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Abstract: Many swine farms employ UVC treatment in employees’ personal belongings and small
tools entering farms as part of the biosecurity protocol to decrease the risk of pathogen introduction
into the operation. However, the UVC efficacy in some veterinary viruses is not fully evaluated.
This study evaluated the efficacy of ultraviolet type C (UVC) radiation in inactivating seven rele-
vant veterinary viruses: Swine Poxvirus (SwPV), Porcine Reproductive and Respiratory Syndrome
Virus (PRRSV), Porcine Epidemic Diarrhea Virus (PEDV), Swine Influenza Virus (SIV), Bovine Viral
Diarrhea Virus (BVDV), Porcine Parvovirus (PPV), and Senecavirus A (SVA). The experimentally
contaminated materials included polystyrene and filter paper. The samples were exposed to UVC for
5 min (total dose of 360 mJ/cm2). The UVC treatment caused a decrease over 4 log10 in SwPV titer on
the polystyrene surface, whereas it consistently reduced about 5 log10 in PPV and SVA samples. No
viable virus was recovered from PRRSV, PEDV, SIV, and BVDV samples. In filter paper, conversely,
the efficacy was reduced. This study provides essential information on the inactivation effectiveness
of a specific dose of UVC on important veterinary viruses, further supporting the rational application
and strategic guidance for UVC radiation use to disinfect materials.
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1. Introduction

Controlling the spread of diseases in densely populated swine farms represents a
major challenge for the swine sector, requiring strict sanitary measures to support biose-
curity and animal health. As part of the biosecurity protocol in many swine farms, UVC
radiation chambers are used to treat objects entering farms to decrease the risk of pathogen
introduction into the operation [1,2]. The treated objects are typically personnel belongings,
including food containers, lunch boxes, cell phones, and small tools. The UVC mechanism
of action is based on the formation of thymine, cytosine, or uracil dimers in DNA or RNA.
These mutations, consequently, may disable the virus’ ability to replicate [3,4]. The UVC
virus inactivation effectiveness of a restricted number of important veterinary viruses has
been demonstrated in surfaces, water sanitation, and food processing plants [1,2,5–12].
However, there is a paucity of research on the UVC use and effectiveness on surfaces
contaminated with many important swine viruses.
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The various methodologies and equipment employed in prior studies hamper compar-
isons of the UVC treatment efficacy in inactivating different viruses [1,2,5–12]. Furthermore,
the UVC radiation dose information is not always available, hindering the determination of
effective treatment parameters for the various viruses. It is known that the susceptibility to
UV radiation varies among viruses [13]. Despite the knowledge gaps in the efficacy of UVC
radiation on specific viruses, the technology is largely used in commercial pig farms [1,2].
Therefore, the objective of this study was to evaluate the UVC’s efficacy in inactivating
viruses of clinical importance in swine production on non-porous (polystyrene surface)
and porous (filter paper) surfaces that had been experimentally contaminated with seven
enveloped and non-enveloped viruses. The study used Swinepox Virus (SwPV), Porcine
Reproductive and Respiratory Syndrome Virus (PRRSV), Porcine Epidemic Diarrhea Virus
(PEDV), Swine Influenza Virus A (SIV), and Bovine Viral Diarrhea Virus (BVDV)—a pri-
mary cattle pathogen belonging to the Pestivirus genus, which also includes the Classical
Swine Fever Virus (CSFV). Additionally, the non-enveloped virus, Porcine Parvovirus
(PPV), and Senecavirus A (SVA) were used.

2. Results and Discussion

The present study tested the efficacy of a UVC dose of 360 mJ/cm2 in inactivating
seven viruses on experimentally contaminated surfaces. The results for virus inactivation
on the polystyrene (non-porous) surface and the filter paper material (porous surface)
are shown in Figures 1 and 2. An infectious virus was not recovered in every replicate
in polystyrene-treated surfaces contaminated with SwPV or PPV (one out of the three
replicates had measurable viable virus concentration). Conversely, infectious virus was
recovered in all but PEDV samples from the treated filter paper material.

After exposure to UVC radiation, there was a consistent decrease in the SwPV titer
of about 4 log10 and 3 log10, respectively, in the polystyrene and filter paper material
(Figures 1A and 2A). Poxviruses are considered resistant under environmental conditions
and are stable over a wide temperature range [14]. The efficacy of UVC on SwPV may
suggest that other large, enveloped, double-stranded DNA viruses such as African Swine
Fever Virus (ASFV, family Asfarviridae) may be susceptible to UVC inactivation. However,
specific studies using ASF are required.

The enveloped PRRSV, with titer of a 104.75 TCID50, was completely inactivated on
a polystyrene surface subjected to UVC treatment. However, when present on a porous
surface, the titer reduction was limited to about 3 log10 (Figures 1B and 2B). Whereas the
UVC dose used in a previous study evaluating PRRSV inactivation in various surfaces
exposed to UVC is not disclosed, a titer reduction of over 106TCID50 was obtained using a
10 min treatment [1].

In the current study, no infectious PEDV was recovered from either of the tested
surfaces following treatment with a UVC dose of 360 mJ/cm2, indicating a titer reduction
of at least 3 log10 (Figures 1C and 2C). Similarly, a prior study evaluated the UVC efficacy
in PEDV contaminated face masks with a titer of 104 TCID50/mL (as a surrogate for SARS-
CoV-2). After a 20 to 30 min drying time followed by 10 min UVC treatment, no viable
virus was recovered [15].

Following treatment, no infectious SIV was recovered from polystyrene surface sam-
ples, compared to a titer of 105.7 TCID50 in the control samples. Conversely, in the
porous material, the treatment led to partial inactivation with a ~ 2 log 10 titer reduction
(Figures 1D and 2D). Another study also found partial inactivation of influenza virus using
UVC light. Although, a significant decrease in virus titer was noted in short treatments
(less than one minute of UVC exposure). The authors report the treatment successfully
reduced the viral titer by approximately 4 log 10 [5].
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virus (A), Porcine Reproductive and Respiratory Syndrome Virus (B), Porcine Epidemic Diarrhea 

Virus (C), Swine Influenza Virus (D), Bovine Viral Diarrhea Virus (E), Porcine Parvovirus (F), and 

Senecavirus A (G). Individual result for the triplicate testing is represented by circles (treated group) 

or squares (control group). Boxes represent the average of the triplicates, and bars represent the 

standard error of the mean. The dotted line represents the titer of the virus inoculum. 

Figure 1. Inactivation of viruses in contaminated non-porous polystyrene surface by UVC treatment.
Titration of independent triplicates in UVC treated and non-treated surfaces for Swine Poxvirus (A),
Porcine Reproductive and Respiratory Syndrome Virus (B), Porcine Epidemic Diarrhea Virus (C),
Swine Influenza Virus (D), Bovine Viral Diarrhea Virus (E), Porcine Parvovirus (F), and Senecavirus
A (G). Individual result for the triplicate testing is represented by circles (treated group) or squares
(control group). Boxes represent the average of the triplicates, and bars represent the standard error
of the mean. The dotted line represents the titer of the virus inoculum.
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Figure 2. Inactivation of viruses in the contaminated porous surfaces by UVC treatment. Titration
of independent triplicates in UVC treated and non-treated surfaces for Swine Poxvirus (A), Porcine
Reproductive and Respiratory Syndrome Virus (B), Porcine Epidemic Diarrhea Virus (C), Swine
Influenza Virus (D), Bovine Viral Diarrhea Virus (E), Porcine Parvovirus (F), and Senecavirus A (G).
Individual result for the triplicate testing is represented by circles (treated group) or squares (control
group). Boxes represent triplicate averages, and bars represent the standard error of the mean. The
dotted line represents the titer of the virus inoculum.

BVDV virus is a primary cattle pathogen and may also infect pigs [16]. BVDV belongs
to the Pestivirus genus in the family. BVDV has been used as CSFV surrogate in previous
viability studies [17–19]. Treatment of polystyrene surface spiked with BVDV resulted in
over 5 log10 titer reduction. However, the BVDV titer reduction in porous material was
limited to about 2.5 log10 (104.5 TCID50 to 102 TCID50) (Figures 1E and 2E).
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Although non-enveloped viruses, represented in our study by SVA and PPV, were not
completely inactivated in polystyrene and porous material, a significant titer reduction for
both viruses was observed. A 5 log10 titer reduction was consistently achieved for SVA in
the polystyrene surface, whereas at least ~ 2 log10 reduction was reached in paper material
(Figures 1F and 2F). Similarly, the effectiveness of UVC in inactivating SVA in three different
experimentally contaminated surfaces commonly found in swine farms (cardboard, fabric,
and plastic) was evaluated and demonstrated SVA inactivation on plastic surfaces free of
organic matter (7 log10 reduction) [2]. However, similar to our findings, UVC treatment
efficiency was reduced in porous cardboard samples (2.5-log reduction) [2].

UVC treatment of PPV-contaminated surfaces led to significant titer reduction in
both materials, with an approximate 5 log10 for contaminated polystyrene and 4 log10
for contaminated filter material (Figures 1G and 2G). PPV inactivation using UVC was
previously evaluated in vaccines, and it was found that treatment with a dose of 13 mJ/cm
led to over 5.9 log 10 titer reduction [20].

The study provides information on the effectiveness of a UVC treatment (360 mJ/cm2

applied over 5 min) on the inactivation of seven veterinary relevant viruses. Complete
inactivation of enveloped viruses in the polystyrene material was noted. However, a viable
virus was retrieved from non-enveloped SVA and PPV. Typically, most of the materials
treated in farms using UVC are clean personnel belongings such as food containers, cell
phones, and small tools. Whereas the materials used in the current study may represent a
significant percentage of the surface types exposed to UVC in swine farms, it should be
emphasized that the virus inactivation level may vary in the various surface types and
materials. It is critical to emphasize that the treatment will likely be significantly less
effective on surfaces containing organic matter, which hampers direct UVC light exposure.
In addition, the porosity degree or absorbing characteristics significantly impact UVC treat-
ment effectiveness. UVC as a standalone disinfection protocol for surfaces contaminated
with organic matter or porous surfaces may increase the risk of virus introduction into
farms. Therefore, using additional decontamination steps in these situations would be
critical for farm biosecurity.

3. Materials and Methods
3.1. Viruses and Cells

The cell culture lines to amplify the viruses used in this study are listed in Table 1. The
cells were maintained in minimal essential medium (MEM) (Corning®, Mediatech, Inc.,
Manassas, VA, USA) and supplemented with 10% fetal bovine serum (FBS; Seradigma®,
VWR International, LLC, Radnor, PA, USA), 2 mM L-glutamine (Corning®), 1% Antibiotic-
Antimycotic 100 X (Gibco®, Life Technologies Corporation, Grand Island, NY, USA) and
gentamicin (50 µg/mL; Corning®). The cell cultures were maintained in an incubator at
37 ◦C supplemented with 5% CO2. The media composition for virus amplification was
as described above except for PEDV and SIV amplification. The media used for PEDV
and SIV amplification was FBS-free and supplemented with 2 µg/mL of TPCK trypsin
(Sigma-Aldrich®, St. Louis, MO, USA). The virus stocks were titrated in duplicate using the
Reed and Muench method [21]. The virus titers were calculated and expressed in Median
Tissue Culture Infectious Dose (TCID50) (Table 1).

3.2. Study Design

The overview of the study design is depicted in Figure 3. To evaluate the UVC
inactivation effect on the selected viruses, the commercially available BioShift®, UVC pass-
through germicidal chamber (PTC) (Once ™, Plymouth, MN, USA) was used. Four 15 W
UVC lamps were present in the chamber. The lamps were distributed in the upper and
bottom sides of the units. Two different types of surfaces were evaluated: a polystyrene
surface (plastic) and a porous surface (Fisherbrand, filter paper qualitative P8-creped). The
UVC radiation dose applied in the samples was monitored using Lutron UVC 254 nm
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Ultraviolet Light Meter (UVC-254SD) Data Logging. The UVC meter probe was placed
adjacent to the tested samples.

Table 1. Characteristics of the viruses used in the study, including the cell line used for virus
amplification and the virus stock titer.

Virus Isolate ID Viral Family Envelope Genetic
Material 1

Cell
Line Virus Stock Titer

SwPV NADL Poxviridae Yes dsDNA PK15 105.5 TCID50/mL

PRRSV NADL
NA Arteriviridae Yes (+)ssRNA Marc-

145 105.1 TCID50/mL

PEDV Colorado
2013 Coronaviridae Yes (+)ssRNA Vero 104.1 TCID50/mL

SIV OK-Han1 Orthomyxoviridae Yes (−)ssRNA MDCK 106.5 TCID50/mL

BVDV Singer Flaviviridae Yes (+)ssRNA MDBK 106.3 TCID50/mL

SVA HI/2012-
NADC40 Picornaviridae No (+)ssRNA ST 108 TCID50/mL

PPV Mengeling Parvoviridae No ssDNA ST 106.3 TCID50/mL
1 Single (ss) or double stranded (ds) nucleic acid viruses were used, including RNA viruses with positive (+) or
negative (−) RNA sense.
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Figure 3. A total of 100 µL of the virus is placed on the testing surface (1) and maintained in the
biosafety cabinet (2), and allowed to dry for 30 min (3). Samples were then moved to the UVC
chamber for the 5 min treatment (dose of 360 mJ/cm2) (4). Following treatment, samples were
resuspended in 1 mL of MEM (5), and eluted samples were serially diluted (6) for the virus titration
assay (7).

Approximately 100 µL of each virus tested was applied to a flat plastic surface or on
1 cm2 of the paper filter. The samples were allowed to dry for approximately 30 min in a
biosafety cabinet type A2. Dry samples were placed in a biocontainment and moved to the
UVC chamber. In the chamber, samples were removed from the biocontainment and placed
in the center of the chamber, about 50 cm from the light bulb located in the upper part of
the chamber. The samples were then treated for 5 min (treatment time typically used in
swine farms). A set of samples was kept UVC-untreated and served as a positive control.
After treatment, the samples were resuspended in 1 mL of MEM, and a virus titration assay
was conducted.
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The UVC-treated and the control samples were titrated using a limiting dilution assay
in 96-well plates. Briefly, 50 µL of the viral suspension was added to the wells, with eight
replicates of each dilution. Then, 100 µL of the cell suspension was added to all wells
(approximately 30 thousand cells/wells). For the PEDV and SIV virus titration assay,
plates were prepared 24 h prior to inoculation, and the MEM used for the virus dilution
was supplemented with 2 µg/mL of TPCK trypsin (Sigma-Aldrich®) and free of FBS. The
samples were placed in the incubator at 37 ◦C, supplemented with 5% CO2, for 72–96 h
post-inoculation. The plates were then read in an inverted light microscope. The results
were obtained by the identification of the cytopathic effect, and the viral titer was calculated
according to the methodology of Reed and Muench [21]. The study was composed of three
independent triplicates.

Author Contributions: Conceptualization, F.V.B., T.D., K.G. and M.F.M.; methodology, W.P.P., R.C.E.
and C.M.P.; formal analysis, F.V.B., M.F.M. and T.D.; resources, F.V.B., T.D., K.G.; data curation, F.V.B.;
writing—original draft preparation, C.M.P., F.V.B. and M.F.M.; writing—review and editing, F.V.B.,
C.M.P., M.F.M., T.D., K.G., W.P.P. and R.C.E.; project administration, F.V.B.; funding acquisition, F.V.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Hanor Company of Wisconsin, grant number VM-20-RS-013.
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