acyrthosiphon pisum (Harris, 1776) (Hemiptera: Aphididae) aphids
infected with B. bassiana exhibited a reduced production of alarm pheromones compared
with uninfected hosts. In contrast, aphids infected with P. neoaphidis released more alarm
pheromones than the uninfected controls, resulting in opposing effects on the movement
ability of uninfected individuals. These differences may lead to infected aphids falling to
the soil (due to decreased movements) or having increased chances of contact with fungal
conidia (due to increased movements), both of which contribute to favoring pathogen
dissemination and host infection in the context of their respective generalist or obligate life
history strategies [89].
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Alterations in the pheromone profile of honeybee workers and queens have been
noted when infected with the microsporidian fungal gut pathogen Nosema ceranae Fries,
Feng, da Silva, Slemenda and Pieniazek, 1996 (Apansporoblastina: Nosematidae) [82,84,85].
Initially, the effect of this parasite on pheromone signaling, particularly in the production
of ethyl oleate (EO), the only primer pheromone involved in foraging so far identified in
honeybee workers, was analyzed in this caste. The authors found that Nosema spp. could
significantly alter the production of EO, with a positive correlation between the levels of
Nosema infection and EO synthesis [82]. These results suggest that Nosema infection may
affect colony homeostasis due to the involvement of this compound in the regulation of
labor division among workers. Moreover, when N. ceranae challenged bees in the field,
higher EO levels and increased flight activity were observed, along with high mortality
compared with uninfected individuals [83]. Higher flight activity by Nosema-infected bees
might help reduce disease transmission rates within the colony. However, as the chemical
mechanisms regulating behavioral maturation, particularly the balance between nursing
and foraging roles, become disrupted, the colony displayed a more fragile homeostasis,
making it more susceptible to other environmental disturbances [83].

When queens were investigated for the effects of N. ceranae, Alaux and colleagues
found that infection resulted in increased vitellogenin titer, antioxidant capacity, and
mandibular pheromones, potentially impacting their health [84]. The profile of the queen
mandibular pheromone (QMP) could indeed be indicative of infection-related increased
frequencies of its supersedure. In particular, 9-oxodec-2-enoic acid (9-ODA) and 9-hydroxy-
2-enoic acid (9-HDA) levels were found to be significantly higher, while the antifungal
compound methyl p-hydroxybenzoate (HOB), a potential signal prompting initiation of
queen rearing, decreased in infected queen heads [84].

Mayack and colleagues recently used a high-resolution accurate mass gas chromatography–
quadrupole time-of-flight mass spectrometry approach to trace the exposome profile of
hives where N. ceranae was found to be present [86]. The significant correlation detected
between the presence of N. ceranae infection and one component of the alarm pheromone,
namely (Z)-11-eicosen-1-1ol, suggested that the increase in the synthesis of this compound
may represent a recognition mechanism for the colony to identify, care for, quarantine, or
kill the infected individuals. Research in this field is of particular interest, since N. ceranae
infection contributes to the global decline in the health of honeybees. A deeper understand-
ing of the mechanisms through which a colony fights against the disruption of its social
harmony using alarm pheromones is also essential from the applied point of view.

The important threat to food security posed by locusts is based on their capacity to
aggregate into migratory swarms thanks to a complex interaction of visual, tactile, and
chemical cues. Paranosema locustae (Apansporoblastina: Nosematidae) infection can inhibit
the aggregation behavior of solitary Locusta migratoria manilensis (Meyen, 1835) (Orthoptera:
Acrididae) and induce the return to solitary lifestyles by gregarious individuals [87,88]. Shi
and colleagues found that this behavioral change is related to a reduction in the bacterial
population contributing to the production of the aggregation pheromone in the locust
hindgut because of the acidification and increased production of reactive oxygen species
induced by P. locustae [88]. These findings are thus of particular interest in developing
improved strategies for locust control by exploiting the interactions between the parasite
and the gut microbiota.

Cuticular hydrocarbons are key components of the thin film of wax covering the
body surface of many insect species [140]. In addition to their waterproofing function,
CHs are involved in chemical communication and have been widely explored in many
taxa [47,141–144]. Cuticular hydrocarbons are mainly synthesized in the oenocytes, spe-
cialized secretory cells associated with the epidermis or the fat body and rich in en-
doplasmic reticulum and mitochondria [145]. The properties of these cells align with
their common features across insect species, consisting of the involvement in the reg-
ulation of lipid metabolism [146–149]. The biochemical steps of CH biosynthesis have
been widely described and are based on the highly conserved pathway of fatty acid



Pathogens 2023, 12, 1350 10 of 22

production [140,150–153]. Briefly, fatty acid synthase generates fatty acyl-CoA through
malonyl-CoA. Then, the fatty acyl-CoA is extended by elongases, and double bonds are
introduced by desaturases, leading to the synthesis of unsaturated hydrocarbons, most com-
monly alkadienes and n-alkenes [153]. Reductases then convert the acyl-CoA to aldehydes,
which serve as substrates for a single carbon chain-shortening conversion to hydrocarbons,
a reaction catalyzed by P450 enzymes from the CYP4G subfamily [154–158]. After being
synthesized, the CHs are transported through the hemolymph by lipophorin and are sub-
sequently carried to the epicuticular surface through specialized pore canals crossing the
cuticular layers [159,160]. The mechanisms underlying the transport of CH precursors
amino acids and propionate into the oenocytes have not been completely understood
thus far [159], and how their engagement in producing CHs might adapt as a response to
pathogen infections is still to be explored.

Some fungi have the capability to penetrate the CH mechanical barrier [161,162], lead-
ing to alterations in the CH content of the infected insect species. In order to penetrate the
insect cuticle, entomopathogenic fungi exploit a complex mixture of enzymes [163–166],
including cytochrome P450 monooxygenases, which mediate the degradation of CHs.
This effect has been documented in the context of T. infestans infection with B. bassiana
and Metarhizium anisopliae (Metschn.) Sorokin, 1883 (Hypocreales: Clavicipitaceae). In
these cases, the fungi were shown to convert CHs into different lipid products, serv-
ing as a source for energy production and the biosynthesis of cell components [167,168].
Moreover, the larvae of the common cockchafer Melolontha melolontha (Linnaeus, 1758)
(Coleoptera: Scarabaeidae) and the European corn borer Ostrinia nubilalis (Hubner, 1796)
(Lepidoptera: Crambidae) showed altered CH profiles following treatment with B. bassiana
or B. brongniartii (Sacc.) Petch, 1926 (Hypocreales: Cordycipitaceae) [81]. This is particu-
larly interesting, since M. melolontha is not a natural host for B. brongniartii, showing that
exposure to non-infective spores may also impact CHs and, as a potential consequence,
host chemical communication.

While certain entomopathogenic fungi have been demonstrated to influence the over-
all behavior and neurological patterns of infected individuals to their advantage (e.g., in-
creased conidial transmission) [20], there are very few studies to date examining the effects
of entomopathogenic fungi on altering insect chemical communication and, consequently,
sexual behavior [169]. This is the case of the cockroach Blatta orientalis Linnaeus, 1758
(Blattodea: Blattidae), which produces more hydrocarbons and other surface compounds
after exposure to the entomopathogenic fungus Conidiobolus coronatus (Entomophthorales:
Ancylistaceae) [90]. In ants of the species Lasius neglectus Van Loon, Boomsma, and Andrs-
falvy, 1990 (Hymenoptera: Formicidae), when the pupae are infected with M. brunneum
Petch, 1935 (Hypocreales: Clavicipitaceae), the CH profiles change and the altered chemical
cues they emit during the non-transmissible incubation time of the pathogen trigger a
destructive disinfection behavior [91]. Ants use their antimicrobial poison as well as cocoon
removal and biting to avoid the replication of the pathogen in the pupae, thus interrupting
the pathogen lifecycle. In the case of Nosema apis E. Zander, 1909 (Apansporoblastina: Nose-
matidae) and N. ceranae infection in honeybees, Murray and coworkers found alterations in
the n-alkane profile but did not detect altered behaviors in the nestmates [170]. Research in
this field is still at an early stage and indicates the presence of adaptive roles of CH changes
upon entomopathogenic fungi infection either for the host, which can detect the infection
and remove it efficiently, or for the pathogen, which can degrade the CH layer.

In some cases, the advantage for the pathogen (e.g., ensuring its dispersal) is partic-
ularly evident. An example is the pathogenic fungus Entomophthora muscae (Entomoph-
thorales: Entomophthoraceae), which can produce a mixture of volatile sesquiterpenes
altering the natural profile of the CHs of cadavers of female house flies, Musca domestica
(Diptera: Muscidae) [92]. Uninfected males are then attracted by the fungal-produced
compounds and mate with the dead females, thus increasing the chances of being infected
and contributing to pathogen transmission.
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The advantage for the pathogen may also occur at the metabolic level, such as in
the synthesis of epicuticular hydrocarbons in the insect host and their assimilation by
entomopathogenic fungi. Further exploration of this interaction could provide valuable
insights into a potentially significant case of pathogen–host co-evolution. Additionally,
it may aid in identifying novel molecular targets in the biochemistry of CH degradation,
offering key biotechnological applications for controlling harmful insect species [168].

5. Eukaryotes
5.1. Phylum Apicomplexa

The malaria parasite Plasmodium falciparum (Haemosporida: Plasmodiidae) can pro-
duce terpenes [93] thanks to the metabolic pathways occurring in their apicoplast, a plastid
organelle with evolutionary origins similar to the chloroplasts in plants [171]. These
Plamodium-derived terpenes have been suggested to be semiochemicals involved in medi-
ating the preference for mammalian hosts in anopheline mosquitoes [93].

The CH profile is altered due to Plasmodium infection in the malaria vector Anophe-
les albimanus Wiedemann, 1820 (Diptera: Culicidae), leading to a reduction in the to-
tal number of CHs [94]. Considering that CHs have been widely recognized for their
multifaceted roles in insect chemical communication and their impact on reproductive
biology [140,172–179], which includes their hypothesized role as attractiveness signals
for mating in other mosquito species [180], Claudio-Piedras and colleagues suggested
that Plasmodium infection could potentially influence the physiology and behavior in
An. albimanus [94].

Beyond the biological relevance of these findings, there is also an important practical
application, as the CH profile can be exploited as a marker of Plasmodium infection. This is
particularly feasible, given that gas chromatography (GC) coupled with mass spectrometry
(MS) analysis to trace the CH profile does not require sample preservation, and the hexane-
based CH extraction is non-destructive, allowing an afterwards use of the mosquitoes [94].

5.2. Phylum Euglenozoa

Tsetse flies (Glossina genus) are vectors of African trypanosomes causing sleeping
sickness in humans and nagana in livestock, with devastating public health and eco-
nomic effects in Africa [181,182]. Reproductive biology in these species has been widely
investigated [55,183–199], not only to develop novel tsetse control approaches but also
for its unique features related to adenotrophic viviparity (i.e. maternal nourishment of
the progeny in the uterus followed by live birth of the larva) [200]. However, only very
recently, volatile chemicals were shown to affect mating behavior in tsetse flies [95]. In
particular, the three chemicals methyl palmitoleate (MPO), methyl oleate (MO), and methyl
palmitate (MP) were found to be produced by females of Glossina morsitans morsitans
(Diptera: Glossinidae), with MPO eliciting a particularly strong behavioral response (i.e.,
attraction) in males. Thus, the authors suggested that MPO may play the role of a volatile
sex attractant in G. m. morsitans, acting as an aphrodisiac to elicit sex-specific behavior
effects. Interestingly, in the same study, the authors found that trypanosome infection
affected the chemical profile of mated individuals of both sexes. In particular, 21 volatile
compounds were present in extracts of the body wash of infected flies but absent from
the uninfected controls. As mentioned above, malaria parasites were previously shown
to produce chemicals in infected mosquitoes [93]. One of these compounds, α-pinene, is
common between Plasmodium-infected mosquitoes and trypanosome-infected tsetse flies.
In addition, the G. m. morsitans antennal odorant receptor GmmOr35 was previously shown
to be responsive to α-pinene [201], suggesting that other flies may detect trypanosome
infection, with potential effects on mating behavior. Notably, in infected tsetse females, the
fecundity is reduced [96], similar to what occurs in Plasmodium-infected mosquitoes, which
produce fewer eggs than their uninfected counterparts [202,203]. The intriguing question
of whether the fly or the parasite produces these chemicals remains unanswered.
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5.3. Phylum Platyhelminthes

Early studies described that, in the intermediate coleopteran host Tenebrio molitor
Linnaeus, 1758 (Coleoptera: Tenebrionidae), the infection with metacestodes of the rat
tapeworm, Hymenolepis diminuta (Cyclophyllidea: Hymenolepididae), impairs vitelloge-
nesis and reduces host fecundity through the modulation of juvenile hormone-regulated
events [204–206]. Subsequently, Hurd and coworkers further described this infection model,
and, for the first time, reported that a parasite can affect host sex pheromone production [97].
Indeed, the research team showed that parasitization strongly decreases the non-volatile
copulatory release of pheromones in T. molitor females and negatively affects the male
response to pheromones [97]. These effects may contribute to the observed delay in ovipo-
sition and fecundity reduction associated with the metacestodes–coleoptera relationship.

Among the intermediate insect hosts exploited by H. diminuta is also the red flour
beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae). In this case, infection
with the rat tapeworm leads to altered behaviors in the beetles [98], diminished male sperm
precedence [99], and the production of defensive compounds, although among-strain
variations have been reported [100]. Intriguingly, it has been demonstrated that H. diminuta
infection significantly reduces T. castaneum male fitness [101]. Importantly, this reduction is
not attributable to female mate choice against infected mates, opening the way to novel
investigations aimed at addressing unanswered questions concerning the mechanisms
underlying this phenomenon. Infection of T. confusum Jacquelin du Val, 1868 (Coleoptera:
Tenebrionidae) by H. diminuta was shown to lead to reduced survival, fecundity, and
mating vigor, as well as carbohydrate metabolism and pheromone response [102–104].
More recently, an upregulation of pheromone binding proteins was also reported [207],
similar to the effect described for virus-infected D. melanogaster [75]. Whether such an
upregulation increases the predation susceptibility of infected hosts (thus favoring parasite
persistence) or confers protection to the host is still an open question.

5.4. Phylum Nematoda

Infection by the entomopathogenic nematode Heterorhabditis bacteriophora (Poinar,
1975) (Strongylida: Heterorhabditidae) was shown to change the behavior of healthy
larvae of Diabrotica virgifera (Coleoptera: Chrysomelidae), the Western corn rootworm [105].
Nematode-infected D. virgifera cadavers attract uninfected rootworm larvae, increasing the
infection rate and the nematode’s reproductive success. This is achieved by emission from
the nematode-infected rootworms of volatile chemicals such as butylated hydroxytoluene
(BHT), a compound that is not common in nature and functions as an attractant to healthy
insects. Indeed, it is important to note that approaching a nematode-infected cadaver poses
risks for the rootworm. It is conceivable that BHT triggers a response in the rootworm
by mimicking the activity of chemicals involved in host selection [105]. In addition, the
volatiles released from insect cadavers infected by entomopathogenic nematodes can
increase the resistance of plants to insect herbivores [208]. Interestingly, these are examples
of a double ability of volatiles to affect the behavior of insects directly or indirectly by
modifying plant responses. At present, however, the molecular mechanism through which
BHT is produced in the rootworm cadavers and the nematode-specific factors triggering
this process remain to be explored. Further investigation in this regard is warranted, as it
carries significant practical implications for pest control and raises interesting evolutionary
and ecological questions about the adaptive nature of this insect behavior.

6. Conclusions

Research on the roles that pathogens play in insect–host chemical communication is
still in its early stages. Thus far, only a limited number of effects have been described, as
summarized in Figure 1.
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Figure 1. Reported effects of pathogen infection on insect chemical communication. The diagrammatic
representation of a D. melanogaster female was adapted from the fly_female_adult_from_a_overhead_view
icon by DBCLS https://togotv.dbcls.jp/en/pics.html, accessed on 27 September 2023, licensed under
CC-BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/.

Most studies, especially those focused on viral and fungal infections, have investigated
these phenomena in light of the evolutionary advantages for the pathogens. A crucial
challenge is to put these studies in the frame of dynamic and reciprocal relationships that
shape the co-evolution between pathogen and host and may result in adaptive values for
the host, as shown in other animal models [38]. In certain cases, pathogen infection leads
to restrain reproduction to sustain antipathogen immune response and, as a consequence,
subsequent reproductive opportunities [209]. This scenario is more likely to unfold when
there is a high infection pressure; whereas, in the presence of a low pathogen prevalence,
natural selection may lean towards increased allocation to reproduction [210]. Insect hosts
are able to compromise key life history traits (e.g., growth, homeostasis, reproduction)
to fight pathogen infection. In parallel, pathogens display trade-offs between virulence
and transmission, or survival outside the insect host and transmission (see [211] for a re-
view). This underscores the necessity of expanding our knowledge on the eco-evolutionary
dynamics of host–pathogen systems.

In most cases, the genetic bases and the molecular (especially neuronal) mechanisms
underlying host manipulation by the pathogens are still completely unknown. In this
context, a subject that may deserve special attention is the impact of pathogen infection
on pheromone production, which, in turn, is known to influence hormonal responses, at
least in certain species. For instance, in social insects such as honey bees, queens can shape
worker behavior and colony dynamics through queen pheromones [212–222]. In the case
of Apis mellifera, exposure to the QMP has been shown to modulate ecdysteroid titers in
workers [223]. These hormones can influence behavior and physiology by regulating gene
expression in the brain through interaction with ecdysteroid receptors [224,225]. Consider-
ing the established roles of ecdysteroid hormones in immunity regulation, particularly in
antipathogen defense [226–228], studies aimed at unraveling the dynamic interplay among
pheromone, hormonal response, and pathogen infection would be particularly intriguing.

As previously mentioned, a wider understanding of the mechanisms underlying
pathogen-mediated behavioral changes will also be beneficial for an applied perspective.

https://togotv.dbcls.jp/en/pics.html
https://creativecommons.org/licenses/by/4.0/
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Indeed, a deeper knowledge of the interactions between pathogen and host at the molec-
ular level will reveal novel targets to be exploited to manipulate the behavior of insect
agricultural pests and disease vectors, thus expanding the insect control toolbox in the field.

Finally, the influence of pathogens on the chemical communication of herbivorous
insects should also be examined within the broader context of other trophic levels, such as
their interaction with host plants. Plants play a role in modulating interactions between
insect herbivores and their pathogens, for instance, by employing insect pathogens as
defensive tools against herbivory (refer to [229,230] for reviews on this topic). Investigating
how insect pathogens integrate into a multitrophic framework provides an interesting
perspective for the study of insect–pathogen relationships.
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